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ABSTRACT

Retinal images often suffer from blurring which hinders disease diagnosis and progression assessment. The
restoration of the images is carried out by means of blind deconvolution, but the success of the restoration
depends on the correct estimation of the point-spread-function (PSF) that blurred the image. The restoration
can be space-invariant or space-variant. Because a retinal image has regions without texture or sharp edges, the
blind PSF estimation may fail. In this paper we propose a strategy for the correct assessment of PSF estimation
in retinal images for restoration by means of space-invariant or space-invariant blind deconvolution. Our method
is based on a decomposition in Zernike coefficients of the estimated PSFs to identify valid PSFs. This significantly
improves the quality of the image restoration revealed by the increased visibility of small details like small blood
vessels and by the lack of restoration artifacts.
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1. INTRODUCTION

Blur is one of main image quality degradations in eye fundus imaging which hinders the clinical use of the images.
Its main causes are: inherent optical aberrations in the eye, relative camera-eye motion, and improper focusing.
Because the optics of the eye is part of the optical imaging system, eye aberrations are a common source of image
degradation. The technique for recovering an original or unblurred image from a single or a set of blurred images
in the presence of a poorly determined or unknown point spread function (PSF) is called blind deconvolution.
For the restoration of retinal images, we have proposed1 a blind deconvolution method to restore blurred retinal
images acquired several months apart, even when structural changes had occurred in the retina. However, the
method is limited to images blurred uniformly; in other words, we assumed the blur to be space-invariant.

For the case when the blur varies across the field of view we proposed a space-variant (SV) approach.2,3

To carry out the restoration, we assume that in small regions the space-variant blur can be approximated by
a space-invariant PSF. However, instead of deblurring the image on a per-patch basis, we extend individual
PSFs by linear interpolation and perform a global restoration. Despite our efforts in building a robust blind
deconvolution method, the blind estimation either of a space-invariant or space-variant PSF may fail which
significantly hinders the quality of the image restoration. The purpose of this work is to illustrate the problem
of PSF estimation failure in retinal images and to develop a method for the correct identification of the most
accurate PSFs. This should enable better restoration results using the same deconvolution procedure reported
in Refs. 1, 2.

It has been shown that in image deblurring, first estimating the PSF and then solving a non-blind deconvolu-
tion problem with the estimated PSF produces adequate results.4 In this situation, the quality of the restoration
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Figure 1. a) Retinal image artificially degraded. (b)-(d) Estimated PSFs from three different regions. (e) Original PSF.
Notice that not all estimated PSFs are similar to the original.

is directly affected by the performance of the PSF estimation. That is, the image can be restored successfully if
the PSF can be accurately estimated. In Fig. 1 we show an example of different PSFs estimated from different
regions of the retinal image. Several estimated PSFs differ significantly from the original PSF shown in Fig. 1(b).
Typically recovering the PSF from the whole image is not optimal and more computationally demanding. How-
ever, in the case of SV blur the SV PSF needs to be recovered from several regions of the image despite the fact
that not all regions may prove suitable for successful PSF recovery.

2. METHOD

In this paper we use a multichannel deconvolution approach1,5, 6 to estimate the PSFs from a pair of degraded
retinal images. We use the PSF similarity S measure from Hu and Yang7 to compare the estimated PSF with the
ground-truth. The authors showed in the paper that this measure is more accurate than the root mean square
error, especially because it is shift invariant. The measure is defined as the blur kernel similarity S(h, h̃) of two
kernels, h and h̃,

S(h, h̃) = max
γ

ρ(h, h̃, γ) , (1)

where ρ(.) is the normalized cross-correlation function and γ is the possible shift between the two kernels. Let
τ represent element coordinates, ρ(.) is given by

ρ(hp, h̃p, γ) =

∑
τ hp(τ) · h̃p(τ + γ)

‖hp‖ · ‖h̃p‖
, (2)

where ‖·‖ is the `2-norm. Larger similarity values reflect more accurate PSF estimation, thus better image
restoration. The authors showed that the similarity measure is spatially correlated with the MSE estimated by
restoring the blurred image and comparing with the original image. While this approach works sufficiently well
on motion blur, in this paper we show that it doesn’t work well with blur arising from optical aberrations or
similar image degradations.

