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In this paper we proposed a method to design and numerically calculate high-order rotation
invariants from Gaussian-Hermite moments. We employed the invariant properties of the
Gaussian-Hermite moments discovered earlier in [1] and we showed how to construct
rotation Gaussian-Hermite invariants even in the cases when no explicit invariants from
geometric moments are available. We verify by experiments the rotation invariance and show
that we are capable of computing much higher order of Gaussian-Hermite invariants than of
geometric invariants, which brings better discrimination power.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Rotation invariants play a key role in position-invariant
object description and recognition. Being a part of rigid-body
transformation, object rotation is present almost in all
applications, even if the imaging system is well set up and
the experiment has been prepared in a laboratory. On the
other hand, rotation is not trivial to handle mathemati-
cally, unlike for instance translation and scaling. For these
two reasons, invariants to rotation have been in focus of
researchers since the beginning. Invariants composed of
image moments, moment invariants, belong to the most
popular ones [2].

Moment invariants have been mostly constructed from
geometric moments, which are projections of an image onto a
standard polynomial basis xPy? [3]. Several authors reali-
zed the limitations of geometric moments, namely their
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numerical instability, and proposed to employ various ortho-
gonal moments instead. Teague [4], Khotanzad and Hong [5],
and Wallin and Kiibler [6] used Zernike moments, the other
authors employed Legendre [7], Krawtchouk [8], and Four-
ier-Mellin [9] moments. Most recently, Yang and Dai [1]
have proposed invariants from Gaussian-Hermite moments.

Gaussian-Hermite invariants (GHIs) combine two favor-
able properties. From theoretical point of view, their con-
struction is straightforward. Yang and Dai proved that any
function of geometric moments which is invariant to
rotation keeps the invariance if geometric moments are
replaced by Gaussian—-Hermite moments. This is the central
theorem of [10] showing that the GHIs, unlike the other
invariants from orthogonal moments, can be obtained
directly as soon as the geometric moment invariants have
been derived. From computational point of view, the
Gaussian-Hermite moments are similar to the other ortho-
gonal moments, more stable and robust to numerical errors
than the geometric moments. This is because the orthogo-
nal polynomials can be evaluated by recurrent relations
which allows computation with higher precision than the
direct algorithms. These two properties — easy derivation
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and stable computation - make the GHIs powerful object
descriptors, as was proved in [1,10].

The only weak link of the above consideration is that
rotation invariants from geometric moments have been
explicitly derived up to the order five only in the literature.
The goal of this paper is to bridge this gap and to show
how to derive and calculate higher-order GHIs. In this
sense this paper is an extension of the recent paper [1]
published in this journal.

2. Gaussian-Hermite moments

Gaussian-Hermite moments (GHMs) were exhaustively
described in [1,10]. Here we recall basic formulae which
are needed for derivation of the invariants.

Hermite polynomials are defined as

P

d
H,,(x):(—1)pexp(x2)Wexp(—x2). (1)

They are orthogonal on (— o0, c0) with a Gaussian weight
function:

/OO Hy(x)Hg(x)exp(—x*)dx = 2Pp!/7Spq ()

and they can be efficiently computed by the following
three-term recurrence relation:

Hp1(x) =2xHp(x)—2pH,_4(x) forp=>1, 3)

with the initial conditions being Hy(x) =1 and H;(x) = 2x.

For the definition of Gaussian-Hermite moments, we
move the coordinate origin to the image centroid, scale
Hermite polynomials by a parameter ¢ and modulate them
by a Gaussian function with the same parameter. Hence,
the (centralized) Gaussian-Hermite' moment 7pq Of order
(p+¢q) of function f(x,y) is defined as

= [ ] Qo5 Y asa

“

Recalling the geometric moments (GMs)
Mpq = [ /7 XPyif(x,y) dx dy (5)

we can summarize the most important invariant property
of the GHMs as follows: given a functional I(f,m,g),
p,q=0,1,...,r which is invariant under an in-plane rota-
tion of f, then functional I(f,7,,) is also an invariant (see
[10] for the proof).

