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Abstract. We introduce a new theory of invariants to Gaussian blur.
The invariants are defined in Fourier spectral domain by means of projec-
tion operators and, equivalently, in the image domain by means of image
moments. The application of these invariants is in blur-invariant image
comparison and recognition. The behavior of the invariants is studied
and compared with other methods in experiments on both artificial and
real blurred and noisy images.
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1 Introduction

Image recognition/classification in general is an extremely broad area which
apparently cannot be resolved by a single always-optimal method. This is why
numerous specific formulations of the problem have appeared which consequently
have resulted in many particular algorithms or classes of algorithms. Some of
them have already become an established discipline of image analysis while some
others are still undergoing initial development. One of the representatives of the
latter group are methods for recognition of images which are degraded by a
uniform Gaussian blur.

The mathematical formulation of the problem is well known in image pro-
cessing. Capturing an ideal scene f by an imaging device with the point-spread
function (PSF) h, the observed image g is a convolution of both

g(x, y) = (f ∗ h)(x, y). (1)

This linear space-invariant image formation model, even if it is very simple, is
a reasonably accurate approximation of many imaging devices and acquisition
scenarios. In this paper, we concentrate our attention to the case when the PSF
is a Gaussian (with unknown parameters).

Gaussian blur appears whenever the acquisition was accomplished through
a turbulent medium and the acquisition/exposure time is by far longer than
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the period of Brownian motion of the particles in the medium. Ground-based
astronomical imaging through the atmosphere, taking pictures through a fog,
fluorescence microscopy, and underwater imaging are three typical examples of
such situation (in these cases, the blur may be coupled with a contrast decrease).
Gaussian blur is also introduced into the images as the sensor blur which is
due to a finite size of the sampling pulse; this effect is, however, mostly of low
significance. Moreover, Gaussian kernel is often used as an approximation of
some other blurs which are too complicated to work with them exactly. Gaussian
blur is sometimes even introduced intentionally, for instance to suppress additive
noise, to “soften” the image or before the image down-scaling and building the
image pyramid. So, we can see there is actually a demand for having the tools
designed particularly for processing Gaussian-blurred images.

Let us imagine a classification problem, when we need to classify a blurred
image g against a database of clear images. (The database typically consists of
images acquired under good imaging conditions, so their blur can be considered
much smaller than the blur of the query image or even negligible. In template
matching, when the template has been extracted from the blurred image, the
term “database” may refer to a single clear image of a scene in which the template
should be located.) We have basically three options. The most time-expensive
one is to generate all possible blurred versions of all templates (i.e. blurring with
Gaussians the variances of which fill a reasonable, properly sampled interval) and
incorporate them into the database. This brute-force approach is not practically
feasible.

Another approach relies on the solution of the inverse problem, when the blur
is removed from the input image and the deblurred image is then classified by any
standard technique. This process contains semi-blind image deconvolution (the
term “semi-blind” is used because we know the parametric form of the kernel
but its parameter(s) are unknown), which is in the case of a Gaussian kernel an
unstable, ill-posed problem. Unlike motion blur and out-of-focus blur, Gaussian
blur does not introduce any zero patterns into the spectrum of the image, which
are in the other cases employed for parameter estimation. Only few semi-blind
deconvolution methods w.r.t. Gaussian blur have been published. They first try
to estimate the size (variance) of the blur and then to perform a non-blind
deconvolution [6] [1], [2], [11], [10]. All these methods are sensitive to variance
overestimation and relatively time-consuming.

The third and the most promising approach is based on the idea that for
blur-insensitive recognition we do not need to restore the query image, we only
need its representation which might be lossy but robust w.r.t. the Gaussian
blur. Such a representation should describe those features of the image, which
are not affected by the degradation. Since the classification is mostly performed
by minimum distance rule in some (usually Euclidean) feature space, the task
of finding a proper representation is always coupled with the task of defining a
blur-robust distance measure. Technically speaking, we are looking for a distance
measure d between two images such that

d(f1, f2) = d(f1 ∗ h, f2) (2)
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for any Gaussian kernel h. Instead of an explicit definition of blur-invariant
distance d, we may look for a blur-invariant feature descriptor I such that

I(f) = I(f ∗ h) (3)

and then use one of standard vector metrics for evaluating the distance between
I(f) and the same representation of the database templates.

