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We present a histogram-based image retrieval method which is designed specifically for noisy query images.

The images are retrieved according to histogram similarity. To reach high robustness to noise, the histograms

are described by newly proposed features which are insensitive to a Gaussian additive noise in the original

images. The advantage of the new method is proved theoretically and demonstrated experimentally on real

data.

© 2015 Elsevier B.V. All rights reserved.

t

c

I

h

c

f

t

A

t

s

t

i

s

H

a

t

(

i

t

a

o

s

i

b

l

1. Introduction

Since the appearance of the first image databases in the 80’s, im-

age retrieval has been the goal of intensive research. Early meth-

ods did not search the images themselves but utilized some kind

of metadata and image annotation (tagging) to retrieve the desired

images. As many large-scale databases do not contain any annota-

tions (manual annotation is expensive and laborious while automatic

tagging is still under development), content-based image retrieval

(CBIR) methods have become one of the most important challenges

in computer vision. By CBIR we understand methods that search a

database and look for images which are the “most similar” (in a pre-

defined metric) to a given query image. CBIR methods do not rely

on a text annotation and/or other metadata but analyze the actual

content of the images. Each image is described by a set of features

(often hierarchical or highly compressive ones), which may reflect

the image content characteristics the user prefers – colors, textures,

dominant object shapes, etc. The between-image similarity is then

measured by a proper (pseudo) metric in the corresponding feature

space.

CBIR is a subjective task because there is no “objective” similarity

measure between the images. Hence, many CBIR systems aim to re-

trieve images which are perceived as the most similar to the query

image for a majority of users and the users feel this similarity at the

first sight without a detailed exploration of the image content. This

requirement, along with the need for a fast system response, has led
✩ This paper has been recommended for acceptance by Nappi Michele.
∗ Corresponding author. Tel.: +42 2 6605 2357; Fax: +42 2 6641 4903.
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o a frequent utilization of low-level lossy features based on image

olors/graylevels. A typical example is an intensity or color histogram.

t is well known that the histogram similarity is a salient property for

uman vision. Two images with similar histograms are mostly per-

eived as similar even if their actual content may be very different

rom each other. On the other hand, those images that have substan-

ially different histograms are rarely rated by observers as similar.

nother attractive property of the histogram is that, if normalized to

he image size, it does not depend on image translation, rotation and

caling, and depends only slightly on elastic deformations. Thanks to

his, one need not care about image geometry and look for geometric

nvariants. Simple preprocessing can also make the histogram insen-

itive to linear variations of the contrast and brightness of the image.

ence, the histogram established itself as a meaningful image char-

cteristic for CBIR [7–9].

The histogram is rarely used for CBIR directly as it is basically for

wo reasons. The histogram is not only an inefficiently large structure

in case of color images, the RGB histogram is stored in a vector of 224

ntegers, which may be even more than the memory requirement of

he original image) but it is also redundantly detailed. It is sufficient

nd computationally efficient to capture only the prominent features

f the histogram and suppress the insignificant details. To do so,

ome authors compressed the histogram from the full color range

nto few bins [3,4] while some others represented the histogram

y its coefficients in a proper functional basis. The advantage of the

atter approach is that the number of coefficients is a user-defined

arameter – we may control the trade-off between a high com-

ression on one hand and an accurate representation on the other

and. It is very natural to get inspired by a clear analogy between

istogram of an image and a probability density function (pdf)

f a random variable. In probability theory, the pdf is usually
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1 A more general moment problem is well known from theory of probability: can

a given sequence be a set of moments of some compactly-supported function? The

answer is yes if the sequence is completely monotonic.
haracterized by its moments, so it is worth applying the same

pproach in the histogram-based CBIR [6,10].

The CBIR methods based on comparing histograms are sensitive to

oise in the images, regardless of the particular histogram represen-

ation. Additive noise results in a histogram smoothing, the degree

f which is proportional to the amount of noise. This immediately

eads to a drop of the retrieval performance because different his-

ograms tend to be more and more similar to each other due to their

moothing. In digital photography, the noise is unavoidable. When

aking a picture in low light, we use high ISO and/or long exposure.

oth amplifies the background noise, which is present in any elec-

ronic system, such that the noise energy may be even higher than

hat of the signal. Particularly compact cameras and cell-phone cam-

ras with small-size chips (i.e. devices which produce vast majority

f photographs on Flickr, on other servers, and on personal websites)

uffer from this kind of noise, along with an omnipresent thermal

oise. In-built noise reduction algorithms are able to suppress the

oise only slightly and perform at the expense of fine image details.

