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Abstract. This paper aims to find the minimum sample size of the
camera reference image set that is needed to build a sensor fingerprint
of a high performance. Today’s methods for building sensor fingerprints
do rely on having a sufficient number of camera reference images. But,
there is no clear answer to the question of how many camera reference
images are really needed? In this paper, we will analyze and find out how
to determine the minimum needed number of reference images to remove
the mentioned uncertainty. We will introduce a quantitative measure (a
stop-criterion) stating how many photos should be used to create a high-
performance sensor fingerprint. This stop-criterion will directly reflect
the confidence level that we would like to achieve. By considering that the
number of digital images used to construct the camera sensor fingerprint
can have a direct impact on performance of the sensor fingerprint, it is
apparent that this, so far underestimated, topic is of major importance.
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1 Introduction

Generally, there are two essential tasks in forensics analysis of digital images and
videos: their integrity verification (genuineness analysis) and ballistics analyzes.
In this paper we will deal with image (video) ballistics which does address the
problem of linking digital images (videos) under investigation to the exact source
imaging device that has been used to capture photos (videos) under investigation.
Since image ballistics makes possible to differentiate between source cameras
of the same make and model, it became especially useful in the forensic, law
enforcement, insurance, and media industries.

Although past research was mainly focused on data hiding and digital wa-
termarking approaches [1–3] to perform digital image integrity verification and
image ballistics, today there is a relatively new approach called passive one which
does not need embedding any secondary data into the image [4]. In contrast to
active methods, the passive approach does not need any prior information about
the image being analyzed. There have been methods developed to detect image
splicing [5, 6], traces of non-consistencies in color filter array interpolation [7],
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traces of geometric transformations, [8], cloning [9], computer graphics gener-
ated photos [10], JPEG compression inconsistencies [11], etc. Typically, pointed
out methods are based on the fact that digital image editing brings specific
detectable statistical changes into the image.

In the image ballistics area, methods mainly focused on camera sensor noise
and systematic artifacts that are brought into the image [12–18]. These artifacts
have been used to link a digital image to its exact acquisition device.

Fig. 1. Performance of camera sensor fingerprint constructed using camera reference
sets of different sizes and 100 test images for each camera.



Determination of stop-criteria for sensor fingerprint estimation 3

1.1 Motivation

When linking a digital image to an exact camera (or a video signal to cam-
corder), typically the following procedure is used. First, the camera sensor fin-
gerprint is constructed [12, 13]. Second, the constructed fingerprint and image
under investigation are matched (usually through a correlation measurement).
This indicates if the digital image has been captured by this camera. The sensor
fingerprint is constructed incrementally by using many camera reference images.
Camera reference images are recommended to be of a uniformly illuminated sur-
face. Usually, an edge-preserving denoising filter is applied on camera reference
images. Residuals of digital images and their denoised versions are put together
(e.g., by averaging) to construct the basic version of sensor fingerprint.

The problem is how many photos should be used to form the camera reference
images so there will be a high confidence that the constructed fingerprint is of
a high performance? Is the optimal size of this set 10, 50, or even 250? The
topic is of major importance. The reason is that number of digital images used
to construct the camera sensor fingerprint, typically, has a direct impact on
performance of the sensor fingerprint. Insufficient number of reference images
cause a poor performance of the fingerprint. To this end, most authors rather
recommended to employ a fixed and higher number of reference images to be
safe in terms of having a good performing fingerprint (in published literature we
have, typically, observed recommended sizes of reference images ranging from 30
to 150).

To remove the uncertainty about the size of sets of camera reference images,
we will introduce a quantitative measure determining how many photos should
be used to create the sensor fingerprint to have a high performing fingerprint. In
other words, we are going to search for the optimal number of reference images
that will reflect our the confidence level and accuracy we want to achieve. To
address the problem we will search for a stop-criterion stating that no more
images are needed to be added to the set of camera reference images.