Several authors have tried to derive invariants (3) w.r.t. Gaussian blur.
Tianxu [7] realized without a deeper analysis that the complex moments of
the image, one index of which is zero, are invariant to Gaussian blur. Xiao [9]
seemingly derived invariants to Gaussian blur but he did not employ the para-
metric Gaussian form explicitly. He only used the circular symmetry property
which lead to an incomplete invariant system. Gopalan et al. [5] derived another
invariant set without assuming the knowledge of the parametric shape of the
kernel but imposed a limitation of its support size. Flusser et al. derived blur
invariants for centrosymmetric kernels [3] and later for arbitrary N -fold sym-
metric kernels [4]. All the methods mentioned above do not use the parametric
form of the PSF at all. Although they can be applied to Gaussian blur, too,
because the Gaussian kernel is a particular case of symmetric kernels, they do
not reach the maximum discrimination power. Specific invariants to Gaussian
blur providing an optimal discriminabilty cannot be obtained as a special case of
these methods (even if the idea of projection operators we employ in this paper
is similar to that we proposed in [4]).

The most promising approach so far was proposed by Zhang et al. [13], [12],
who employed Gaussian parametric form to derive a blur-invariant similarity
measure between two images of the type (2), without deriving blur invariants
explicitly. The method looks elegant and the authors reported a good perfor-
mance. However, a serious weakness of the Zhang’s method is its high complexity
and sensitivity to noise in the images to be compared, as will be demonstrated
in the experimental part of this paper.

2 Gaussian Blur Invariants in the Spectral Domain

In this section we present an approach which is based on the invariant descriptors
of the type (3). The basic conceptual difference from the Zhang’s method is that
these invariants are defined for a single image, while the Zhang’s distance always
requires a pair of images. So, we can calculate the invariant representations of
the templates only once and store them in the database, which leads to much
faster recognition.

2.1 Projection Operators in 1D

The new invariants are based on the projection of the image onto a space of
unnormalized Gaussian functions, which preserves the image moments of the
zero, the first, and the second orders. The separability of the 2D Gaussian func-
tion allows us to create a 1D theory (which is more transparent and easy to
explain) first and then to generalize it to the 2D case.
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Let us consider a 1D “image” f with a finite non-zero integral and a finite
second-order central moment. The projection operator PG is defined as

PG(f)(x) = m0Gs(x), (4)

where
Gs(x) =

1√
2πσ

e− x2

2s2 ,

s2 = m2/m0

and
mp =

∫
(x − c)pf(x)dx (5)

is the p-th central moment of f (with c being the centroid of f). Hence, PG assigns
each f to a multiple of a centralized Gaussian such that the central moments
up to the second order of f and PG(f) are the same. In other words, PG(f)
is the “closest” unnormalized Gaussian to f in terms of the moment values. In
this sense, PG can be considered a projector onto the set of all unnormalized
Gaussian functions. In particular, PG(Gσ) = Gσ. An important property of PG,
which will be later used for construction of the invariants, is its relationship to
a convolution with a Gaussian kernel

PG(g)(x) ≡ PG(f ∗ Gσ)(x) = m0G√
(s2+σ2)

(x) ≡ m0√
2π(s2 + σ2)

e
− x2

2(s2+σ2) .

Finally, we show how the operator PG behaves under the Fourier transform.
Since the Fourier transform of a Gaussian Gσ is an (unnormalized) Gaussian
G1/σ

F(Gσ)(u) = e−2π2σ2u2
,

we have
F(PG(f))(u) = F(m0Gs)(u) = m0e

−2π2s2u2

and

F(PG(g))(u) ≡ FPG(f ∗Gσ)(u) = m0e
−2π2(s2+σ2)u2

= F(PG(f))(u) ·F(Gσ)(u).

2.2 1D Gaussian Blur Invariants in the Fourier Domain

Now we can formulate the central theorem of this paper.

Theorem 1. Let f be an image function. Then

IG(f)(u) =
F(f)(u)

F(PG(f))(u)

is an invariant to Gaussian blur, i.e. IG(f) = IG(f ∗ Gσ) for any blur parameter
σ.
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The proof follows immediately from the assertions introduced in the previous
section. Note that IG is invariant also to the contrast stretching, IG(f) = IG(af).