Although the noise in digital photographs is an issue we can nei-

her avoid nor ignore, very little attention has been paid to develop-

ng noise-resistant CBIR methods. The authors of the papers on CBIR

ave either skipped this problem altogether or rely on denoising al-

orithms applied to all images before they enter the database. Such a

olution, however, is not convenient or even not realistic, because the

enoising inevitably introduces artifacts such as high-frequency cut-

ff, requires additional time, and mostly also needs a cooperation of

he user in tuning the parameters. In this paper, we present an origi-

al histogram-based image retrieval method which is not only robust

ut totally resistant (at least theoretically) to additive Gaussian noise.

he core idea of the method is a proper representation of the his-

ogram by certain characteristics, which are not affected by the noise.

e stress that the paper does not aim to evaluate in which tasks and

or what purposes a histogram-based CBIR is appropriate. We rather

how how, if it is appropriate, it should be implemented in the case of

oisy database and/or noisy query images. Our method does not per-

orm any denoising and cannot replace it in the applications where

he noise should be suppressed to improve the visual quality of the

mage.

In the rest of the paper, we first describe the noise model we

re working with and show how this noise influences the image his-

ogram. Then we present a noise-resistant representation of the his-

ogram and demonstrate the advantage of this representation in CBIR.

n the experimental part, we compare the new method with sev-

ral traditional approaches and demonstrate their advantages on a

atabase of more than 70,000 images and 30,000 queries.

. The noise model

As we already mentioned, we primarily consider the thermal

oise and electronic background noise of consumer cameras. It is a

ommon belief that such noise n can be modeled as a stationary ad-

itive Gaussian white noise (AGWN) with zero mean and standard

eviation σ , and that the noise is not correlated with the original im-

ge f. If this assumption were true, the noise normalized histogram

n would have a Gaussian form

n(t) = 1

σ
√

2π
exp ( − t2

2σ 2
), (1)

here t is the index of the graylevel. The histogram hg of the noisy im-

ge g = f + n would then be a convolution of the original histogram

nd the noise histogram

g(t) = (h f ∗ hn)(t).

pparently, such an ideal model can hardly be encountered in prac-

ice. Let us however demonstrate on an example that it performs a

easonable approximation of a real noise. In Fig. 4(a), we can see a clip
f size 427 × 386 pixels of a real noisy image taken under low-light

onditions. In order to separate f and n, we took this image repeatedly

wenty-times and we estimated f by time-averaging these 20 frames

see Fig. 4(b)). This allows us to calculate all three histograms hg, hf,

nd hn and a synthetic histogram hc = h f ∗ hn (see Fig. 1 from top

o bottom). We can see that the noisy picture histogram in Fig. 1(c)

atches the synthetic histogram in Fig. 1(d). Additionally, in Fig. 2 we

an see the normality plot of the image noise n is very close to a nor-

al distribution. We repeated this experiment for many images with

he same conclusion. Hence, we consider our noise model acceptable

nd use it for deriving a proper histogram representation.

. Histogram representation resistant to image noise

In this section, we present a representation of the image his-

ogram by descriptors which are not affected by AGWN. These de-

criptors are based on the statistical moments of the histogram,

hich is a common approach to the characterization of pdf’s in prob-

bility theory. Let h be a pdf of a random variable X. Then the quantity

(h)
p =

∫
xph(x)dx (2)

here p = 0, 1, 2, . . . , is called general moment of the pdf. Clearly,

0 = 1, m1 equals the mean value and m2 would equal the vari-

nce (if the histogram was centralized) of X. In general, the existence

finiteness) of the moments is not guaranteed, however if h is a (nor-

alized) histogram, its support is bounded and all mp’s exist and are

nite. On the other hand, any compactly-supported pdf can be ex-

ctly reconstructed from the set of all its moments.1 In this sense

oments provide a complete and non-redundant description of a

df/histogram.

