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This work proposes a novel face recognition method based on Zernike moments (ZMs) and
Hermite kernels (HKs) to cope with variations in facial expression, changes in head pose
and scale, occlusions due to wearing eyeglasses and the effects of time lapse. Near infrared
images are used to tackle the impact of illumination changes on face recognition, and a
combination of global and local features is utilized in the decision fusion step. In the global
part, ZMs are used as a feature extractor and in the local part, the images are partitioned
into multiple patches and filtered patch-wise with HKs. Finally, principal component anal-
ysis followed by linear discriminant analysis is applied to data vectors to generate salient
features and decision fusion is applied on the feature vectors to properly combine both glo-
bal and local features. Experimental results on CASIA NIR and PolyU NIR face databases
clearly show that the proposed method achieves significantly higher face recognition accu-
racy compared with existing methods.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

With the rapid development of biometric technology, face recognition (FR) has become an active research area in the field
of computer vision. Despite research efforts, FR remains a challenge principally because of large intra-class variations stem-
ming from illumination conditions, facial expressions, wearing eyeglasses, head pose, scale and the effects of time lapse. In
the last two decades, numerous techniques have been proposed to solve these challenges and to develop a more effective FR
system [1,27,41,54,58,63,65,66]. Comprehensive reviews on recent FR methods were presented in [67,42]. Among the many
issues in visible FR systems, variation of illumination is regarded as the most challenging for subject identification in coop-
erative, as well as non-cooperative, user scenarios [2,28,56,59]. Several illumination invariant FR methods have been pro-
posed, including methods based on three-dimensional (3D) shapes of the face, as well as methods based on thermal
images measuring body temperature [3,31,37,38,46,50]. However, 3D techniques are costly and require high computational
complexity, while thermal images are extremely sensitive to environmental temperature, health conditions, perspiration
and are opaque to eyeglasses [4,7,53]. Other methods to compensate for illumination problems have also been introduced,
a typical example being presented in [52]. However, the solution to the illumination problem in FR is still not perfect.
Recently, illumination variations have been addressed utilizing near infrared (NIR) imagery [10,24,34].
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Several NIR FR methods have been proposed to achieve an accurate FR system. Li et al. based their advanced method on a
local binary pattern (LBP) and statistical learning algorithms, achieving substantial improvement in their results [33].
However, their method suffered from the high sensitivity of LBP to noise and minor pose variations and alignment errors
[9,13,25,35].

Zhang et al. utilized Gabor filtering to enhance image features, and subsequently extracted discriminative features using a
directional binary code (DBC). DBC captures more spatial information than LBP, and thus gives greater recognition accuracy
[64]. The authors were successful in proposing an accurate FR system. However, more challenges, such as wearing eye-
glasses, still remain.

To improve recognition performance, both NIR and visible images and other types of modality, such as voice and finger-
prints, have been attempted [57]. Shen et al. proposed a method based on boosted DBC features using both visible and NIR
images [43]. DBC and the AdaBoost algorithm were used for feature extraction and classification, respectively, while the per-
formance was improved by consequent information fusion on a decision level. Other similar approaches can be found in
[20,51,55,61]. However, these remain beyond the scope of this paper.

Nighttime FR at long distance was recently investigated by Maeng et al. [36]. Their preprocessing step was based on the
difference of Gaussians, then scale invariant feature transform (SIFT) and multi-scale local binary pattern (MLBP) were used
for feature extraction. Their results indicated that SIFT has better accuracy compared to MLBP. Other improvements in this
domain have also been presented in [26,36,40].

A broad review of infrared FR methods can be found in [18,19]. However, as reported by Ghiass et al., all papers are lim-
ited by failing to examine the performance of the proposed method in the simultaneous presence of all considered chal-
lenges. Most related works in the NIR domain have focused solely on the illumination problem, with scant attention paid
to facial expression, wearing eyeglasses, variations in head pose and scale and the effects of time lapse. These factors are
all known to introduce crucial problems in FR systems [6].