3. Constructing Gaussian-Hermite invariants
3.1. Definition of the invariants

The main obstacle preventing us from deriving Gaus-
sian-Hermite invariants (GHIs) of higher orders is that
rotation invariants I(f, m,q) from geometric moments have
been derived explicitly up to the order five only. These
low-order invariants may be sufficient in simple tasks but

" This moment is sometimes called non-coefficient Gaussian-Hermite
moment.

do not provide enough discrimination power if the object
classes are similar.

To derive higher-order GHIs, we adopt the trick which
was originally proposed by Flusser [3] to construct higher-
order geometric invariants. Geometric moments (5) are
transformed under image rotation in a relatively compli-
cated way. Hence, Flusser [3] proposed not to work with
individual geometric moments but rather with certain
linear combinations? of the moments of the same orders:

P q
p q idg—k—i
Cog= ) Z <k> <f>(_])q P my g
k=0j=0

(6)

where i is the imaginary unit. Unlike plain geometric
moments, these combinations change under rotation in a
simple way as

Cpq = Cpq - EXP(—i(p — ), (7)
where a denotes the coordinate rotation angle. The geo-
metric rotation invariants are then constructed easily as
such products of various cp4's and their powers which

vanish the rotation angle (see [3] for the details).
Now we construct similar formula from the GHMs:

p q
ZZ p\ (4 —jipq—k—j—

ra = ' <k>(j>(_1)q P gy
k=0j=0

8

As we know from [10], d,,q must change under rotation in
the same way as cpq. Hence,

d;;q =dpq - exp(—i(p— Q). 9

Thanks to that, any product of the form
n dki 10
pidi° ( )

where k;, p;, and g; (i=1,...,n) are non-negative integers
such that

n

> kipi—gq) =0, (11)
i=1
cancels the phase shift and provides the invariance to
rotation.

There are infinitely many invariants of the form (9). An
independent and complete system of the GHIs of arbitrary
order can be obtained as

Y(p.q) = dpngo;g withp>¢q,py—qp=1 (12)

where po and qq are fixed user-defined indices such that
dp,q, #0 on the dataset we work with. For the sake of
numerical stability it is recommended to choose them
small. In the experiments in this paper, we use the
simplest choice py=2,q,=1. The constraint p>gq is
imposed to avoid redundancy because

dpq = dy,, (13)

where “%” denotes complex conjugation. The constraint
Po—qo =1 is not necessary, we imposed it for simplicity

2 These combinations are called complex moments.
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only. If py—qg=s, s> 1, then the exponent on the right-
hand side of Eq. (12) would be (p—q)/s. Setting s=1
prevents the necessity of working with the roots.

An important property of the invariants (12) is that
they are mutually independent and form a complete
system (basis) for arbitrary order r. None of the elements
of the basis can be expressed as a function of the other
elements and any rotation invariant can be expressed by
means of the basis elements only. The knowledge of the
basis is a crucial point in all pattern recognition tasks
because the basis provides the same discriminative power
as the set of all invariants and thus minimizes the
computational cost. Seemingly, one could simply use the
magnitudes |dp,| instead of the invariants (12). The mag-
nitudes are also rotation invariants but do not form a
complete system.

3.2. Independence and completeness

Instead of complete formal proofs we rather provide
the readers with an insight that Eq. (12) actually forms the
basis. The independence is “almost” evident from the
mutual independence of the GHMs, which is self-evident
from the independence of the Hermite polynomials. The
only question remaining is whether or not

T(Po, qO) = dPo-%d%Po = |dPo-% |2’

is independent of the others. If this was not true, there
would exist such invariants (different from ¥(py. q,)) that

ki K
H171T(pi’qi)( . ?:n1+lllu*(pi>qi)
1_[:71:1 1 ){I(Si» ti)fl : H;Tl: m;+1 Y/*(Si’ ti)fl

Substituting into (14) and grouping the factors d,
dg,p, together, we get

¥ (Po. 4o) = (14)

and

odo

n
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(15)

On the right-hand side of Eq. (15), all dpq's other than dp,q,
and dg,p, must be cancelled and the powers of both dp,q,
and dg,p, must equal one. These constraints cannot be
fulfilled at the same time, which is a contradiction with the
assumption.