Unfortunately, the histogram moments themselves are affected by

mage noise. As the histogram of the noisy image is a smoothed ver-

ion of the original histogram, it holds for its moments

(g)
p =

p∑
k=0

(
p

k

)
m(n)

k
m( f )

p−k
. (3)

his assertion can easily be proved just using the definitions of mo-

ents and of convolution. Since the noise is supposed to be Gaussian,

n has a form of (1) and its moments are

(n)
p = σ p(p − 1)!! (4)

or any even p. The symbol k!! means a double factorial, k!! = 1 · 3 ·
. . . k for odd k, and by definition ( − 1)!! = 0!! = 1. For any odd p

he moment m
(n)
p = 0 due to the symmetry of the Gaussian distribu-

ion. Hence, (3) obtains the form

(g)
p =

[p/2]∑
k=0

(
p

2k

)
σ 2k(2k − 1)!! · m( f )

p−2k
. (5)

e can see that the moment of the noisy image histogram equals

he moment of the clear image histogram plus some additional terms

onsisting of the moments of hf of lower orders multiplied by a cer-

ain power of σ . For the first few moments we have

(g)
1

= m( f )
1

,

(g)
2

= m( f )
2

+ σ 2,

(g)
3

= m( f )
3

+ 3σ 2m( f )
1

,
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Fig. 1. Histograms of individual components of the captured image. Histogram hf of

the clear image (a), histogram hn of the extracted image noise (note clear Gaussian

shape) (b), histogram hg of an originally captured noisy image (c), and the synthetic

histogram hc created as a convolution of the clear image histogram with the noise his-

togram (d). Notice the similarity of the noisy image histogram hg and the synthetic

histogram hc .
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(g)
4

= m( f )
4

+ 6σ 2m( f )
2

+ 3σ 4,

(g)
5

= m( f )
5

+ 10σ 2m( f )
3

+ 15σ 4m( f )
1

.

o obtain noise-resistant descriptors, we have to eliminate the pa-

ameter σ . This can be done in a recursive manner, which leads to

he definition of our histogram features

p = mp −
[p/2]∑
k=1

(2k − 1)!! ·
(

p

2k

)
Ip−2kmk

2. (6)

p can be equivalently expressed in a non-recursive form

p =
[p/2]∑
k=0

(2k − 1)!! ·
(

p

2k

)
mp−2k( − m2)

k. (7)

or any integer p ≥ 0, the descriptor Ip is fully independent of the

mage noise regardless of the noise variance. In other words, the Ip

alue of an arbitrary noisy instance is the same as that of the original,

nd can be calculated without any denoising or estimating the noise

ariance (for the proof of this assertion see Appendix).

We use Ip values as histogram features for CBIR. Along with their

esistance to noise, they provide an “almost complete” representation

f the histogram. Having a full sequence of Ip, p = 1, 2, . . . , we can

ecover from (7) all moments of the original histogram except m
( f )
2

.

his has a profound reason – since Ip is insensitive to noise, we can-

ot in principle recover the noise parameter σ , which influences m
(g)
2

.

ence, we could recover the shape of the image histogram while its

ariance is a free parameter. This also corresponds to the fact that for

ny image I2 = 0 while all other Ip’s are valid. In other words, the full

equence of Ip’s provides as much information about the image as its

istogram itself with one degree of freedom allowing to incorporate

n arbitrary unknown Gaussian smoothing of the histogram. In prac-

ice, we of course use only a finite set of these features, the number

f which is determined by the user depending on the similarity of

he images in the database – the more similar the images are to be

iscriminated, the more histogram features we need. For databases

ith dissimilar images, only a few (typically between 6 and 10) fea-

ures are sufficient for histogram characterization, which provides an

xcellent compression ratio.

The intuitive meaning of the Ip’s can also be understood as follows.

he joint null-space of all Ip’s is formed by all Gaussians, so the Ip’s

efine the “distance” between the given histogram and the nearest

aussian distribution. Equivalently, the Ip’s actually measure the non-

aussian component of the histogram.

It should be pointed out that the existence of such features that

tay constant under a convolution of the histogram with a family of

arametric kernels is a very rare phenomenon. The necessary (but not

ufficient) condition is that this family must be closed with respect to

onvolution. In probability theory, such distributions are called stable

istributions2 and only three stable distributions are known in terms

f elementary functions – Gaussian, Cauchy and Levy distributions.3

mong them, only the Gaussian distribution has all finite moments,

o our moment-based approach can hardly be extended to any other

oise model.

