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1. Introduction

Pattern recognition of objects in two-dimensional (2D) images has
been an important and interesting part of image analysis for many
years. Images are often geometrically distorted; distortion of a flat
scene can be modeled as a combination of translation, rotation and
scaling (TRS) in the case of a scanning device parallel to the scene and
as a projective transformation in the opposite case. An efficient
approach to recognition of deformed objects is based on using certain
features that do not vary under the transformation; generally called
invariants. Thus, TRS invariants can be applied to recognition of objects
independent of translation, attitude and scaling.

Recently, the imaging devices of three-dimensional (3D) objects
(computer tomography (CT), magnetic resonance imaging (MRI),
rangefinders, etc.) become more and more affordable 3D invariants
as a tool for 3D object recognition thus increasingly become an option.

One of the most popular family of 3D invariants is based on image
moments. While moment invariants in 2D have been studied exten-
sively for decades (see [7] for a survey), the theory of 3D moment
invariants has not been fully explored. The first attempts to derive 3D
rotation moment invariants are quite dated, e.g. 8] derived only three
TRS invariants from geometric moments of the second order, Guo [9]
used a different approach for their derivation. Galvez and Canton [10]
employed the normalization approach for 3D recognition. Cyganski
and Orr [11] proposed a tensor method for derivation of rota-
tion invariants from geometric moments. A method of geometric
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primitives [12,13] yields the same results, obtained however by a
different approach.

3D rotation invariants can be based on various types of measure-
ments. Compared to 2D, however, it is less straightforward to obtain
3D rotation invariance on them. Each square-integrable function on a
sphere surface can be expanded to an analogy of the Fourier series,
whose basis functions are the so-called spherical harmonics. The
coefficients of the series can be normalized in a much simpler fashion
than other features and thus form a basis for many types of invariants.
There are still many ways, how to arrange the computation. Kakarala
and Mao [1] used the bispectrum well-known from statistics for
feature computation. His approach is analogous to moments. Kazhdan
[2] used an analogy of phase correlation based on spherical harmonics
for comparison of two objects. In that paper it was used for regi-
stration, but it can also be utilized for recognition. In Kazhdan et al. [3],
the authors used amplitude coefficients as the features. Fehr [4] used
the power spectrum and bispectrum computed from a tensor function
describing an object compound from patches. In another paper, Fehr
and Burkhardt [5] employed a technique known as local binary
patterns (LBP). Skibbe et al. [6] use local spherical histograms of
oriented gradients.

We can also use moments based on the spherical harmonics. We
call them 3D complex moments. Lo and Don [14] derived 3D TRS
invariants up to the 3rd order from the complex moments. Their
approach was also used in [15], where rotation is coupled with image
blurring. Generalization of this method to higher moment orders has
not been reported as it is rather complicated. Several application
papers were published, e.g. [16], where the authors use 3D TRS
invariants to test handedness and gender from MRI snaps of brains.
Two other papers [2] and [17] discuss registration applications as well.

The aim of this paper is to extend the Lo and Don method and
to derive invariants of arbitrary order. These invariants are based
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on the composite complex moment forms. We present an algo-
rithm, which can automatically generate explicit forms of these
invariants. It can also discard the reducible invariants. (Here
reducible means linearly dependent. Unfortunately the expression
reducible is used also in the group representation theory, see
below. We believe that meanings of this term are clear in the
context.)

The invariants are constructed directly from the 3D complex mom-
ents without any conversion from geometric moments, which is a
significant difference from the Lo and Don method. We also discuss
problems induced by symmetry of the test objects.

The paper is organized as follows. The second section defines
moments and invariants. The third section derives rotation invar-
iants by means of group representation theory. The fourth section
is devoted to rotation invariants from complex moments. The next
two sections deal with numerical experiments.

2. Definitions

Any scalar obtained as a projection of the image f onto a
polynomial P is called moment. In 2D, the projection is defined as

[ O:C / Z P y)f(x.y) dx dy, )

The polynomial P is called basis function (also called kernel
function or analysis function) of the moment.!

We define here two sets of features in 2D that motivate us later
to introduce 3D features suitable to calculate 3D rotation
invariants.