In Fig. 1 we show an example of a degraded retinal image and in Fig. 2(a) the computed PSF similarity map
for this image. Notice that not from all regions are PSFs accurately estimated. For restoring retinal images by
means of blind deconvolution it has been suggested that the sub-window for PSF estimation has to be placed on
top of retinal structures, like blood vessels. However, as we see in Fig. 2(a), this is not always the case. In the
following we explore the question of how to reliably estimate accurate PSFs.
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Figure 2. (a) PSF similarity map. (b) PSF similarity values per sub-window (blue to red pixels indicate low to high PSF
similarity compared with the ground truth kernel).
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Figure 3. Two nearby sub-windows (a) and (c) with similar structures, but different estimated PSFs (b) and (d), respec-
tively. The PSF similarity values for (b) S = 0.962 and (d) S = 0.419. The original PSF is shown in Fig. 1(e).

2.1 Reliable PSF estimation

As described in several papers, edges found in the original blurry image are particularly useful for estimating
the PSF. However, as we see from Fig. 1 this may not be entirely true for retinal images. In fact, the spatial
correlation between the PSF similarity map and the edge distribution in the retinal image is low. The PSF
similarity map was described by Hu and Yang7 to demonstrate that the high kernel similarity values match low
image reconstruction errors. Nonetheless, their approach is based on the assumption that two closely overlapping
sub-windows (e.g. shifted a few pixels in either directions) share similar structures. Along the same line, it is
reasonable to expect that other sub-windows, nearby a potential good sub-window for kernel estimation, contain
useful image structures for deblurring. The deblurred results for these sub-windows should be similar. In this
paper, we have found that for this purpose, the PSF similarity map can indeed be misleading. In Fig. 2(b) we
show the PSF similarity values per sub-window for the image shown in Fig. 1(a). Note how low similarity values
(blue) are distributed uniformly throughout the image alternating with high values (red). Moreover, there are
hardly any smooth transitions between high and low similarity values. This alternating characteristic is lost when
computing average values per pixel from the sub-windows to build the PSF similarity map. To further illustrate
this problem, in Fig. 3 we show two nearby sub-windows from the retinal image from Fig. 1. Because these
sub-windows are very similar, we expect the PSF estimation to produce similar results, but the PSF similarity
values differ significantly.

The optics of the eye is part of the imaging system, therefore it is reasonable to assume that the PSF os the
imaging system is strongly determined by the PSF of the eye. The retinal camera can be close to diffraction
limited with a very narrow PSF, but the optics of the eye is governed by optical aberrations.8 Optical aberrartions
are typically described using Zernike polynomials, which can then be related to refraction errors.

As we have seen, PSF estimation in retinal images is not entirely reliable in terms of accurate PSF recovery
throughout the field of view. To overcome this limitation, in this paper we propose to characterize the estimated
PSFs from the degraded retinal image using Zernike polynomials. On the one hand, an accurately estimated
PSF should show high coefficients for typical refraction errors, like defocus (4th coefficient), astigmatism (5th
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Figure 4. The first 15 Zernike coefficients for the PSFs shown in (a) Fig. 3(b) and (b) Fig. 3(d).
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Figure 5. (a) Zernike coefficients skewness values per sub-window.(b) Zernike coefficients skewness map (blue to red pixels
indicate positive to negative skewness). This correlates well with the PSF similarity map shown in Fig. 2.

and 6th coefficients), coma (7th and 8th coefficients). On the other hand, we consider that a PSF that does not
follow this general pattern is not valid and most likely corresponds to a failed estimation.

