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ABSTRACT

Given the large amount of blur estimation and blind deconvo-
lution methods just in the last decade, there is an increasing
need to compare the performance of a particular method with
others. Unlike in other fields in image processing, there are
very few well-established benchmark databases of test data
and, more importantly, no standard way of performance eval-
uation. In this paper, we focus on the latter. We propose a
new error measure for the blur kernel – a method for com-
parison of the blur estimate with the ground truth – which
correctly reflects how inaccuracies in the blur estimation af-
fect the subsequent image restoration, without the necessity
to perform the actual deconvolution.

Index Terms— PSF comparison, PSF error, blur estima-
tion, image restoration, image deconvolution

1. INTRODUCTION

Single image blind deblurring is the task of estimating the
latent sharp image from a single blurred image, without any
prior knowledge of the blur itself. In most cases, the blurring
process is modeled as a convolution of the unknown sharp
image u with an unknown blur trace h (called Point-Spread
Function, PSF) followed by a corruption with additive noise
n, resulting in the observed image g

g = h ∗ u+ n. (1)

Virtually every blind deconvolution method can be sepa-
rated into two steps: blur estimation, in which the PSF h is
computed, and image restoration, in which the desired im-
age u is estimated using the blur estimate from the previous
step. The latter part is called non-blind deconvolution (be-
cause the blur kernel is now considered known) and while it
is still a non-trivial process in itself, it is a relatively straight-
forward and well-posed problem. Thus the success of the im-
age restoration largely lies in the accuracy of blur estimation
and this is where new blind deblurring methods usually center
their contribution.
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As with any task in image processing, there is a need to
quantitatively compare the results of one method with others.
Arguably the most common way is to measure the mean-
square-error (MSE) of the restored image and the ground
truth (or other derived measure of similarity, like ISNR),
[1, 2, 3, 4]. The downside of this approach is that it does
not give enough insight into how successful the key blur es-
timation alone actually was, because we evaluate the overall
result only after the image restoration. Furthermore, such re-
sult is highly dependent on the used non-blind deconvolution
method. Some non-blind methods are more forgiving to PSF
error than others, some explicitly deal with border effects
while other do not and the introduced error may overshadow
the PSF error; all methods require tuning of usually sev-
eral parameters. As a result, we can get completely different
orderings (best to worst) of different PSF estimates just by us-
ing different non-blind methods or one method with different
parameter settings, meaning that such process is useless as
a performance evaluation tool across different author teams,
where test conditions differ.

It is thus advantageous to have means of evaluating the
accuracy of the blur estimation alone, rather then have the as-
sessment of the first crucial step blurred by another non-trivial
process. Surprisingly, there are no well-established standard
methods for evaluation of blur estimation. One possible ap-
proach is to measure directly the MSE, or equivalently cross
correlation, of the estimated PSF ([5, 4, 6]). The problem
with PSF MSE is that it tells us how similar the PSFs look,
it doesn’t tell us how similar the restored images would look.
While PSF estimation is a necessary intermediate step, the ul-
timate goal is the sharp restored image. Therefore, PSF error
should be measured as it would propagate to image restora-
tion. Two PSFs with the same MSE to the common ground-
truth can produce vastly different results (both in terms of im-
age MSE and human perception) when used for non-blind de-
convolution.

To our best knowledge, the only attempt to better eval-
uate PSF estimation was made as a minor side product in
[7, 8], where Levin et al. used the ratio between MSE of
the image restored with the estimated kernel and MSE of the
image restored with the ground truth kernel as the PSF er-
ror measure. This measure was adopted in later papers (e.g.
[9, 10, 4, 11]), although it has the main drawback explained



above – it heavily depends on the used non-blind deconvolu-
tion and measurement method. Many details, such as decon-
volution method and its parameters, handling image borders,
whether or not include extrapolated borders in the MSE cal-
culation etc., were not specified by the authors of [7] and we
know from experience that different choices in these aspects
can change the error measure from small (close to 1) to sev-
eral times higher on the same result set. For quantitative eval-
uation, such measure is then useless, but still used for lack of
anything better.

We address this problem and, as a solution, propose a
method which can accurately calculate the MSE introduced
by the PSF to the image restoration just by one direct formula,
without the need to perform the actual deconvolution. Such
measure can very well serve as a standard because test results
are easily reproducible, therefore meaningful. The next sec-
tion contains mathematical description and derivation of the
proposed measure, and Section 3 contains experimental veri-
fication of the efficacy of the proposed measure.

2. MATHEMATICAL DERIVATION

The error measure between the true PSF h and its estimate ĥ
we propose has the form

ρ[h, ĥ] = E
[
MSE(uh, uĥ)

]
, (2)

where uh and uĥ are sharp images restored with the correct
PSF h and the estimated PSF ĥ, respectively, and E is proba-
bilistic expectation over images and noise, which are treated
as random variables. In the following subsection we provide
a formula for evaluating the expression in (2) without having
to actually compute uh or uĥ, which of course we want to
avoid. To summarize, we calculate the mean error of the im-
age restoration caused by the PSF inaccuracy. For correctly
estimated PSF, the error is zero and increases with the PSF
error, but the increase reflects how the PSF error affects the
image restoration.