Geometric moments m,q in 2D are defined:

Mpq = [ /7 xPyif(x,y) dx dy. )

3D definition is analogous.
Complex moments c,q are used in 2D due to their advantageous
behavior under rotation:

= [ | eriye-ipife dxdy. 3

Invariants are image features, which stay unchanged (or chan-
ged in a very simple way) under certain group of transformations
(in our context under rotation). If f is the original image and g is
the transformed image, then

I(g) = AI(f). 4)

where A is a scalar. Invariant is called absolute if A=1 or relative
otherwise.

3. Invariants to rotations by means of group representation
theory

In this section we recall the main results of the group representa-
tion theory related to both 2D and 3D rotations that we need to
construct the rotation invariants. A reader is not assumed to have any
knowledge of this field. More details can be found e.g. in [18].

3.1. 2D and 3D rotations

Rotations in both 2D and 3D form groups. Their operators can be
composed of new elements, which are also rotations. The 2D rotations
are commutative, while their order is relevant for the 3D rotations.
One parameter & - angle of rotation around a given point - is

! Sometimes we use the term “moment” also if the basis polynomial is
weighted by a non-polynomial weight.

sufficient to determine a 2D rotation operator R(a). A rotation
operator R(a, f5,y) in 3D can be defined by three Euler angles &, 3, v,
resp., specifying angles of consecutive rotations around the z, y, z axes,
resp.

3.2. Equivalence of moments and monomials under rotation

We now choose a particular moment order s = p+q. We denote
geometric moments (2) of an original image of order s myp, and
moments of its rotation my,,. For general rotation, every particular
moment my,, of order s depends linearly on all the moments m, of
order s. When we apply a general linear transformation to the
definition of moments (see Eq. (2) in case of 2D), absolute value of
the Jacobian of the transformation appears in the integrand, see also
[19,20]. Since the Jacobian of the rotation transformation equals one,
this dependence is determined solely by transformational properties
of the set of monomials xPy? of the same order s.

This conclusion is independent of the number of dimensions. In
the following, we thus employ an apparatus of the theory of group
representations, which can describe related properties of the
rotation groups. Our motivation is then to apply the theory in
the context of image moments.

3.3. Group representations

Group elements G, (in our context individual rotations) can be
represented by corresponding operators T(G4) such that

T(Ga)oT(Gp) =T(GaOGp). (6

The set of operators is called group representation. Choosing a

vector space L (we are interested in monomials of the same order)

and its basis eq, e, ...,es we can also define corresponding matrix

representation Tj;(G,) satisfying

T(Go)e;= Y _T;i(Ga)e;. (6)
j

Often we can find such a basis that the corresponding matrix
representation will be block-diagonal:

™ 0 o0
0 T o0
(7)

0o 0 T1®

The T(G,)'s are representations themselves. The space L can be
divided into invariant subspaces L;:

L=Li+Ly+L3+....

T%(Gy) acting on an element from L; gives again a linear combina-
tion of elements from L;. If T”(G,)'s cannot be split further, they are
called irreducible components of the reducible T(G,) and we write
T(Ga) =TV (Ga) ® T?(Ga) & T?(Go) ® ... 8)

In the context of matrix representations the symbol & denotes
block sum of two matrices:

Aep (A0
@ _<0 B)

3.4. 2D rotation representations

The aforementioned theory is well elaborated for both 2D and
3D rotations in [18]. In the case of the 2D rotations, the following
set of one-dimensional irreducible representations could appear in

(8):

TM™(a)=exp(—ima), m=0, +1, +2,.... 9)
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They all represent 2D rotation by an angle a. This can be easily
verified substituting into (5).

If the space L consists of functions w(r,¢) (including also
monomials) defined on R? where r, ¢ are polar coordinates, then
(7) can be diagonalized using (9) and basis functions

y™m =exp(imp), m=0,+1, +2,.... (10)

If we rotate y™ by rotation R(a) we get

T(R(@)) exp(img) = exp(im(¢ — a))
= exp(—ima) exp(ime). (1m

In (11) we can verify that the function y™ is transformed accord-
ing to the one-dimensional representation T"™(a) from (9).

Comparing (11) and (4) we can see that the basis functions (10) are
relative invariants to 2D rotation with A = exp(—ima), f = exp(img)
and g its rotation by a.

3.5. 2D complex moments

There is an important conclusion motivating transition to 3D.
Using again cartesian coordinates we get

7 exp(ipp) = (x+iy)’,

r? exp(—iqep) = (x—iy)?.