Farokhi et al. [12,13] systematically studied the possibility of NIR FR in the presence of the above mentioned challenges.
In [12], they proposed a method based on Zernike moments (ZMs) to cope with face rotation and noise. Although their
results were an improvement on those achieved by LBP [33], the authors concluded that an accurate system could not be
based on single-type features. Instead, it should utilize a combination of both global and local features (fusion) to make
the final decision. A similar conclusion was drawn in [15], also combining the global and local facial features presented in
[32,62], and outperformed the individual use of these features. Farokhi et al. used this principle in NIR FR [13] in which
ZMs were used to extract global features while undecimated discrete wavelet transform (UDWT) was used to extract local
features. Their system achieved good recognition performance. However, UDWT is inefficient in terms of memory usage and
computational time.

In this work, we follow this successful approach and replace UDWT by other local features that provide at least as good a
discrimination power as UDWT while decreasing the computational time. We propose Hermite kernels (HKs) as filters to
extract local features and ZMs as global features. Presented results of extensive experiments on the CASIA NIR and the
PolyU NIR face databases show that our method achieves a higher recognition rate, compared to existing works in the pres-
ence of the most common challenges (face image modification). Our method is capable of overcoming and improving many
of the shortcomings of the existing state-of-the-art techniques.

The paper is organized as follows: In Sections 2 and 3, brief reviews of ZMs and HKs are given. The proposed method is
then described in Section 4. Experimental results and performance analysis are then presented in Section 5, and finally the
paper is concluded in Section 6.

2. Zernike moments

ZMs were first introduced by Teague in the early 1980s, and have been applied in many research works [16,23,45,47].
ZMs belong to the family of so-called radial moments, whose basis functions are, in polar coordinates, products of a 1D poly-
nomial in the radial direction and a harmonic function in the angular direction. As follows from the Fourier Shift Theorem,
radial moments change under image rotation only in their phase, while the amplitude remains constant (the same is true
also for quaternion moments, see [21]). This favorable behavior makes ZMs useful in coping with image rotations. On the
contrary, the moments orthogonal on a rectangle, such as Legendre, Chebyshev, Gegenbauer and Krawtchouk [16,22], change
under rotation in a much more complicated manner. This renders them quite difficult to utilize for constructing invariants.
The ZMs have shown good performance in FR systems in the presence of facial expression, image rotation, and noise
[11,12,14,30,44]. However, they cannot handle partial occlusions properly due to their global nature. The ZM of order p with
repetition q of a function f ðr; hÞ, where ðr; hÞ are polar coordinates, is defined by the following equation:
Zpq ¼
pþ 1

p

Z 2p

h¼0

Z 1

r¼0
V�pq r; hð Þf r; hð Þrdrdh; rj j 6 1; ð1Þ
where the symbol ‘‘�’’ denotes a complex conjugate and Vpq denotes a Zernike polynomial of order p and repetition q, which
can be written as follows:
Vpqðr; hÞ ¼ RpqðrÞejqh: ð2Þ
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Rpq is a real-valued radial polynomial of the form
RpqðrÞ ¼
Xp�jqj2

k¼0

ð�1Þk ðp� kÞ!
k! pþ qj j

2 � k
� �

! p� qj j
2 � k

� �
!
rp�2k; ð3Þ
where p P q and p� jqj is even.

3. Hermite kernels

The Hermite kernel is a type of kernel function that has been used widely in image processing and computer vision
[17,19]. Mathematically, it is a product of two 1D-scaled Hermite polynomials and rotationally symmetric Gaussian func-
tions. The formula describing the HK in 2D space is as follows:
Bp;qðx; y;rÞ ¼ Hp
x
r

� �
Hq

y
r

� �
exp � x2 þ y2

2r2

� �
; ð4Þ
where r is the standard deviation of a Gaussian function and HpðxÞ is the Hermite polynomial that can be expressed as
follows:
HpðxÞ ¼
X½p=2�

k¼0

ð�1Þkp!