Commonly used measure of improvement in image
restoration is ISNR, defined as 10 log10(‖u−g‖2/‖u−uĥ‖2).
Based on PSF error measure (2) we propose an analogy, PSF-
ISNR, as a measure of improvement in image restoration
solely due to PSF estimation (with the effect of non-blind
deconvolution eliminated)

PSF-ISNR[h, ĥ] = 10 log10

(
ρ[h, δ]

ρ[h, ĥ]

)
, (3)

where δ is the Dirac delta function (identity for convolution).
We now proceed with the derivation of the formula for the
error measure (2).

2.1. Derivation

Let us assume the blurring model in (1) and let us carry out
the analysis in the Fourier domain, which is equivalent, since

the error (2) is quadratic and L2 norm is preserved. Fourier
transforms of respective quantities will be denoted by capital
letters, e.g. G = HU +N , omitting the particular frequency
G(ω) etc. for brevity. If the correct PSFH is known, the opti-
mal (in the sense of statistically mean squared error) estimate
UH of U obtainable by linear space-invariant filtering is the
Wiener deconvolution

UH =WG, W =
H∗

|H|2 +R
, R =

SN

SU
, (4)

where W is the Wiener filter, R is the noise-to-signal ratio,
SU = E[U∗U ] is the image power spectrum, and SN =
E[N∗N ] is the noise power spectrum. Similarly, if the PSF
is estimated as Ĥ, Ĥ 6= H , the corresponding restored image
UĤ is

UĤ = ŴG, Ŵ =
Ĥ∗

|Ĥ|2 +R
. (5)

The measure of PSF estimation error ρ (2) is the squared dif-
ference of the restored images. In Wiener deconvolution, the
imageU and noiseN are regarded as random variables, there-
fore the difference must be considered in the sense of statisti-
cal expectation over all realizations of U and N

ρ[h, ĥ] = E

[
1

M2

∑
ω

∣∣UH − UĤ

∣∣2] , (6)

where M is the number of image pixels. Plugging from (4)
and (5) into the difference UH − UĤ and considering that
G = HU +N we have

UH − UĤ = (W − Ŵ )G

=

(
H∗

|H|2 +R
− Ĥ∗

|Ĥ|2 +R

)
(HU +N)

=

(
H∗(|Ĥ|2 +R)− Ĥ∗(|H|2 +R)

)
(HU +N)

(|H|2 +R)(|Ĥ|2 +R)
. (7)

The expectation operator E acts non-trivially only on the last
term in the numerator, HU + N . In the squared magnitude
we get

E
[
|HU +N |2

]
= |H|2E

[
|U |2

]
+HE [UN∗]

+H∗E [U∗N ] + E
[
|N2|

]
= |H|2SU + SN . (8)

U and N are assumed independent and N has zero mean, so
the second and third term vanish.

Combining (7) and (8) and pluggin into (6), we finally get
(expectation E and summation are interchangeable)

ρ[h, ĥ] =
1

M2

∑
ω

E
[∣∣UH − UĤ

∣∣2]

=
1

M2

∑
ω

SU

∣∣∣H∗(|Ĥ|2 +R)− Ĥ∗(|H|2 +R)
∣∣∣2

(|H|2 +R)(|Ĥ|2 +R)2
. (9)



2.2. Remarks

Equation (9) is our final PSF error measure. It is a single
formula which can be readily evaluated, it does not require
any iterative deconvolution algorithm, and it contains only
the compared PSFs, the image power spectrum SU and noise
level (in R) as a single free parameter. The presence of SU is
understandable because different images respond differently
to change in the (de)blurring PSF. For example, an image
with horizontal translation symmetry will be unaffected by
horizontal blur, therefore if h and ĥ for such image differ
only by a horizontal blur b (i.e., h = ĥ ∗ b or vice versa),
then ρ[h, ĥ] = 0, which corresponds to the fact that the re-
constructed images are identical. For calculation, we use the
power spectrum of u as SU , which presents no practical prob-
lem, because for quantitative testing, true h and therefore true
u must be known.

The presence of R (eq. (4)) deserves some attention. As-
suming that the input image u was corrupted with i.i.d Gaus-
sian noise n, n ∼ N(0, σ2), then SN ≡ Mσ2. Therefore,
for a fixed test image u, R is completely determined by single
parameter σ, R = Mσ2/SU . As a simplification with mi-
nor loss in fidelity, one can even use R ≡ const. In Wiener
deconvolution, the parameter R can serve not only as an esti-
mate of the input noise, but also as a regularizer compensating
for the error in the PSF. If R is set too low for near-noiseless
input image, even small errors in the PSF result in unpleasant
visual artifacts in the restored image while with R set higher,
the image restoration will be more “forgiving”. The same sit-
uation occurs in the error measure ρ, if R is set too low, any
deviation from the ground-truth PSF will result in high error
values while high R will make the error measure less sensi-
tive. Consequently, any published test results will be fully
reproducible only if they include the value of R, the only free
parameter, used for error measurement.