It is worth mentioning that all above equations remain valid if we

se central moments of the histogram instead of the general ones.

n that way we achieve an invariance of the method to the overall

rightness of the images without any histogram normalization.
2 Equivalently, this property can be formulated such that the sum of two indepen-

ent random variables, whose distributions belong to the family, has a distribution also

rom this parametric family.
3 Even the generalized Gaussian distribution is not stable for exponents other

han 2.



C. Höschl IV, J. Flusser / Pattern Recognition Letters 69 (2016) 72–81 75

Fig. 2. Normality plot of a camera noise. Blue points indicate the noise data, the red line shows the estimated normal distribution. If the data was precisely from the normal

distribution then the blue marks would be linear. Overlap of the blue marks with the dashed red line shows that the data is almost normal. The deviations on both ends are due to

the value cut-off in the image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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. Experiments

.1. Invariance on simulated AWGN

In the first experiment we demonstrate the invariance property of

p (7) on pictures with simulated noise. We use a testing database of

,000 pictures randomly gathered from Flickr4. The average picture

ize of is 1.3 Mpx and all pictures were converted to grayscale levels.

For each sample picture in the database, we created its noisy ver-

ion by adding a zero-mean Gaussian white noise of various vari-

nces. It should be noted that even though the original grayscale im-

ge values range from 0 to 255, we do not cut off the values of noisy

mage so they can range from negative values to values higher than

55.

For each picture and each signal-to-noise ratio (SNR), we ex-

racted two histograms: hf of the original image and hg of its noisy

ersion. To show that the invariants Ip give the same results for both

lear and noisy pictures, we calculated the ratio

= I( f )
p

I(g)
p

, (8)

here we have applied the invariant function (7) on the histogram of

he original image f divided by the invariant applied on the histogram

f the noisy image g. In Fig. 3 we show the distribution of ratio r for

nvariants of orders p = 3, 6, 10 and 10 different SNRs from 5 to 32. It

an clearly be observed that a majority of the ratios is almost equal to

. It is also evident that the variance of the distribution of r increases

s the SNR decreases. The fact that the ratio is not precisely 1 for all

ases is because the randomly generated noise is not always exactly

aussian. Distributions for all three chosen invariant orders are quite
4 In all our experiments we use original photographs without any postprocess mod-

fications. Pictures are from the set used by the authors of [5].

t

imilar. However, the higher the order of the invariant function, the

ore significant the influence of the numerical errors. This can be

bserved as a higher variance of the distributions in the higher-order

oxplots. This is an experimental verification that Ip is invariant under

deal Gaussian noise.

.2. Invariance on real pictures

In the second experiment we demonstrate the invariance of (7)

n photographs captured by a compact camera5. This is a much more

hallenging situation namely because of the value cut-offs, which vi-

late the normality of the noise distribution.

We captured 20 different scenes under various light conditions.

he light was always low to get a noticeable noise and by light

hanges we controlled (at least roughly) the noise variance. The es-

imated SNR was between 15 and 20. We took each scene 20 times

nd then we estimated the clear image by time-averaging, since un-

er low light it was impossible to obtain a clear image directly (see

ig. 4 for an example).

As in the previous experiment, we evaluated the ratio (8) of in-

ariant functions on histograms of noisy and clear pictures. To show

he invariance property, the ratio r should be close to 1. Unlike the

imulated noise, the real camera noise is subject to cut-off and the

istogram support is bounded by the values 0–255. This causes the

nput data for (7) not to meet the required theoretical assumptions

erfectly. In any case, the results of the invariants are quite satisfac-

ory as we can see in Fig. 5. The median of the ratios is almost equal

o 1 for all chosen invariant orders p = 3, . . . , 10 and furthermore, a

ajority of invariant ratios is very close to 1. For a comparison and to

how that this property is far from being obvious, we also calculated

he same ratios for the histogram moments themselves. As one can
5 SONY Cyber-Shot DSC-H50, the resolution 3.1 Mpx was used.
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Fig. 3. The boxplots show the distribution of 1,000 ratios of invariants calculated on original images and their noisy versions. The boxplots from left to right show the results for

invariant orders 3, 6 and 10 respectively. The central mark shows the median, thick bar depicts 50% of the data between 25th and 75th percentiles. Outliers outside this range are

marked as dots.

Fig. 4. A crop of the scene photographed in low light. Originally captured noisy image

(a) and the noise-free image constructed by averaging 20 noisy frames of the same

scene (b).