Before going on, we also explicitly define what is a fingerprint of good (high)
or poor performance. A fingerprint with a good performance is such a fingerprint
that enables a successful recognition of the exact source cameras when inspecting
photos of various scenes, lighting conditions, etc. When a non-sufficient number
of images are used to create the sensor fingerprint, the measured fingerprint is
of poor performance (often random noise components dominate in there) and
hence the image source verification task generate weak results. By weak results
we mean lower rate of true positives. Figure 1 demonstrates performance of 10
different camera sensor fingerprints constructed by 1 · · · 50 reference images of
uniformly illuminated surface (a white paper). The figure demonstrates obtained
correlation (obtained by using Eq. 3) between 100 test images (natural images
captured by same cameras) and associated camera fingerprints (minimal, maxi-
mal and mean values of obtained correlation values are shown). Apparently size
of camera reference sets have a direct impact on results obtained. For the sake
of completeness, we point out that false positive states for mistakenly pinpoint-
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Fig. 2. A typical digital camera system.

ing the source camera. By true positive we mean correctly pinpointing a digital
image to the source camera.

2 Basic Notations and Preliminaries

A typical camera consists of several different components (see Fig. 2). As pointed
out in [19], the core of every digital camera is the imaging sensor. The sensor (e.g.,
CCD or CMOS) is consisted on small elements called pixels that collect photons
and convert them into voltages that are subsequently sampled to a digital signal
in an A/D converter. Generally, before the light from the scene which is being
photographed reaches the sensor it also passes through the camera lenses, an
antialiasing (blurring) filter, and then through a color filter array (CFA). The
CFA is a mosaic of tiny color filters placed over the pixel of an image sensor
to capture color information. Color filters are needed because typical consumer
cameras only have one sensor which cannot separate color information. Most
commonly, Bayer color filter is used.

The resulting signal is then further processed using color correction and white
balance adjustment. Additional processing includes gamma correction to adjust
for the linear response of the imaging sensor, noise reduction, and filtering op-
erations to visually enhance the final image. Finally, the digital image might be
compressed stored and stored in a specific image format like JPEG.

What is important in terms of forensic analyzes of digital images is that
different components of camera leave different kind of artifacts or fingerprints
useful for integrity verification of photos or ballistics analysis. Typically, artifacts
(fingerprints) left by CFA, post processing, and compression parts are in common
for cameras of same make and model. In other words, assuming that we know
their value and behavior for a particular camera make and model and based
on the fact that digital image editing (e.g., photoshopping) change these values
(fingerprints), they can be employed for verification of the originality of digital
images .

On the other hand, each camera has its own unique sensor which consists of
millions of pixels each of unique properties. Hence, if we are able to find kind of
information brought into image by the sensor and which will remain stable and
present in all images captured by that sensor and cannot be found in no image
captured by any other sensor, then we can call it fingerprint of that sensor or
camera. Such a camera sensor fingerprint can be employed to link digital images
to particular digital cameras which captured them.
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2.1 Sensor as a Camera Fingerprint

Image sensors suffer from several fundamental and technology related imper-
fections resulting in their performance limitations and noise. As pointed out in
[19], if we take a picture of an absolutely evenly lit scene, the resulting digital
image will still exhibit small changes in intensity among individual pixels which
is partly because of pattern noise, readout noise or shot noise. While readout
noise or shot noise are random components, the pattern noise is deterministic
and remain approximately the same if multiple pictures of the same scene are
taken. As a result, pattern noise can be the fingerprint of sensors which we are
searching for.

Pattern Noise (PN) is consisted of two components called Fixed Pattern
Noise (FPN) and photo response non-uniformity (PRNU). FPN is independent
of pixel signal, it is an additive noise, and some high-end consumer cameras
can suppress it. The FPN also depends on exposure and temperature. PRNU is
formed by varying pixel dimensions and inhomogeneities in silicon resulting in
pixel output variations. It is a multiplicative noise. Moreover, it is not dependent
on temperature and seems to be stable over time. The values of PRNU noise
increases with the signal level (it is more visible in pixels showing light scenes).
In other words, in very dark areas PRNU noise is suppressed. Moreover, PRNU
is not present in completely saturated areas of an image. Thus, such images
should be ignored when searching for PRNU noise.