k!ðp� 2kÞ! ð2xÞp�2k
: ð5Þ
The HKs up to order 4 are shown in Fig. 1.
HKs can be applied on an image as a filter to generate directional features. As shown in Fig. 1, the application of basis

functions of order two is similar to that of horizontal, diagonal and vertical high-pass filters. To generate directional features,
we apply the basis functions together as filters of r by r size on an image f ðx; yÞ. We then obtain the effective directional fea-
tures by convolving the image with the following operator:
HBðx; y;r; f Þ ¼ B1;1ðx; y;rÞ � f ðx; yÞ; B2;0ðx; y;rÞ � f ðx; yÞ; B0;2ðx; y;rÞ � f ðx; yÞ½ �: ð6Þ
The filtered face images are shown in Fig. 2.
As can be seen from Fig. 2, the proposed operator is competent in encoding rich edge information and generating direc-

tional features of the facial images. This simple scheme can be extended by adding more filters of higher orders and/or mul-
tiple orientations of the basis filters. In such a case, the scheme benefits from the property of steerability of the HK [60],
which means that a filter of arbitrary orientation is synthesized as a linear combination of a set of basis filters. The image
filtered by an arbitrary oriented filter becomes only a linear combination of images filtered by basic filters, thus facilitating
very efficient implementation of the filtering operation.

4. Proposed face recognition system using ZMs and HKs (ZMHK)

The proposed FR system is composed of several steps, as shown in Fig. 3. In this section, feature extraction and decision
fusion strategy are explained in detail.
Fig. 1. Hermite kernels ðBp;qÞ up to order 4. The basis functions for the kernel of order 2 are marked by the dashed rectangle.



Fig. 2. (a) Original image. (b)–(d) The results using Hermite kernels B2;0;B1;1, and B0;2, respectively ðr ¼ 13;r ¼ 2Þ.

Fig. 3. Schematic of the proposed face recognition system (training phase).
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4.1. Feature extraction

Fig. 3 illustrates the proposed feature extraction, separated into global and local feature extractions. In the global part,
salient facial features are represented by ZMs, while local facial features are calculated from the response of the HKs on
the image patches. Dimension reduction techniques are applied on both the extracted global and local features. Prior to fea-
ture calculation, the image is preprocessed and normalized, as discussed in Section 5.1.
4.1.1. Global feature extraction using ZMs
To extract global features, we first calculate the ZMs for a normalized image up to order 10 as clarified in our previous

work [13]. Since ZMs are in general complex valued, both imaginary and real parts of the ZMs are incorporated into a data
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vector. The ZMs, up to order 10 and their dimensionality (i.e., the number of independent components), are shown in Table 1.
In calculating the dimensionality, Zp;q ¼ ðZp;�qÞ� and Zp;p are always real. The dimension of the data is the sum of all the ZMs
generated from order 0 to 10, resulting in a dimension of 66. Therefore the M images in our training set result in a data
matrix size of M � 66.

In the second step, principal component analysis (PCA) [48], applied to the whole data matrix of M � 66 size, is used to
de-correlate the features. New features are found as projections onto the eigenvectors of the covariance matrix. All the fea-
tures are maintained, and the PCA applies no dimension reduction. Finally, the de-correlated features serve as an input into
linear discriminant analysis (LDA) [5] to enhance their discrimination power. Unlike PCA, LDA is a supervised method which
maximizes the separability between the individual classes (faces) in the training set. This separability is measured by means
of intra-class and inter-class scatter matrices. More sophisticated dimensionality reduction methods exist; such as that pro-
posed in [68] (references to many others can be found herein) which uses regularized optimization coupled with a sparsity
constraint. These methods usually consider each pixel as a single feature, and are applied directly on such data. However,
since we inserted the calculation of ZMs and HKs between the image acquisition and dimensionality reduction steps, the
use of a simple PCA + LDA scheme is sufficient.

4.1.2. Local feature extraction using HKs
The process of local feature extraction is more extensive than global feature extraction. In the first step, the normalized

images are decomposed into four horizontal (16 � 64 pixels) and four vertical (64 � 16 pixels) patches, as in Fig. 3.
For the second step, HKs are applied on each patch and the values of the filtered patches are used as data vectors. For each

patch, three filtered patches (FP) are produced (we use three second-order HKs). Hence 8� 3 ¼ 24 filtered patches are gen-
erated in this phase. Thus, for M images in our training set, 24 data matrices of size M � 1024 are generated. In the third step,
PCA is applied to each data matrix of size M � 1024 to de-correlate the features. Since 24 data matrices are utilized in the
training step, 24 principal eigenvectors related to each data matrix are learned in this stage, and the size of each data matrix
is reduced to M �M � 1. In the final step, the transformed data are used as input to the LDA in order to decrease the dimen-
sion and to enhance the discrimination power of the system. Finally, 24 data matrices of size M � 66 are obtained and used
as local features.