To prove the completeness, it is sufficient to show that
all dpg's (and, consequently, all GHMs) up to the order r can
be recovered from the invariants (12). This inverse pro-
blem is equivalent to solving a simple nonlinear system of
equations:

Yp.q = dpngo;g

for the d,q's. Since the ¥(p.q)'s are rotation invariants,
they do not reflect the orientation of the object. Thus,
there is one degree of freedom when recovering the object
moments that corresponds to the choice of the object
orientation. Without loss of generality, we can choose such
orientation in which dp, is real and positive (such
orientation always exists even if it may not be unique).

Then we immediately obtain

dpyg, = \/ ¥ (Do q0)

and
dpg =¥ (D, 9)dg,p;
for any p and q.

3.3. Vanishing invariants

An interesting property of the invariants (12) is that
they are identically zero on certain types of objects. As we
will demonstrate, this is implied by the object symmetry.
Knowing vanishing (trivial) invariants is very important in
practice. Often we recognize man-made objects or natural
shapes which typically exhibit certain type of symmetry.
The invariants, which are identically zero, do not contri-
bute to the recognition power, increase the computational
time and may even decrease the performance of the
system.

Let us first discuss the so-called N-fold rotation sym-
metry, which is the most frequent symmetry type we meet
in practice. An object is said to have this symmetry if it
repeats itself when it rotates around its centroid by 27zj/N
forall j=1,...,N. We use this term also for N = co where it
means the circular symmetry. The object symmetry influ-
ences the values of dp,'s in the following way: if (p—q)/N is
not an integer, then dp; =0. To see this, we should recall
that after rotation by 2z /N the object turns into itself and
hence

dyq = dpq - exp(—27i(p—q)/N) = dpq,

which is possible only if (p—q)/N is an integer or dyq =0.
In case of circular symmetry, this means that only dp,'s can
be non-zero.

In addition to the rotation symmetry, axial symmetry
also contributes to vanishing of some invariants, too. Let us
investigate the behavior of the invariants (12) under a
reflection across an arbitrary line. Due to the rotation and
shift invariance, we can limit ourselves to the reflection
across the x-axis. Let f(x, y) be a mirrored version of f(x,y),
ie. f(x,y)=f(x, —y). Clearly,

ﬂ = dCIP = d;q
Thus, it holds for any basic invariant ¥ (p, q)
P(p.0) = Ayl =iy (d,,)" " =¥ 0.0

This proves that the real part of any basic invariant stays
constant under reflection while the imaginary part
changes its sign. Now, if the object is axially symmetric,
then under reflection across this axis it turns to itself, so
the imaginary part of any ¥(p,q) vanishes for axially
symmetric objects.

4. Numerical experiments

In this section, we first experimentally verify the
invariance property of (12) both with respect to
computer-generated and real rotations. Then, in the main
experiment of the paper, we show that the use of the
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GHM's instead of the geometric moments yields the
possibility of working with moments of higher orders
and in that way increases the discrimination power.

4.1. Verification of the invariance property

We used the well-known Lena image of the size 256 x
256 pixels and its seven rotated versions as the test set.
Our feature vector consisted of six invariants:

W = [des, de7d76, Re(d7sd12), Re(dsydi2), di1.11, Re(dis12d12)].
(16)

Due to the focus on high-order invariants we inten-
tionally selected the invariants of orders between 12 and
15. Fig. 1 shows the values of the invariants (scaled into the
range (—10,10)). It can be seen that the variance of the
invariants is negligible. Actually, the Mean Relative Error
(MRE) of the individual invariants is 0.17%, 0.28%, 0.36%,
1.38%, 0.10%, and 0.34%, respectively, which demonstrates
a perfect invariance on artificial data.

We carried out a similar experiment on the images
where the rotation was introduced physically. We scanned
a cartoon card “Bumblebee” in six different orientations
(see Fig. 2). The resolution was 1000 x 1000 pixels. Since
the scanner was not perfect, the images differ from each
other slightly by illumination and we also encounter some
errors at the card border. We computed the same invar-
iants as before and plotted them in Fig. 3. We can observe
some noticeable variances there but still the correspond-
ing MREs are reasonably low: 2.14%, 3.48%, 7.71%, 5.11%,
2.96%, and 7.56%. These results demonstrate that the
invariance is slightly violated because of the differences
between the images but this violation is comparable to
that of other moments and should not significantly affect
the performance in real applications.