There has not been performed a lot of studies analyzing the PRNU noise in
deeper details. Despite this, it has been shown that it has a dominant presence in
the pattern noise component found in digital images. This made possible Fridrich
et al. [13, 12] to employ PRNU noise to identify exact source cameras. In other
words, PRNU noise is employed as the fingerprint of camera sensors. Generally,
it can be claimed that state-of-the-art source identification methods are mostly
based on methods proposed by Jessica Fridrich et al. (e.g., [13, 12, 20, 21]). There
have been published some additional papers by others authors(e.g., [14–18])
aiming to improve accuracy of results. Typically, they brought modifications to
the original paper of Jessica Fridrich et al. [13, 12] based on some new theoretical
or empirical findings. Nonetheless, the key concept of how to measure sensor’s
fingerprint has remained unchanged.

2.2 Modeling and Extracting PRNU

Let us model the image acquisition process in the following way:

Ii,j = Ioi,j + Ioi,j · Γi,j + Υi,j (1)

Here, Ii,j denotes the image pixel at position (i, j) produced by the camera,
Ioi,j denotes the noise-free image (perfect image of the scene), Γi,j denotes PRNU
noise and Υi,j stands for all additive or negligible noise components.

Following the approach proposed by [13, 12], the PRNU component is esti-
mated in the following way. For a given camera, PRNU noise is estimated by
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averaging multiple images Ik, k = 1, · · · , N captured by this camera. The process
is sped up by suppressing the scene content from the image prior to averaging.
This is achieved by using a denoising filter F and averaging the noise residuals
instead. We will denote residuals by Îk (i.e., Îk = Ik − F(Ik)). In other words,
deterministic components of sensor noise of the camera C are computed in the
following way:

Γsensor =
1

N

N∑
k=1

Îk =
1

N

N∑
k=1

Ik −F(Ik) (2)

Alternatively, for example, maximum likelihood estimation (MLE) instead of
simple averaging can be employed.

To reduce the false positive rate, sensor fingerprint are enhanced by Wiener
filtering in the frequency domain (e.g., to reduce JPEG compression artifacts)
and linear pattern removal through zero-mean operation (e.g., to remove traces of
CFA interpolation) [12]. Pointed out Γsensor is the basic version of sensor finger-
print of camera. To achieve accurate results and minimize the false positive rate,
it is necessary to perform additional frequency filtering, fingerprint enhancement
and correction, suppressing dominant traces of camera embedded software, filter-
ing JPEG artifacts, etc. Without such a correction, typically, a high rate of false
positives is obtained (because of camera operations such as gamma correction,
CFA interpolation, color enhancement, geometric deformation corrections, com-
pression, additional embedded camera software functionalities, etc.) This part
often depends on specific camera brands under investigation.

Linking of a digital image to an exact camera is carried out by performing
a similarity measure of two sensor fingerprints. One is obtained from the image
under investigation and second from the set of camera reference images. This
can be carried out, for example, by employing a simple correlation measure.
Having available two different sensor fingerprints Γs1 and Γs2 , we measure their
similarity by employing a normalized correlation:

corr(Γs1 , Γs2) =
(Γs1 − Γs1)� (Γs2 − Γs2)

(‖Γs1 − Γs1‖) · (‖Γs2 − Γs2‖)
(3)

where X denotes mean of the vector X, � stands for dot product of vectors
defined as X � Y =

∑N
k=1X(k)X(k) and ‖X‖ denotes L2 norm of X defined as

‖X‖ =
√
X �X.

There has been carried out studies about the specific choice and effectiveness
of denoising filters (e.g., [14]). It is important to note that there is no general
perfect denoising filter. All of them have t heir advantages and disadvantages.
Moreover, it is interesting to note that when applying the proposed PRNU esti-
mation method on a larger set of digital images or when analyzing digital video
signals consisted of thousands of individual frames, the computational time be-
comes a drawback of the method. It has been shown that the computational
time of the method can effectively be enhanced by using GPU-accelerated ver-
sion of the algorithm. For example, in [22, 23] a parallel CUDA implementation of
Γsensor has been built achieving remarkable speedup in fingerprint computation
(up to 5-6 times).
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3 Laplacian Distributed Residuals

As pointed out in last section, for a given camera C, deterministic components
of sensor noise can be estimated by averaging multiple images captured by this
camera, Ik, k = 1, · · · , N . The process is sped up by suppressing the scene content
from the image prior to averaging by using a denoising filter F and averaging
the noise residuals Îk instead.