4.2. Proposed decision fusion

As explained above, we generated 25 feature vectors for each image (24 local feature vectors and one global feature vec-
tor). Originally, local and global feature vectors are of different size (dimensionality), but PCA + LDA reduction transforms all
vectors to the same size (depending on the number of persons in the database). We could use these 25 vectors as inputs for
25 independent minimum-distance classifiers, and then make a decision by majority vote. This obvious approach, however,
does not take into account possible different confidence levels of the individual classifiers. To overcome this drawback, we
propose another fusion strategy, as described below.

Initially, the distance between the test face feature vector and feature vectors of the individuals in the database is calcu-
lated for each class. Then, assuming there are c classes (persons) with mi samples per class ði ¼ 1;2; . . . ; cÞ, the minimum dis-
tances between each feature vector of the test image and the feature vectors of the database images are calculated using the
following formula:
Table 1
Zernike

Orde

0
1
2
3
4
5
6
7
8
9

10
Dv;i ¼ min
16p6mi

dðFvðtestÞ; Fv;i;pðdatabaseÞÞ

v ¼ 1; . . . ;25; i ¼ 1; . . . ; c;
ð7Þ
where Fv ðtestÞ is the vth feature vector related to the test images, Fv ;i;pðdatabaseÞ is the vth feature vector of the pth sample in
the ith class, and d(�) stands for a distance measure (we use Euclidean distance) between two feature vectors. Hence, the dis-
tance matrix
moments (up to order 10) and their dimensionality.

r Zernike moments ðZp;qÞ Dimensionality of the specified order

Z0;0 1
Z1;1; Z1;�1 2
Z2;0; Z2;2; Z2;�2 3
Z3;1; Z3;�1; Z3;3; Z3;�3 4
Z4;0; Z4;2; Z4;�2; Z4;4; Z4;�4 5
Z5;1; Z5;�1; Z5;3; Z5;�3; Z5;5; Z5;�5 6
Z6;0; Z6;2; Z6;�2; Z6;4; Z6;�4; Z6;6; Z6;�6 7
Z7;1; Z7;�1; Z7;3; Z7;�3; Z7;5; Z7;�5; Z7;7; Z7;�7 8
Z8;0; Z8;2; Z8;�2; Z8;4; Z8;�4; Z8;6; Z8;�6; Z8;8; Z8;�8 9
Z9;1; Z9;�1; Z9;3; Z9;�3; Z9;5; Z9;�5; Z9;7; Z9;�7; Z9;9; Z9;�9 10
Z10;0; Z10;2; Z10;�2; Z10;4; Z10;�4; Z10;6; Z10;�6; Z10;8; Z10;�8; Z10;10; Z10;�10 11
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D1 ¼

D1;1 D1;2 � � � D1;c

D2;1 D2;2 � � � D2;c

..

. ..
.

� � � ..
.

D25;1 D25;2 � � � D25;c

2
66664

3
77775

25�c

ð8Þ
shows, in each of its rows, the distances of the given test image feature vector to all database classes.
The proposed fusion is a two-stage process. First, we combine all local features, and then we combine the result with the

global features. The fusion is based on the distance matrix (8), and is performed ‘‘column-wise.’’ This means we are trying to
find the ‘‘fused distance’’ between the test image and each class.

We define the weight kv of the vth local feature vector as kv ¼
D0v ;1
D0v ;2

where D0v ;1 and D0v ;2 are the first and second minimum

distances over all c classes, respectively, i.e., two minimal numbers in the vth row of the distance matrix (8). The weight kv

(which is always non-negative and less or equal to one) reflects the confidence we have in the vth local feature vector, the
lower the kv , the higher the confidence level. For each class, we calculate a weighted average
DL;i ¼
1
K