—o—W, W, —5—W, W, —A—W, —%—W,

Scaled value of invariant
N
T

G o o o o o >
0 -
_2 -
_4 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8

Index of transformed image

Fig. 1. The values of the selected invariants of rotated “Lena” images.

4.2. The maximum achievable order

The main reason why we prefer to use orthogonal
moments is their better numerical performance compared
to geometric moments. For all orthogonal moments,
including Gaussian-Hermite ones, their basis functions
oscillate in a reasonable range of values and can be
efficiently evaluated by recurrent relations while the basis
functions of geometric moments are monotonically
increasing to infinity. Obviously, the computation of geo-
metric moments brings a huge risk of numerical overflow
and high order invariants from geometric moments would
be unavailable in practice. In this experiment we show that
the maximum achievable order (MAO) of the GHMs is
much higher than that of the GMs. In the next subsection
we demonstrate how the MAO influences the recognitive
power of the moments.

We used 6 images shown in Fig. 4, each of them in four
different resolutions: 128 x 128, 256 x 256, 512 x 512, and
1024 x 1024 pixels. For each image we tried to calculate
GMs mpo and GHMs o for p=0,1,.... As p increases, the
values of both GMs and GHMs increase as well. Since the
maximum floating-point number in standard Matlab arith-
metic is 1.7977 x 10°%, one may expect that both moments
overflow for certain p > p,.. This pm. determines the
maximum achievable order of the moments. Table 1 shows
this pmax for all test images.

The main results of this experiment can be summarized
as follows:

® The maximum achievable order of the GHMs is always
much higher than that of the GMs.

® The maximum achievable order of the GHMs is almost
independent of the image size (thanks to the computa-
tion by recurrent relations) while the maximum
achievable order of the GMs decreases as the image
size increases.

® The maximum achievable orders of both moments do
not depend much on the image content, so the results
from Table 1 can be generalized to other images.

Hence, we could expect the better performance of GHIs in
object recognition and retrieval, particularly in case of
large images with many details where high-order invar-
iants are required.

The MAO is a simply-to-measure criterion which only
shows when the exponent overflows and which depends
on the particular implementation. Another factor which
also seriously influences the accuracy of the moment
values is a precision loss in the mantissa. As the moment
values increases and the moment order approaches the
MADO, this kind of error increases, too. Due to the shape of
the basis functions, GMs are much more prone to this
precision loss than the GHMs, as will be demonstrated in
the next subsection. Seemingly, we could avoid the over-
flow of GMs as long as we normalize the (x,y) coordinates
of the image to a square (0,1) x (0, 1) or to another small
area. This is true but the normalization brings the opposite
problem. On (0, 1), the monomials x” converge to zero as
the power increases. When working with higher-order
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Fig. 2. The scanned cards “Bumblebee” whose sizes are 1000 x 1000 pixels.

moments, we face numerical “underflow” which also leads
to the loss of precision. So, the normalization cannot avoid
the precision loss of the GMs in principle.

4.3. A comparison of the recognition power

To illustrate what kind of information is contained in
the higher orders and to demonstrate how the higher-
order moments influence the recognition power, we per-
formed the following experiment. The most transparent
answer to the above questions is provided by studying the
reconstruction abilities. The question now is - given a set
of invariants up to certain order r, what image can be
reconstructed from them and what is its difference from
the original? This is equivalent to the recognition power.
The reconstructed image is a representative of the equiva-
lence class which contains, among others, also the original.
Using an incomplete set of invariants, the reconstructed
image cannot be equal to the original but should be close
to it in some objective or subjective sense. The higher the
“distance” between the reconstruction and the original,
the broader this equivalence class and, consequently, the
lesser the discrimination power (note that the images of
the same equivalence class cannot be distinguished by the
given set of the invariants).

We took the 1024 x 1024 “Cameraman” image from
Fig. 4 and calculated all GM's and GHM's which can be
calculated without overflow, which means up to the order
110 for GM's and 264 for GHM's (see Table 1). The difference

10
8l —'+W1 W2 —EI*WG W4 %Ws +Ws
6 |-
ww 4r L——— A A A -
c
8
r=
E 2+ >——6—6— 6 —6——— 0O
=
o
o Of
=2
<
>
i 2T s 5 5 —98
i
[
-6
-8+ 5}\/\4<’/4\\/4\k
_10 L L L L L L
1 2 3 4 5 6

Index of scanned card

Fig. 3. The values of the selected invariants computed from the “Bum-
blebee” images.

between the invariants and the moments is irrelevant here
since we are going to reconstruct the image in the fixed
orientation. Thanks to Eq. (12), it does not matter whether
we reconstruct from the moments or from their invariants.
So, it is possible to work directly with moments.
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Fig. 4. The test images. (a) Cameraman; (b) Baboon; (c) Barbara; (d) Lena; (e) Peppers; (f) Goldhill.