Apparently samples of residuals, Îk, and their corresponding averaged ver-
sions 1

N

∑N
k=1 Îk are the key information forming the sensor fingerprint of cam-

era, ΓC . Let us first to find an appropriate form for the probability density
function (p.d.f.) of the distribution of residual values so that they can be effi-

ciently modeled. Figure 3 demonstrates the histogram of residuals 1
N

∑N
k=1 Îk,

obtained using a typical set of reference images of sizes N = 1, 5, 10, 15, 20, 25.

Fig. 3. Distribution of averaged residuals ΓC constructed using a typical camera ref-
erence image set of different sizes N = 1, 5, 10, 15, 20, 25.

These figures demonstrate that the Laplacian p.d.f. fits the observed distribu-
tion well. ΓC has a Laplace (µ, b) distribution if its probability density function
is

f(ΓCi,j
|µ, b) =

1

2b
exp

(
−
|ΓCi,j

− µ|
b

)
(4)

where µ is a location parameter and b ≥ 0 is sometimes referred to as the
diversity.

To estimate parameters of the Laplace distribution, maximum likelihood es-
timator is used. Maximum likelihood estimator of b can be obtained by:

b̂ =
1

M

M∑
i=1

|ΓCi,j − µ̂| (5)

Having Laplacian-distributed residuals, Îk, we easily can estimate parameters
the of associated p.d.f. Specifically, we focus on parameter b and will analyze its
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behavior during computation process of the sensor fingerprint. Figure 4 demon-
strates values of b for different number camera reference images of 10 different
cameras. Apparently, b follows a descending trend. Specifically, we can see that
b descends as the number of camera reference images grows. It is important to
note that the descending trend is steep in the beginning. On the other hand, b
becomes almost stable for higher number of images.

Fig. 4. Estimated parameter b for 10 different sensor fingerprints constructed using
camera reference image sets of sizes N = 1 · · · 50.

4 Determination of Stop-Criterion for Size of Reference
Images

The uncertainty which is addressed in this paper is about the needed number
of reference images, N , that is needed to construct a sensor fingerprint, Γsensor,
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of high performance. As pointed out previously, in literature, it is often pointed
out that N →∞ brings a more accurate sensor fingerprint and suppressed Υ .

In last section we introduced the parameter b that is based on Laplace dis-
tribution modeling of residuals. Moreover, we have shown that b has a specific
behavior and descends as the number of camera reference images grows. It has
been shown that the descending trend of b is steep in the beginning. On the
other hand, b becomes almost stable for higher number of images.

The question is what is the relation between b and the performance of the
sensor fingerprint and how can we employ b to predict the future performance
level of the fingerprint in terms of true positives? Here, we will use a differential
operator to quantify the behavior of b. In other words, having ΓC = 1

N

∑N
k=1 Îk,

we will measure the rate at which the value of the b changes with respect to
change of k:

∆bk = bk+1 − bk (6)

To create a stop-criterion, we collected 25 different cameras and for each
of them created a camera reference image sets of 50 images and a test image
sets of 100. We constructed 50 sensor fingerprints ΓC by using 1 · · · 50 reference
images per camera. Reference photos have been selected randomly. Having 50
different sensor fingerprints constructed using a different size of reference image
sets, we carried out an image ballistics test using Eq. 3 that calculated the true
positive rate for all test images. A global threshold has been employed for the
classification part of this part. At the same time we also measured Eq. 6 for
all camera fingerprints (to remove local outliers, a low-pass filter always have
always been applied on ∆b). Having available 50 different true positive rates
as well as 50 values of b for each camera sensor fingerprint, we analyzed their
relation and empirically gained an optimal b for different rates of true positives.
Efficiency that can be obtained by using b as the stop-criterion is shown the next
section. In this study, we selected the false positive rate to be 0.1 percent. For
the sake of simplicity, for the parameter searching and experimental part, there
only have been chosen cameras that are distinguishable using the basic version
of sensor fingerprint enhanced by Wiener filtering in the frequency domain (e.g.,
to reduce JPEG compression artifacts) and linear pattern removal through zero-
mean operation as recommended in [12].

Figure 5 demonstrates a portion of results of our analysis. Specifically, shown
is performance of fingerprint constructed by sets of reference images of sizes
N = 1 · · · 50. Also shown is the associated and estimated b.