X24

v¼1

kvDv;i; i ¼ 1 : c; ð9Þ
where K ¼
P24

v¼1kv . Hence, we obtain a new distance matrix D2
D2 ¼
DL;1 DL;2 � � � DL;c

DG;1 DG;2 � � � DG;c

� �
2�c

; ð10Þ
where the first row is obtained from Eq. (9), and the second row is equal to the last row of D1; i.e., DG;i ¼ D25;i.
Now we can fuse the local and global features together using basically the same algorithm as for the fusion of the local

features. We calculate a new vector DE;i as
DE;i ¼ kLDL;i þ kGDG;i; i ¼ 1 : c; ð11Þ
where kL and kG are the weights of DL;i and DG;i respectively, defined row-wise as a ratio of the first and second minimum in
D2,
kL ¼
D0L;1
D0L;2

ð12Þ

kG ¼
D0G;1
D0G;2

: ð13Þ
Doing so, we end up with a vector D3
D3 ¼ DE;1; DE;2; � � � DE;c½ �1�c; ð14Þ
which is immediately used for the decision. The test image is assigned to the class with minimum DE;iði ¼ 1 : cÞ, and the label
of this class is the output of the FR system.

5. Experimental results and performance analysis

In this section, we investigate the performance of the proposed method using CASIA NIR and PolyU NIR face databases.
We also compare our method with several other popular FR methods that also use directional features. This comparative
study is carried out against the following FR schemes:

� Gabor Wavelet + Fisher LDA, which is called Gabor Fisher Classifier (GFC) [8].
� LBP + LDA (LBPL) [33].
� Gabor Wavelet + DBC (GDBC) [64].
� Wavelet Scattering (WS) [29].
� ZMs + UDWT (ZMUDWT) [13].

Descriptions of the settings used for performance evaluation are explained in Table 2. In all experiments, we applied our
method in three ways: global features based on ZMs only (denoted as ZM), local HK features only (denoted as HK) and both
global and local parts together (denoted as ZMHK). The global part is basically identical (except for the PCA + LDA reduction)
to the popular methods described in [39,44].

In the first part of this section, we briefly describe the database and preprocessing. Then we explain the experiments car-
ried out to evaluate and compare the performance of different methods.



Table 2
Experimental and parameter set-up of the benchmark methods used in the performance evaluation.

Method Specification

GFC [8] First Gabor wavelets of five scales and eight orientations are used to extract features. Then Fisher linear discriminant
analysis is performed on these features.

LBPL [33] The image is first divided into 64, 8 � 8 blocks and then a local binary pattern histogram is calculated for each block.
Finally, linear discriminant analysis is used to decrease the dimension of features.

GDBC [64] First an image is divided into four 32 � 32 blocks. Gabor wavelets of five scales and eight orientations are then applied on
the image blocks. Next, directional binary code is applied along 0� , 45� , 90� and 135� directions to produce features.

WS [29] The order of wavelet scattering is 2. The numbers of scales and orientations are 3 and 6, respectively.
ZMUDWT [13] Zernike moments are used as global features, whereas local features are generated by undecimated discrete wavelet

transform. Recognition is done by decision fusion. The order of Zernike moments is 10. The decomposition level for
performing undecimated discrete wavelet transform is 3, and the wavelet basis is ‘‘Db 3’’.

ZMHK (Proposed method) The selected order of Zernike moments is 10. The values of r and r are empirically set to 13 and 2 due to the best
performance of systems using these parameters. The Euclidean criterion is used for implementing proposed decision
fusion.
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5.1. Preprocessing and database

The face images of the CASIA NIR database [33] and PolyU NIR face database [49] (Fig. 4(a)) are used in our experiments.
From both databases, a total of only 70 and 100 subjects were selected, respectively – excluding those which did not present
special challenges. As a result, the sizes of the gallery set and probe set for the CASIA NIR database are 350 (five images per
subject) and 490 (seven images per subject), respectively. The sizes of the gallery set and probe set for the PolyU NIR face
database are 600 (six images per subject) and 800 (eight images per subject), respectively. For both the CASIA NIR and
PolyU NIR face databases, the gallery set includes normal images without any challenge. The probe set for the CASIA NIR
database contains images with facial expressions, wearing eyeglasses and a moderate head pose, while the probe set for
the PolyU NIR face database includes NIR images with a sharp head pose, scale variations and time lapse. There is no overlap
between the gallery set and the probe set. The database specifications are described in Table 3. The flow of the preprocessing
is as follows:

1. Face images are aligned by placing the eyes at a fixed position (Fig. 4(b)).
2. Face images are cropped to remove hair and background (Fig. 4(c)).
3. Each image is resized to 64 � 64 with 256 gray levels to decrease the computational time (Fig. 4(d)).