3. EXPERIMENTAL VERIFICATION

In this section, we present experimental verification, that the
error measure ρ calculated for several types of error in PSFs
corresponds to the true MSE measured after image restora-
tion, and provide some comments. In Fig. 1-3 we show re-
sults of three experiments for three typical kinds of PSF er-
ror: incorrect support estimation (PSFs appear too thick, very
common in blind PSF estimation), incorrect length of mo-
tion blur, and incorrect radius of out-of-focus blur. In each of
these experiments, we constructed several PSFs with various
degrees of aforementioned error and for each of these PSFs
we calculated
– our proposed error measure ρ (solid blue line),
– true MSE of the images restored with Wiener filtering

(dotted green),
– true MSE of the images restored by total variation (e.g.

[12, 13]) deconvolution (dashdotted red), and
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Fig. 1. Errors of PSFs with incorrect support. Top figure
shows proposed PSF error compared with true image error
obtained by deconvolution (Wiener filtering and total varia-
tion), and MSE calculated directly on the PSFs. Middle fig-
ure shows proposed PSF-ISNR measure compared with true
ISNR obtained by deconvolution. Bottom strip contains the
tested PSFs (selection): ground truth (first) and its mutations.

– direct MSE between PSFs themselves, scaled appropri-
ately (dashed orange).

These error measurements are depicted in the top image of
Fig. 1-3. All experiments were computed with the value σ =
2−6 and the known cameraman image.

It is well apparent, that the calculated error measure ρ
very accurately captures the true measured error introduced
into the image by the PSF inaccuracy while retaining all the
advantages of direct PSF error measure discussed above. Al-
though our derivation is based in Wiener deconvolution, we
can see that TV-based deconvolution behaves very similarly
when it comes to image error, therefore conclusions form our
analysis can be safely extended to more sophisticated non-
blind deconvolution algorithms. On the other hand, direct
PSF MSE provides absolutely no insight into how much par-
ticular PSF estimate affects the image restoration, this is well
visible especially in Fig. 2 and 3 (see the orange dashed line).
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Fig. 2. Errors of PSFs with incorrect motion length (too short
or long). Otherwise same setup as Fig. 1

We can draw similar conclusions from the graphs depict-
ing the comparison of the proposed PSF-ISNR measure and
true image ISNR (middle image of Fig. 1-3), our measure has
the fidelity of the ISNR computed after full deconvolution.

In the last presented experiment we changed the value of
σ, Fig. 4 shows that while the absolute values of the error
measure depend on σ, the relative comparison between PSFs
and fidelity to true image error remain the same.

4. CONCLUSION

We proposed and presented mathematical derivation of a new
error measure for direct blur estimation evaluation. We ex-
plained the necessity and advantages of evaluating blur esti-
mation separately from image restoration and our proposed
method fills the gap that is currently in this area. We also pro-
posed PSF-ISNR as a counterpart for the well-accepted im-
age ISNR but focused solely on blur estimation – a measure
of improvement due to correct PSF estimation. MATLAB
code for these measures can be readily downloaded from our
website. We verified experimentally that the proposed error
measure fulfills its promise and accurately captures the error
introduced into image restoration by PSF error, regardless of
the non-blind method used. Future work will include explicit
dealing with border effects and space-invariant blur compari-
son.
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Fig. 3. Errors of PSFs with incorrect blur radius (too small or
large). Otherwise same setup as Fig. 1
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Fig. 4. Same setup as in Fig. 1 but for 8 times smaller value
of σ.
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[6] Jan Kotera, Filip Šroubek, and Peyman Milanfar, “Blind
deconvolution using alternating maximum a posteriori
estimation with heavy-tailed priors,” in Computer Anal-
ysis of Images and Patterns. Springer, 2013, pp. 59–66.

[7] A. Levin, Y. Weiss, F. Durand, and W.T. Freeman, “Un-
derstanding and evaluating blind deconvolution algo-
rithms,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition CVPR ’09, 2009, pp. 1964–
1971.

[8] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman,
“Understanding blind deconvolution algorithms,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 33, no. 12, pp. 2354–2367, 2011.

[9] D. Krishnan, T. Tay, and R. Fergus, “Blind deconvolu-
tion using a normalized sparsity measure,” in Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, June 2011, pp. 233–240.

[10] Amit Goldstein and Raanan Fattal, “Blur-kernel estima-
tion from spectral irregularities,” in Computer Vision–
ECCV 2012, pp. 622–635. Springer, 2012.

[11] D. Perrone and P. Favaro, “Total variation blind decon-
volution: The devil is in the details,” in Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Confer-
ence on, June 2014, pp. 2909–2916.

[12] Peter Blomgren, Tony F. Chan, Pep Mulet, and Chak-
Kuen Wong, “Total variation image restoration: numer-
ical methods and extensions,” in Image Processing, In-
ternational Conference on. 1997, vol. 3, pp. 384–384,
IEEE Computer Society.

[13] S. H. Chan, R. Khoshabeh, K. B. Gibson, P. E. Gill, and
T. Q. Nguyen, “An augmented lagrangian method for
total variation video restoration,” IEEE Transactions on
Image Processing, vol. 20, no. 11, pp. 3097–3111, Nov.
2011.