IG(f) can be viewed as a Fourier transform of the primordial image

fr = F−1(IG(f)).

However, fr is not an image in a common sense because the existence of
F−1(IG(f)) is not generally guaranteed and even if fr exists, it may contain
negative values.

This is a kind of normalization w.r.t. Gaussian blurring of unknown extent.
The primordial image plays the role of a canonical form of f , which actually is
its “maximally deconvolved” non-Gaussian part.

The operator IG decomposes the image space into classes of equivalence.
Fortunately, this decomposition is exactly the same as that one induced by the
following relation: two functions f1 and f2 are equivalent if and only if there
exists σ ≥ 0 such that f1 = f2 ∗ aGσ or f2 = f1 ∗ aGσ. This is an important
observation, saying that IG(f) is a complete description of f up to a convolution
with a Gaussian and a multiplicative contrast change. In other words, IG(f)
defines an orbit1 of images equivalent with f . Thanks to the completeness, IG

discriminates between the images from different orbits but obviously cannot
discriminate inside an orbit. In particular, IG cannot discriminate between two
Gaussians since all Gaussians lie on the orbit the root of which is the delta
function.

2.3 1D Gaussian Blur Invariants in the Image Domain

In principle, we can use directly IG(f) as the invariant feature vector of the same
size as f but working in the Fourier domain brings two practical difficulties.
Since IG(f) is a ratio, we possibly divide by very small numbers which requires
an appropriate numerical treatment. Moreover, high frequencies of IG(f) use to
be sensitive to noise. This can be overcome by suppressing them by a low-pass
filter, but this procedure requires additional time and introduces a user-defined
parameter which should be set up with respect to the particular noise level.
That is why in most cases we prefer to work directly in the image domain,
where invariants equivalent to IG(f) can be constructed.

To obtain the link between the Fourier and image domains, we use a Taylor
expansion of the harmonic functions and a term-wise integration

F(f)(u) ≡
∫ ∞

−∞
f(x) · e−2πiuxdx =

∞∑
k=0

(−2πi)k

k!
mkuk. (6)

The above formula tells us that the moments of the image are Taylor coeffi-
cients (up to a constant factor) of its Fourier transform. Analogous formula for
F(PG(f)) is

F(PG(f))(u) = m0

∞∑
k=0

(−2π2)k

k!

(
m2

m0

)k

u2k. (7)

1 The term “orbit” was introduced by Zhang in [12] in this context.
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If the Taylor expansion of IG(f) is

IG(f)(u) =
∞∑

k=0

(−2πi)k

k!
akuk, (8)

where ak are the moments of the primordial image, we can rewrite Theorem 1
as

∞∑
k=0

(−2πi)k

k!
mkuk = m0

∞∑
k=0

(−2π2)k

k!

(
m2

m0

)k

u2k ·
∞∑

k=0

(−2πi)k

k!
akuk.

Comparing the terms with the same power of u we obtain, after some manipu-
lation, the recursive expression for each ap

ap =
mp

m0
−

p∑
k=2

k even

(k − 1)!! ·
(

p

k

)(
m2

m0

)k/2

ap−k. (9)

The symbol k!! means a double factorial, k!! = 1 · 3 · 5 · · · k for odd k. Since
the primordial image itself (more precisely, its Fourier transform) was proven to
be blur invariant, each its moment must be also a blur invariant. If we restrict
ourselves to a brightness-preserving blurring, then m0 itself is an invariant and
we obtain from (9) the simplified final form of Gaussian blur invariants

B(p) ≡ m0ap = mp −
p∑

k=2
k even

(k − 1)!! ·
(

p

k

)(
m2

m0

)k/2

B(p − k). (10)

As we already said, B(p) is actually a p-th moment of the primordial image
of f . Regardless of f , B(1) = 0 because we work with central moments because
the second-order moment was used to eliminate the unknown blur parameter σ.
Hence, B(1) and B(2) should not be used in the feature vector since they do not
carry any information.

In addition to higher robustness, using the image-domain features (10) is also
faster than using IG. In practice, we do not need a complete representation of
the images in question. Usually a few invariants provide a sufficient discrimi-
nation power, so we use the B(p)’s up to the certain order Q only. This Q is a
user-defined parameter the determination of which should be based on a discrim-
ination analysis of the database images. The choice of Q is always a compromise
between the discriminative power and the complexity of the method.