Table 1
The maximum achievable order p,q.x computed for various images.

Size Cameraman Baboon Barbara Lena Peppers Goldhill

GM GHM GM GHM GM GHM GM GHM GM GHM GM GHM
128 165 265 168 265 167 265 167 265 168 265 166 265
256 142 265 144 265 143 265 143 265 143 265 142 265
512 124 264 125 264 125 265 125 264 125 264 124 264
1024 110 264 m 264 m 265 11 264 111 264 110 264

For the reconstruction from the GMs we used the
traditional algorithm via Fourier transform, using the fact
that GMs are Taylor coefficients of the image spectrum
(see [2], p. 201). We used all moment up to the MAO but
higher order moments are so much affected by the preci-
sion loss that they made the reconstruction completely
meaningless; the reconstructed “image” is almost a ran-
dom matrix with the values in the range (—10 000, 10
000). To eliminate this effect, a standard way is to suppress
high frequencies by a proper low-pass filter (see again [2],
p. 201). It is unfortunately impossible to achieve a recon-
struction which is close to the original. The low-pass filter
smoothens the image details but if we increase the cut-off
frequency the reconstructed image starts to oscillate
unpredictably. The best reconstruction we were able to
achieve is shown in Fig. 5. One can observe certain basic
features of the original but all details are missing.

The reconstruction from the GHMs was performed
directly in the image space, without employing the spec-
tral domain, which is possible for all orthogonal moments
(see [2], Section 6.5.3). Since the precision loss in mantissa
is much smaller than in case of the GMs and since there
are higher-order moments available, the reconstruction is
much better, see Fig. 6. One can still observe some small
oscillations but all important details are apparent. Note
that theoretically the moments up to the order 1024 are
necessary for a perfect reconstruction.

5. Conclusion

In this paper we proposed a method to design and
numerically calculate high-order rotation invariants from
Gaussian-Hermite moments. We employed the invariant
properties of the Gaussian-Hermite moments discovered
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Fig. 5. The reconstructed image “Cameraman” from GMs using moments
up to order 110.

Fig. 6. The reconstructed image “Cameraman” from GHMs using
moments up to order 264.

in [1] and we showed how to construct rotation Gaussian—
Hermite invariants even in the cases when no explicit
invariants from geometric moments are available. We
theoretically proved the independence and completeness
of the new invariants and showed that object symmetry
makes certain invariants zero. Since we work in centra-
lized coordinates, all invariants are automatically invariant
also to the image translation.

We proved experimentally that the maximum achiev-
able order of Gaussian-Hermite moments is much higher
than that of geometric moments and, at the same time,
GHMs are calculated with a better precision than GMs,
which makes GHMs powerful and discriminative features
for object description. This is the main achievement of
the paper.

Another remarkable advantage of Gaussian-Hermite
moments is that their area of orthogonality is the whole
plane. This property differentiates the GHMs from most of
the orthogonal moments which are commonly used in
image analysis, such as Legendre, Zernike, and Chebyshev
moments [2]. These moments are orthogonal on a bounded
region (square or circle). To calculate them on an image, we
would have to map the whole image into the area of
orthogonality. Even if this mapping is performed correctly,
it may introduce some errors into the moment calculation,
particularly when we have to map the image into a circle. If
the mapping is incorrect and certain part of the image lies
outside the area of orthogonality (for instance due to the
spatial transformation of the image), the moment calcula-
tion fails completely. In the case of the GHMs, no mapping
is necessary and there is no danger of a precision loss of
this kind.

Extension of the invariance property also to scaling is,
however, more complicated than in the case of geometric
moments. Due to the parameter ¢, we cannot normalize
the GHMs to scaling but we have to perform a full search
in the scale space.
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