5 Experimental Results

Table 1 demonstrates efficiency of using ∆b for 10 test camera sensor fingerprints.
These cameras have not been used in the process of determination of optimal
∆b. We have selected our true positive rate to be 99.99 percent with having false
positive rate of 0.01 percent. Considering these desired true and false positive
rates we have computed the optimal ∆b. As mentioned in last section, this stop-
criterion has been calculated using a 25 different cameras and associated sets of
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Fig. 5. Shown is performance of fingerprint constructed by sets of reference images of
sizes N = 1 · · · 50. Also shown is the associated and estimated b.

reference images of sizes N = 1 · · · 50. In our case, optimal ∆b was 0.0050. For
each test camera, Table 1 shows gained true positive rate and associated size of
camera reference image set (shown in square brackets). In this experiment, we
gained 0 percent false positive rate.

Table 1 demonstrates gained true positive rates for 100 test images per cam-
era. Moreover, size of camera reference images used to construct the camera
sensor fingerprint is shown either. For the sake of completeness, we also show
different values of ∆b and associated results obtained.

6 Discussion and Conclusion

In this paper we addressed the problem of uncertainty of how many reference
images should be used to construct a high performance camera sensor fingerprint.
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Table 1. Sown is performance (%) of sensor fingerprints based on different values of
∆b. Shown is also associated number of reference images used to construct the sensor
fingerprint (shown in square brackets).

∆b 0.0400 0.0300 0.0200 0.0100 0.0050 0.0040 0.0030

canon-powershot-g12-III 73 [3] 84 [4] 99 [6] 100 [9] 100 [14] 100 [16] 100 [19]

canon-powershot-g12-IV 75 [2] 97 [4] 100 [7] 100 [10] 100 [11] 100 [13] 100 [22]

fujifilm-finepix-s100fs-II 100 [4] 100 [5] 100 [6] 100 [10] 100 [14] 100 [21] 100 [25]

nikon-coolpix-l23-IV 81 [3] 93 [5] 97 [6] 100 [8] 100 [11] 100 [15] 100 [19]

nikon-coolpix-l23-V 100 [4] 100 [5] 100 [5] 100 [7] 100 [11] 100 [17] 100 [24]

nikon-coolpix-l23-VI 100 [3] 100 [4] 100 [6] 100 [7] 100 [12] 100 [14] 100 [21]

pentax-optio-p80-II 97 [4] 100 [5] 100 [7] 100 [11] 100 [18] 100 [22] 100 [27]

iphone-3GS 18 [5] 28 [6] 28 [7] 62 [12] 94 [20] 100 [27] 100 [35]

iphone-4s-I 86 [4] 98 [5] 100 [6] 100 [10] 100 [15] 100 [20] 100 [23]

iphone-4s-II 95 [4] 100 [6] 100 [8] 100 [9] 100 [12] 100 [21] 100 [28]

Typically, papers dealing with construction of sensor fingerprints proposed to
incrementally use about 40 - 50 images of a uniformly illuminated surfaces.
Some others simply recommended to use as much as possible.

In last sections, we have introduced a quantitative measure stating how many
photos should be used. We searched for an the minimal number of camera refer-
ence images that will directly reflect the confidence and accuracy level we want
to achieve. To address the problem, we introduced a stop-criterion that can de-
termine if more images are needed to be added to the set of reference images to
get the desired true positive rate.

It also has been shown that a small number of reference images available for
construction a sensor fingerprint is not always a limiting factor for constructing
a well performing fingerprint. It should be noted that employing camera refer-
ence image sets of N when N → ∞ does not necessarily convert to a perfect
sensor fingerprint. By a perfect sensor fingerprint we mean a signal that only and
only consists of deterministic noise components unique for each sensor. Digital
images captured by today’s consumer cameras and smartphones suffer from a
set of systematic and non-systematic imperfections and enhancements (sensor
noise, gamma correction, CFA interpolation, color enhancement, geometric de-
formation corrections, and a number of additional embedded camera software
functionalities) that bring a number of correlated and uncorrelated artifacts into
digital images which cannot be overcome using N , N → ∞, number of camera
reference image.
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