Fig. 5. (a) The boxplots show the ratio (8) of invariants calculated on histograms of

real clear and noisy images. Central mark is the median of the distribution. Thick bar

depicts 50% of the data between 25th and 75th percentiles. Outliers outside this range

are marked as dots. (b) The boxplots show the same ratio where plain moments mp

were used instead of invariants Ip . This graph illustrates that the histogram moments

cannot be used instead of the invariants since they are heavily affected by the noise.

4

u

see in Fig. 5(b), their behavior is dramatically different. The plain his-

togram moments are affected heavily by the noise and their relative

error increases as the order grows. They do not exhibit any invariance

to noise. Hence, this experiment shows that the invariants actually

bring a significant added value.
.3. Image retrieval

Content-based image retrieval is a challenging task where the

ser selects a query image to retrieve a list of “similar” images (the
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Fig. 6. Sample images from the test database. Pictures were clustered according to

their histogram similarity. When considering histograms simplified into four bins, all

pictures within one cluster have the same simplified histogram. In (a) and (b) there

are previews of pictures from two clusters with corresponding histograms in (c) (on

the left is a histogram for cluster (a) and on the right for cluster (b)). Some clusters

contain pictures that have the same histogram but look differently (e.g. cluster (a)),

some clusters contain pictures that look similar (e.g. cluster (b)).

t

a

e

m

p

s

r

l

t

imilarity measure is pre-defined by the user, here we measure the

imilarity by image histograms) from a large database of pictures. The

atural requirement is to avoid mismatches where the CBIR method

eturns images that are not related to the query image. For the hu-

an perception, two images with the same content seems similar

ven though one of them is affected by noise. On the other hand, CBIR

ethods based on comparing image histograms are sensitive to noise

hat modifies the histogram (see Fig. 7) and therefore standard meth-

ds may produce many mismatches. If the database system contains

ictures of a similar histogram and either the input query image or

he database images are affected by noise, then the danger of mis-

atches is high.

The aim of this experiment is to show a practical application of

he proposed invariants (7) to CBIR. In this experiment the database

ontained clear images (or at least images with invisible noise) while

he query image was always a noisy version of one database image.

o make the task challenging, we intentionally included pictures of

imilar histograms into the database. We randomly gathered 71,842

hotographs from Flickr and categorized them into 314 clusters based

n histogram similarity. The image clustering was used here only to

elect the images for the experiments. To save time, we always lim-

ted the search to the respective cluster only. Each query image was

atched only against that cluster of images with similar histograms.

atching to dissimilar histograms does not make sense because all

ethods correctly reject such trials. It should be noted that the simi-

arity of the histograms may or may not correspond to the visual sim-

larity between the images. In Fig. 6(a) we can see an example of vi-

ually different images while Fig. 6(b) provides an example of very

imilar images. In both cases, the histograms inside the groups are

imilar.

We performed 31,400 queries to achieve a statistical significance.

e created query images of five SNR levels (5, 10, 15, 20 and 25). For

ach SNR we generated 20 different instances of the noise. The his-

ograms of the query images were heavily smoothed due to the noise

see Fig. 7). Each query was independently answered by the following

ethods.

• The above mentioned invariants I1, . . . , I10 calculated from the

histogram of the graylevel image. To convert the original color im-

ages into graylevels, the Matlab function rgb2gray was used.

The database image with the minimum Euclidean distance was

retrieved. Since the invariants grow rapidly as the order p in-

creases, we normalized the Ip’s to keep them in a comparable

range before calculating the distance. This method is referred to

as Invariants Gray.
• Invariants applied on the color image channel-wise and subse-

quently concatenated. The feature vector was IR
1
, . . . , IR

10
, IG

1
, . . . ,

IG
10

, IB
1
, . . . , IB

10
. The rest of the method was the same as in the pre-

vious case. This method is referred to as RGB Vectors.
• Invariants applied on the color image channel-wise. The concate-

nation was replaced by a voting scheme. The distance is calculated

for each channel separately and a majority vote is applied. If at

least two channels vote for the same database image, this image

is retrieved. No image is retrieved if each channel votes for differ-

ent database image. This method is referred to as RGB Vote.
• A method similar to the first one but instead of using invariants,

we used plain moments m0, m1, . . . , m10 of the (graylevel) his-

togram. This method is referred to as Moments Gray.
• Full histogram matching. In this method, we match a complete

graylevel histogram (256 bins) by the minimum Euclidean dis-

tance. This method is referred to as Histogram.
• The last method is the only one that contains denoising as a pre-

processing. We denoised the query images first by a wavelet-

based denoising [1] and then applied full histogram matching as

in the Histogram method. This method is referred to as Denoised.
 p
Since we know the ground truth, we can evaluate the correct re-

rieval rate. Fig. 8 shows the results of retrieval for all the methods as

function of the SNR. The results mostly confirmed our theoretical

xpectation.