In order to prove this, we designed an artificial experiment where we compare the estimated PSFs with the
ground-truth PSF using the kernel similarity measure S. In Fig. 4 we show the Zernike coefficients for the two
PSFs shown in figures 3(b) and 3(d). Notice how the highest coefficient from Fig. 4(a) is the 5th which is related
to astigmatism. In contrast, the highest coefficient for the PSF in in Fig. 4(b) is the 1st, which is called piston.
The piston equals to the mean value of the wavefront. It is not actually a true optical aberration, as it does not
represent or model curvature in the wavefront. In fact, defocus is the lowest-order true optical aberration.

To characterize this difference, and thus identify PSF estimation failure we carry out the following. Let us
consider the Zernike coefficients as a probability distribution and compute the skewness of the distribution as a
measure of symmetry. The skewness γ1 of a random variable X is defined as

γ1 = E

[
X − µ
σ

]
, (3)

where µ and σ are the mean and standard deviation, respectively. The skewness value can be positive or negative.
A positive skew indicates that the tail on the right side is longer than the left side, we use this as an indication
of PSF estimation failure.

In Fig. 5 we show the skewness values for the estimated PSFs for all sub-windows. Notice that blue squares
(positive skewness) are considered failed PSF estimations. Compare with Fig. 2, the distribution is similar. If
we compute a Zernike coefficients skewness map for all pixels of the image, we get a distribution that resembles
the PSF similarity map from Fig. 2(a).
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Figure 6. (a) Restoration with direct estimated PSFs (notice the artifacts due to PSF estimation failure) and (b) restoration
by leaving out non-valid PSFs.

In order to use the skewness of the Zernike coefficients as a descriptor for identifying accurately estimated
PSFs we carry out the following. We set the value of 0.8 as the threshold for the PSF similarity measure, i.e.
all estimated PSFs with S ≥ 0.8 are considered valid PSFs that lead to a successful restoration. To classify the
skewness of the Zernike coefficients for the estimated PSFs as valid or non-valid PSFs we use Otsu’s method9

as clustering technique. It calculates the optimum threshold separating the two classes so that their combined
intra-class variance is minimal. More advanced clustering techniques can be used, but because the skewness
resulted in high spatial correlation with the PSF similarity measure the chosen method is sufficient. For the PSF
similarity values shown in Fig. 2 we have the following values. A total of 441 PSFs were estimated on 21 × 21
sub-windows. 313 PSFs estimated resulted in PSF similarity values of 0.8 or greater. Using the skewness we
were able to predict 333 PSFs as valid. This results in a true positive rate of 0.94%. The important aspect of
this approach is that we are interested in determining the most accurately estimated PSFs to obtain the best
restoration possible. In addition, because we carry out this approach throughout the whole image it serves both
the space-invariant and the space-variant deconvolution methods.

3. RESULTS

In Fig. 6(a) we show the restored artificial image with a randomly chosen estimated PSF. The effect of a non-
valid PSF is evident in the poor quality of the restoration and the ringing artifacts. In Fig. 6(b) we show the
restoration by selecting the estimated PSF with the proposed method. The restoration improves significantly.
In Fig. 7 we show a the restoration of a real degraded retinal image. In Fig. 7(b) we show the space-variant
restoration with direct estimated PSFs. The ringing artifacts are evident which are evidence of PSF estimation
failure. In contrast, in Fig. 7(c) we show the restoration by leaving out the non-valid PSFs shown in Fig. 8.

4. CONCLUSIONS

Prior to deconvolution the PSF estimation may fail which hinders the restoration procedure. To overcome this
limitation we developed a PSF estimation assessment strategy based on the Zernike coefficients of the estimated
PSFs to identify valid PSFs. With the artificial experiment we showed how our approach significantly improves
the identification of valid PSFs, thus leading to a better restoration. The results on naturally degraded images
validate our apporach with notable enhancement throughout the whole image.
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Figure 7. (a) Real degraded image, (b) space-variant restoration with direct estimated PSFs, and (c) space-variant
restoration with valid PSFs.

Figure 8. PSF grid estimated for the real degraded retinal image. The PSFs within red squares correspond to the valid
PSFs.
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