2.4 Gaussian Blur Invariants in Two Dimensions

Now let us assume the image domain is a subset of R2. The centralized 2-D
Gaussian function has the form

GC(x) =
1

2π
√|C| exp (−1

2
xC−1x′), (11)
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where x ≡ (x1, x2) and C is the covariance matrix which determines the shape of
the Gaussian. Provided that the covariance matrix of the blur kernel is diagonal,
we define the projection operator as

PG(f)(x) = m00GΣ(x), (12)

where
Σ = diag(m20/m00,m02/m00).

Then

IG(f)(u) =
F(f)(u)

F(PG(f))(u)

is a blur invariant and after applying the Taylor expansion, we end up with the
following moment invariants analogous to (10)

B(p, q) = mpq−
p,q∑

k+j=2
k,j even

(k − 1)!! · (j − 1)!! ·
(

p

k

)(
q

j

) (
m20

m00

)k/2 (
m02

m00

)j/2

B(p − k, q − j).

(13)
Note that we are not limited to circularly symmetric Gaussian blur kernels

but we allow different extent of the blur in x1 and x2 directions. This may be
useful when the horizontal and vertical resolutions of the sensor differ from each
other.

3 Experiments and a Comparison to the Zhang’s Method

The aim of this section is not only to demonstrate the performance of the pro-
posed method but also to compare it with the method by Zhang et al. [12]. To
make the comparison as fair as possible, we asked the authors of [12] for pro-
viding all necessary codes. Then we implemented our method using the same
version of Matlab (R2013a) and always run both on the same computer (Dell
Notebook, VOSTRO 1510, Intel, Core2 Duo CPU, 4GB RAM, Windows 8, 32-
bit) and on the same test images. Since the Zhang’s method can compare only
images of the same size, we kept this condition in all experiments.

3.1 Blur Invariance Property

As we expected, both methods actually exhibit high invariance w.r.t. a “perfect”
(i.e. computer generated) Gaussian blur (see Table 1). We changed the blur
parameter σ from 0 to 7 and calculated both the invariant distance (ID) and
the Zhang’s distance (ZD) between the blurred image and the original. Both
are reasonably small although not zero. The non-zero values appear because the
sampled Gaussian does not fulfil exactly the assumption. For comparison, we
also calculated the distances between several different originals of the same size,
which is by many orders higher.
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Table 1. The values of ZD and ID in case of simulated Gaussian blur

Filter size Sigma ZD ID

1 0 0 0
9 1 0.112 2e-19
17 2 0.005 1e-19
25 3 0.009 3e-19
33 4 0.012 4e-19
41 5 0.014 6e-19
49 6 0.016 2e-19
57 7 0.017 2e-19

(a) (b) (c)

Fig. 1. Test image “windmills”: (a) original, (b) blurred, (c) blurred with noise.

3.2 Matching of Blurred Templates - Simulated Blur

In this experiment we tested the performance in the template matching, which
is a particular classification problem we often face in practice. Assuming that
we have a large clear image of a scene and a blurred template, the task is
to localize this template in the clear image. For non-blurred templates, cross-
correlation has been traditionally used to resolve this task. For blurred tem-
plates, we again tested both ID and ZD and for a comparison we included also
the cross-correlation. Since the testing of each possible template location is very
time consuming, we used all three methods in a hierarchical coarse-to-fine imple-
mentation. On the coarse level, we shifted the template by the step of 4 pixels in
both directions. On the fine level, we searched a 9×9 neighborhood of the “best”
location found in the coarse level. Provided that the horizontal and vertical local-
ization errors are independent and both have the same normal distribution, the
absolute localization error has a Rayleigh distribution. We estimated the mean
values and standard deviations of the localization error of all three methods,
which illustrates the accuracy. Since these parameters might be influenced by
few big errors, we also calculated the number of “correct hits”, which may serve
as another accuracy measure. We marked the position of the template found by
the algorithm as a hit, if its localization error was less or equal to one pixel in
each direction.
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Note that in template matching, when the blurred templates have been
extracted from a large scene, we always face a boundary effect. This means
there is a strip along the template boundary where the convolution model is not
valid (even if the blur has been introduced artificially) because the pixels laying
outside the template also contribute to the intensity values inside this strip due
to the blurring kernel. The boundary effect is the main source of errors in a
noise-free case.