The RGB Vectors performed best, followed by the Invariants Gray

ethod. The overall performance of both is very good. The RGB Vote

erforms slightly worse, which may look a bit surprising. The rea-

on is that the majority vote from three votes is very strong crite-

ion (we actually decide on the 2/3 majority and not on the abso-

ute majority) and that is why we miss some correct matches. Since

he Invariants Gray is three times faster, it may be an optimal com-

romise for large-scale tasks. The difference between these three
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Fig. 7. Example of the query image affected by noise (SNR = 5) (right) and the clear version of the image in the database (left). On the bottom there are histograms of the images.

It can be seen that the noise causes significant modification of the histogram.

Fig. 8. Image retrieval experiment results. The graph shows percentages of correct matches for 6,280 queries for each SNR (total is 31,400 queries in 314 databases). The methods

based on moment invariants outperform the methods based on plain moments or histogram matching.

t

b

t

o

f

b

d

methods and the other methods increases as the SNR decreases. The

plain moments perform better than a complete histogram matching.

The explanation is that we used only 10 low-order moments that

describe global characteristics of the histogram which are less influ-

enced by the noise than the complete histogram itself.

The most surprising result is the poor performance of the Denoised

method. The reason is that the denoising decreases the noise level in
he image but does not restore the original histogram well. It should

e noted that we did not use the knowledge of the SNR when setting

he parameters of the denoising algorithm. Another serious drawback

f this approach is that it requires a significant extra time to per-

orm the denoising. We also tried to replace the wavelet denoising

y BM3D algorithm [2], which is one of the highest rated existing

enoising methods and re-run the experiment. However, the BM3D
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Fig. 9. Retrieval of images corrupted by heavy-tailed (β = 1), Gaussian (β = 2), and light-tailed (β = 3) noise. The graph shows percentages of correct matches by means of

histogram invariants for 71,842 queries for each SNR.

Table 1

Picture database summary.

Number of databases 314

Total number of pictures 71,842

Number of queries 31,400

Average pictures count per DB 229

a

n

c

t

i

r

p

n

h

T

b

t

t

a

p

W

r

(

s

n

T

c

t

p

t

G

5

t

t

g

i

g

i

i

a

s

a

N

h

w

a

e

I

I

w

a

a

c

lgorithm is so slow (10 min for one query image with 20 instances of

oise) that we ran it on a small subset only to conclude that the suc-

ess rate is comparable to that of the wavelet denoising. Hence, an in-

eresting conclusion is that denoising followed by histogram match-

ng is absolutely not suitable in terms of both success rate and speed,

egardless of the particular denoising algorithm.

Finally, we tested the performance of the proposed method in the

resence of noise which is not exactly Gaussian. We generated the

oise underlying the generalized normal distribution

α,β(t) = β

2α�(1/β)
exp

(
−|t|

α

)β

, (9)

his probability density function is equivalent to the Gaussian distri-

ution for β = 2. For β < 2, it has heavier tails and for β > 2 lighter

ails than the Gaussian distribution. We used two distinct β-values in

his test: β = 1, which yields the Laplace distribution, and β = 3. For

comparison, we included the Gaussian case β = 2. We run the ex-

eriment with these three β-values on 71,842 test images (Table 1).

e successively generated a noise of SNR ranging from 5 to 25. The

etrieval results achieved by the invariants of a grey-level histogram

the same method as Invariants Gray in the previous experiment) are

ummarized in Fig. 9. One can observe two noticeable trends. The

oise distribution with lighter tails does not cause any problems.

he retrieval rate is fully comparable (or even slightly better in some

ases) to the Gaussian noise and the method could be applied to this

ype of noise, too. The heavy-tailed noise significantly decreases the

erformance of the method on low SNR levels. As the SNR increases,
he performance approaches (logically) the performance achieved for

aussian noise.