5.2. Experimental results on CASIA NIR database

In the first experiment, we used the CASIA NIR database, which includes normal images, images with facial expression,
wearing eyeglasses and a moderate head pose. To create our gallery set (training set), we selected a random subset of 70
Fig. 4. Proposed preprocessing method for CASIA NIR and PolyU NIR face databases. (a) Input image, (b) normalized image with fixed eyes position, (c)
cropped image, and (d) size and gray-level normalization.

Table 3
Summary of the CASIA NIR and PolyU NIR face databases.

Database

CASIA NIR PolyU NIR Face

Infra-red wavelength 850 nm 850 nm
No. of subjects 197 335
Number of still images per subject 20 100
Distance 50 cm and 100 cm 80 cm and 120 cm
Resolution 640 � 480 768 � 576
Format BMP JPG
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persons with three normal images (without any challenge). For the probe set, three random images with different variations
were chosen (Fig. 5) while employing a closed universe assumption, i.e., each probe image should have a corresponding
match in the gallery. Then, the average recognition rate with over 10 random splits was calculated. Assuming that the suc-
cess rates are normally distributed, we also calculated confidence intervals, which are one of the most useful criterions for
evaluating result reliability. A narrower confidence interval indicates higher stability of a particular method. The resulting
mean, standard deviation and confidence interval with 95% significance level are shown in Table 4 and Fig. 6. The following
conclusions are made.

As is apparent from Fig. 6 and Table 4, the performance of the proposed method is better compared to the remaining
tested methods. There is no overlap between the confidence intervals of the proposed method and those of the other meth-
ods, except for ZMUDWT. The proposed method performs statistically significantly better than the other methods, since it is
based on both global and local features along with a sophisticated fusion rule, whereas other methods, except for ZMUDWT,
are based solely on local features. Comparing GDBC and LBPL; the LBPL method achieves better performance than GDBC, con-
tradicting the findings of previous research [64] which showed that GDBC performs better than LBP. The main reason for this
discrepancy is that LDA was not used for dimension reduction in GDBC; whereas LBPL is based on a combination of LBP and
LDA techniques which ensures that the resulting features are more salient than the raw features in GDBC.
5.3. Experimental results on the PolyU NIR face database

In the second experiment, the PolyU NIR face database was used. While the gallery set includes frontal face images, the
probe set includes images with scale changes, pose variations and time lapse (see Fig. 7 for some examples). One hundred
subjects were used in this experiment, otherwise the configuration would be the same as in the previous experiment.

Comparison of results obtained by the different methods presented in Table 5 and Fig. 8 show that our method again per-
forms better than the benchmark methods, and both global and local features are mutually complementary and can handle
image variations effectively. Further analysis shows that the recognition rate of the proposed method is 6% better than that
of LBPL, since we use images with head pose variations which decreases the accuracy of LBP. This experiment highlights the
sensitivity of LBP to head pose, which has been reported previously [9,13].

In this experiment, the ZMHK method achieves an average accuracy of 87%, compared to 91% in the previous experiment
using CASIA NIR database. This is due to the presence of more pose variations in the PolyU NIR face database compared to
CASIA NIR database.
Fig. 5. (a) Sample of a normal image used as a gallery image. Sample of images with (b) facial expression, (c) wearing eyeglasses, and (d) variation in head
pose used as probe images.

Table 4
Accuracy of different methods in the presence of different challenges based on the CASIA
NIR database.

Method Mean ± standard deviation Confidence interval

GFC 80.26 ± 3.61 [78.02,82.49]
LBPL 86.75 ± 2.93 [84.93, 88.56]
GDBC 80.14 ± 4.39 [77.41, 82.86]
WS 82.79 ± 2.31 [81.35, 84.22]
ZMUDWT 90.25 ± 1.21 [89.50,91.00]
ZM (Global part) 78.29 ± 3.32 [76.23, 80.34]
HK (Local part) 87.86 ± 2.46 [86.33, 89.38]
ZMHK (Proposed method) 91.47 ± 2.13 [90.15,92.79]
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Fig. 6. Recognition results of different methods for the CASIA NIR database.