We used a simulated blur. We took a clear image of the size 256×256, blurred
it by a 13×13 Gaussian of σ = 2 and randomly selected 30 templates of the size
32×32. These templates were searched in the clear image. We used the invariants
up to the order six. The results of the matching in terms of the accuracy and
computational time are summarized in Table 2. We can see that the accuracy of
both ID and ZD are excellent, so both methods are stable w.r.t. the boundary
effect. The ZD yields even better localization error than ID because it uses a
complete information about the template while the invariants work with highly
compressed information. On the other hand, ID is more than 20 times faster than
ZD. The cross-correlation was much faster than ID but its accuracy was very
low because of the blurring. The time measurement for one template includes
a complete “scan” of the scene including invariant and distance calculation for
each tested position and search for the minimum distance. Overheads (reading of
the images, generating blur kernel, blurring the image, template selection, etc.)
are common for all methods and were not included into the measurement.

Table 2. Matching of blurred templates

Methods Mean error Std Mean time complexity(s) Correct hits

Cross-correlation 42.53 22.22 1.29 23
ZD 0.16 0.08 831.54 30
ID 0.39 0.20 34.55 30

Table 3. Matching of blurred and noisy templates

Methods Mean error Std Mean time complexity(s) Correct hits

Cross-correlation 41.24 21.55 1.31 20
ZD 43.99 22.98 825.11 15
ID 0.90 0.47 33.11 28

Then we repeated the same experiment with the same setting and with the
same templates but we added a Gaussian white noise of SNR = 10 dB into the
blurred image (see Fig. 1). As can be seen from Table 3, the results changed dra-
matically. The ID still provides 28 correct hits and the mean error less than one,
while the ZD was even worse than the cross-correlation. The invariant method is
robust because the moments are defined as integrals, which basically “averages”
the noise and decreases its impact on the feature values. On the other hand,
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the Zhang distance is very sensitive. This is because in this method the image
blur level is estimated by measuring the energy in the high-pass band. The noise
dominates the image on high frequencies and contributes a lot to this measure.
Hence, the blurred image with a noise may often be considered “sharper” than
the clear image, which leads to a wrong estimate of the blur level and to incor-
rect distance calculation. The time complexity is basically the same as in the
first experiment.

3.3 Matching of Blurred Templates - Real Blur

We repeated the same experiment with a real blur. We employed two images
of the spot in the solar photosphere taken by a telescope with a CCD camera
in a visible spectral band (venue: Observatory Ondřejov, Czech Republic; wave-
length: λ

.= 590 nm). Since the time interval between the two acquisitions was
only a few minutes, the scene can be considered still and the images are almost
perfectly registered. As the atmospheric conditions changed between the acquisi-
tions, the first image is relatively sharp while the other one is noticeably blurred
by the atmospheric turbulence (see Fig. 2). The blur kernel is believed to be
approximately Gaussian (an experimental validation of this assumption can be
found for instance in [8]). Mild additive noise is present in both images. By the
same algorithm as in the previous case, we matched 20 randomly chosen tem-
plates extracted from the blurred image against the “clear” image. The size of
the images was 175×175, the template size was 32×32, and the maximum order
of the invariants used was six. As one can see from Table 4, the results are consis-
tent with those we achieved on simulated blurring: ZD performs insignificantly
better localization than ID on the expense of the time complexity.

(a) (b)

Fig. 2. Detail of solar photosphere (a) with higher blur, (b) with lower blur.
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Table 4. Template matching in astronomical images

Methods Mean error Std Mean time complexity(s) Correct hits

Cross-correlation 11.83 6.18 0.47 16
ZD 0.74 0.38 329.72 20
ID 0.81 0.42 15.74 20

4 Conclusion

We proposed new invariants w.r.t. Gaussian blur, both in frequency and image
domains. We showed the performance of the new method in matching of blurred
and noisy templates. Comparing to the Zhang’s method [12], which has been the
only Gaussian-blur invariant metric, the proposed method is significantly faster
and more robust to additive noise.
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