. Extension to color histograms

The presented invariants can be extended from 1-D graylevel his-

ograms to color or even multispectral histograms. A complete his-

ogram of an image with N spectral/color bands is an array of 2bN inte-

ers, where b is the number of bits used to encode the pixel intensity

n one band (typically b = 8). The size of the multispectral histogram

rows exponentially with N which makes it very inefficient for small

mages of many bands. As the histogram size does not depend on the

mage size, this representation can be useful for large images with

low band number, e.g. for traditional color images with N = 3. As-

uming a Gaussian noise is added to each band, the N-D histogram of

noisy image is again a convolution of the original histogram and the

-D Gaussian density function, which is given as

n(t) = 1√
(2π)N|C| exp

(
−1

2
tC−1t′

)
, (10)

here t ≡ (t1, . . . , tN) and C is the noise covariance matrix.

If C is diagonal, i.e. if the noise in any two spectral bands are mutu-

lly uncorrelated, then (10) is a product of 1-D Gaussians and we can

asily derive N-dimensional analogies of the invariants (6) and (7)

p = mp −
[p/2]∑

k=0
0<|k|

(2k − 1)!! ·
(

p

2k

)
Ip−2kmk

2 (11)

p =
[p/2]∑
k=0

(2k − 1)!! ·
(

p

2k

)
( − 1)|k|mp−2kmk

2 (12)

here the boldface characters are used for standard vector notation

nd m2 ≡ (m20...0, m02...0, . . . , m00...2).
The assumption of C being diagonal seems to be natural and it

ctually holds for multispectral sensors where individual bands are

aptured independently, such as satellite and aerial scanners, and for
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Fig. 10. An example of 2D histograms of the noise extracted from a real image. Red

and green bands are correlated � = 0.33, blue and red bands are almost independent

� = 0.06.
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multimodal medical images. This is however not true for color im-

ages captured by single-chip consumer cameras, where the enter-

ing light is split into red, green and blue channels by a color filter

array, most commonly arranged into Bayer pattern. To enhance the

spatial resolution, the camera applies embedded interpolation algo-

rithms on raw data (including the noise). This interpolation may in-

troduce between-channel correlation not only of clear image data

(where the correlation is expected anyway) but also of the noise

components which theoretically should be independent. To illustrate

this phenomenon, we extracted the noise components of a real color

image using the same technique as described in Section 2 and visual-
zed 2-D histograms of the noise (see Fig. 10). While the blue and the

ed bands are uncorrelated, the correlation between red and green is

bout � = 0.33. We performed this test on several images with basi-

ally the same results (the particular values of course depend on the

amera type, on the setting and on other conditions). Note also that

he noise variances in individual channels typically differ from each

ther, but this is not a serious problem.

If C is not diagonal, it would still be possible to derive histogram

eatures insensitive to such kinds of correlated noise, assuming that

he eigenvectors of C are of a known orientation, which is constant

or all images in question. We could rotate the histogram such that

he noise becomes uncorrelated, which is always possible, and then

roceed as described above. This is, however, not the case of real color

oise, where the eigenvectors of C are basically random. Under such

onditions, the invariant approach cannot be used correctly and we

re limited to channel-wise histograms.

. Conclusion

Histogram of a noisy image, both visual appearance and common

umerical characteristics, are significantly affected by additive noise

n the image. Provided the noise is Gaussian, we proposed original

istogram descriptors which are invariant w.r.t. the noise. We proved

hat along with the theoretical invariance the descriptors are suffi-

iently robust on real images corrupted by thermal and electronic

ensor noise. As demonstrated experimentally, the proposed descrip-

ors can be used as the features in a histogram-based retrieval if the

atabase and/or query images are heavily noisy and standard descrip-

ors fail. We approved that the retrieval based on the new invari-

nts significantly outperform the other more traditional methods in-

luded in our tests. We also proved that the method can be used even

f the noise distribution is not exactly Gaussian, but has lighter tails.
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ppendix

In this Appendix we present a formal proof that the image fea-

ures defined in Eq. (6) do not change under Gaussian white noise. To

rove this, it is sufficient to show that they do not change if the image

istogram is convolved by an arbitrary zero-mean Gaussian pdf (1) of

n unknown parameter σ . We prove this by induction over p. The va-

idity is trivial for p = 0, 1, 2 and can be verified easily for p = 3 by

ubstitution of (5) into (6). Let us now prove (6) for an arbitrary p > 3

rovided that it holds for all lower indices.