Fig. 7. (a, d) Sample of normalized images used as gallery images. Sample of images with variations in (b) scale, (c) head pose, and (e) time lapse used as
probe images.

Table 5
Accuracy of different FR methods on PolyU NIR face database in the presence of various challenges.

Method Mean ± standard deviation Confidence interval

GFC 76.79 ± 2.31 [75.35,78.22]
LBPL 81.57 ± 4.47 [78.79,84.34]
GDBC 75.62 ± 3.56 [73.41,77.82]
WS 80.16 ± 3.64 [77.90,82.41]
ZMUDWT 85.01 ± 1.78 [83.90,86.11]
ZM (Global part) 76.14 ± 2.18 [74.78,77.49]
HK (Local part) 84.26 ± 2.53 [82.69,85.82]
ZMHK (Proposed method) 87.22 ± 2.11 [85.91,88.52]
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5.4. Comparison of the recognition time

Most FR systems are utilized in real-time applications, such as security access control, where the result of the FR system
must be available immediately upon request. As any delay will significantly degrade user experience, the recognition time of
the FR method is as important as its accuracy. We performed an evaluation of the execution time for existing methods com-
pared to our proposed method with the parameter set-up as described in Table 2. To ensure fair comparison, all methods
were implemented using MATLAB R2013a, and the evaluation was performed by running the code profiler for all implemen-
tations. To evaluate the execution time, we measured the recognition time (i.e. the time required to extract the features and
classify one new probe image) in elapsed CPU seconds on an Intel Core i5 2.5 GHz CPU with 4 GB of RAM. Each test was
repeated five times, and the mean recognition time and standard deviation are reported in Table 6.
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Fig. 8. Recognition results of different methods for the PolyU NIR face database.

Table 6
Comparison of recognition time for different FR methods.

Method Mean recognition time (s) ± std

GFC 0.14 ± 0.031
LBPL 0.05 ± 0.004
GDBC 0.24 ± 0.006
WS 0.34 ± 0.012
ZMUDWT 0.28 ± 0.008
ZM (Global part) 0.09 ± 0.012
HK (Local part) 0.13 ± 0.004
ZMHK (Proposed method) 0.19 ± 0.005
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Comparison of the execution time of our method (ZMHK) with the next most accurate method (ZMUDWT) indicates that,
besides having the highest face recognition accuracy, the execution time of the proposed ZMHK method is 32% faster (dif-
ference of �0.09 s) compared to ZMUDWT. We note that, as both ZMHK and ZMUDWT use the fusion of global and local fea-
tures to improve the accuracy of recognition, they also increase computation time. Thus, it is not surprising that the
execution times for both ZMHK and ZMUDWT are higher than other methods (except for wavelet scattering). However, in
practical applications, the proposed ZMHK method provides the best trade-off between accuracy and time complexity (exe-
cution time).

6. Conclusion

In this paper, we have proposed a novel method for highly accurate NIR FR in order to tolerate deformations caused by
facial expression, wearing eyeglasses, variations of head pose and scale and the effects of time lapse. The proposed method is
based on the combination of global features extracted by the calculation of ZMs, and local features extracted from parti-
tioned image patches by HKs. By applying PCA followed by LDA on both global and local features, multiple feature vectors
were obtained and then combined with decision fusion to fully exploit global and local features. Employing HKs as local fea-
ture extractors and proposing a fusion rule for combining global and local features of different dimensionality, are the major
contributions of this paper.

The performance of the proposed method was compared to other popular FR methods in the presence of the most com-
mon challenges in NIR FR systems. The CASIA NIR and the PolyU NIR face databases were used to validate the performance.
The experimental results obtained showed that the proposed ZMHK method improved the FR accuracy of the ZMUDWT and
also outperformed other existing FR methods significantly. We have also shown that the proposed ZMHK method has a faster
execution time compared to ZMUDWT.
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