(g)
p = m(g)

p −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
I(g)
p−2k

(m(g)
2

)k

here K = [p/2]. Using (5) and the assumption that I
(g)
p−2k

= I
( f )
p−2k

we

et

(g)
p =

K∑
k=0

(
p

2k

)
σ 2k(2k − 1)!! · mp−2k

−
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
Ip−2k(m2 + σ 2)k

= mp −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)

×
(

Ip−2k

k∑
j=0

(
k

j

)
σ 2 jmk− j

2
− σ 2kmp−2k

)



C. Höschl IV, J. Flusser / Pattern Recognition Letters 69 (2016) 72–81 81

s

A

r

A

H

A

t

i

I

∑

f

I

w

R

[

= I( f )
p −

K∑
k=1

(2k − 1)!! ·
(

p

2k

)

×
(

Ip−2k

k∑
j=1

(
k

j

)
σ 2 jmk− j

2
− σ 2kmp−2k

)

= I( f )
p −

K∑
k=1

(2k − 1)!! ·
(

p

2k

)
Ip−2k

k∑
j=1

(
k

j

)
σ 2 jmk− j

2

+
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
σ 2kmp−2k

= I( f )
p − Ap + Bp.

In the above expressions, we dropped the index (f) for the sake of

implicity whenever it is clear from the context. Now we show that

p = Bp, which will complete the proof. To express the double facto-

ial, we use the relation (2k − 1)!! = (2k)!/2kk!.

p =
K∑

k=1

k∑
j=1

(2k − 1)!! ·
(

p

2k

)(
k

j

)
Ip−2kσ

2 jmk− j
2

=
K∑

j=1

K∑
k= j

(2k − 1)!! ·
(

p

2k

)(
k

j

)
Ip−2kσ

2 jmk− j
2

=
K∑

j=1

K− j∑
k=0

(2(k + j) − 1)!! ·
(

p

2(k + j)

)(
k + j

j

)
Ip−2(k+ j)σ

2 jmk
2

=
K∑

j=1

p!σ 2 j

j!2 j

K− j∑
k=0

mk
2

k!(p − 2 j − 2k)!2k
Ip−2 j−2k

=
K∑

j=1

p!σ 2 j

j!2 j

(
K− j∑
k=1

mk
2

k!(p − 2 j − 2k)!2k
Ip−2 j−2k + Ip−2 j

(p − 2 j)!

)

The inner sum equals, according to (6), to

mp−2 j − Ip−2 j

(p − 2 j)!
.

ence,

p =
K∑

j=1

p!σ 2 jmp−2 j

j!(p − 2 j)!2 j
= Bp. �

In a similar way, by means of induction over p, it is also possible

o prove the equivalence between (6) and (7). We briefly show the

nduction step.

p = mp −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
mk

2Ip−2k

= mp −
K∑

k=1

(2k − 1)!! ·
(

p

2k

)
mk

2

×
K−k∑
j=0

(2 j − 1)!! ·
(

p − 2k

2 j

)
( − m2)

jmp−2k−2 j
= mp −
K∑

k=1

K−k∑
j=0

( − 1) j p!

2k+ jk! j!(p − 2k − 2 j)!
mk+ j

2
mp−2k−2 j

= mp −
K∑

k=1

K∑
j=k

( − 1) j−k p!

2 jk!( j − k)!(p − 2 j)!
mj

2
mp−2 j

= mp −
K∑

j=1

j∑
k=1

( − 1) j−k p!

2 jk!( j − k)!(p − 2 j)!
mj

2
mp−2 j

= mp −
K∑

j=1

( − 1) j p!

2 j(p − 2 j)!
mj

2
mp−2 j

j∑
k=1

( − 1)k

k!( j − k)!

Since

j

k=1

( − 1)k ·
(

j

k

)
= −1

or any j, we obtain

p = mp +
K∑

j=1

(2 j − 1)!!

(
p

2 j

)
( − m2)

jmp−2 j

=
K∑

j=0

(2 j − 1)!!

(
p

2 j

)
( − m2)

jmp−2 j,

hich exactly matches Eq. (7).
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