Complex polynomials on the right side appear in the definition of
complex moments (3) [21]. The basis functions (see (1)) thus
originate from the basis functions of one-dimensional irreducible
representations of the 2D rotation group. Simple transformational
properties of (10) are inducing the same simple transformational
properties of the complex moments [22].

3.6. 3D rotation representations

We want to proceed in the same way in the case of 3D rotations.
Their irreducible representations are usually denoted DY, j=0,
1,2, .... Dimension of D? is 2j+ 1. If the space L consists of functions
y (1,9, @) defined on R* and expressed in spherical coordinates 1, 9, ¢,
it can be decomposed into series with basis functions:

R()Y (8. ). (12)

The radial part R(r) can be e.g. monomials or spherical Bessel
functions. The angular part consists of the so-called spherical harmo-
nics:

Yo, ),

For one particular ¢ they form a basis of the irreducible representation
D). The corresponding matrix representations are known as Wigner
D-matrices.

Below we introduce 3D complex moments, whose transforma-
tional properties under rotations are determined by those of the
spherical harmonics. This is the reason why it is easy to construct
rotation invariants from them.

We are mainly interested in the invariant one-dimensional irre-
ducible subspace transforming itself according to the irreducible
representation D'©. Single element of the corresponding matrix
representation equals one. Basis function Y3 is thus absolute invariant
to 3D rotation.

Basis functions of the irreducible representations with ##0 are
not invariants. However, we can also construct products of the basis
functions. If we combine basis functions corresponding to the repre-
sentations DY and DY, the result is transformed according to their
so-called tensor product (in the context of matrix representations also
Kronecker product, denoted ®). It can be shown [18] that it is

M=—¢,—¢41,...6-1,¢. (13)

reducible into

) . J=iit .
D(Il) ® DUz) — Z D(l). (‘14)

J=1i1—J2!

Thus, we can construct e.g. tensor product of D® with itself. According
to (14) it is reducible and one of its irreducible components is D

D? @ D =p© ¢ DY @ D? ¢ D® g DWW,

As it was explained above, we systematically create such one-
dimensional representations to find invariants.

In the context of matrix representations, the tensor product of
two representations T’ and TJ(-/;) is

@xp) _ (@ (P
Tij,kf = Tik Tj/ :

Denoting now generally the basis functions of the irreducible
representations from (14) 4”}1 and go}z, and the basis functions of
one particular new irreducible representation ¥} (for D?), we can
write

k ming.k+j,)
Vi = Yo lrdamk—mijk) o gf ™. (15)

m = max(—ji.k—jp)

The coefficients {j;,j,,m,k—m|j, k) are called Clebsch-Gordan
coefficients [18]. They are property of the rotation symmetry and
we can use (15) in an arbitrary space L. 5"3 is an absolute invariant.

3.7. 3D complex moments

In Section 3.5 we provide a reasoning for simple rotation
properties of the 2D complex moments. Correspondingly, we can
define 3D complex moments of order s, latitudinal repetition # and
longitudinal repetition m as projections on the corresponding
spherical harmonics times @° (see also [2] among others)

2 T oo
C';}=/O /0/0 oYV, ¢)f (0. 9. 9) sin 9 do dI dg. (16)

0? sin 9 is the Jacobian of the transformation of Cartesian to
spherical coordinates ¢, 9 and ¢.

The spherical harmonics can be expressed in the Cartesian
coordinates as YJ'(x,y,z) after the substitution p=\/x2+y2+272,
sin 9e = (x+iy)/p and cos 9 =z/p. When the basis functions of
the 3D complex moments are polynomials, the moments form
complete and independent description of the image function. For it,
we need to eliminate both p in the denominator and under an odd
exponent. It implies a constraint for the order s: s=7¢,7+2,.... We
can reverse the constraint: for s=0,1,2,... we obtain #7=0,2,4, ...
,s—2,sforevensand #=1,3,5,....,s—2,s for odd s. The constraint
for the longitudinal repetition m is the same as for the order of the
spherical harmonics: m= —¢, —#¢+1,...,#. Then the 3D complex
moments can be bijectively converted to geometric moments. They
create complete and independent description of an object.

There is a relation between the spherical harmonic of negative and
positive order Y, ™ = (—1)"(Y})*; from which c;™ = (— 1)™(c)*.

The complex moments defined in this section are not the same as
in [14]. They transform geometric 3D moments into their complex
moments that are complex moment forms transforming according to
irreducible representations of 3D rotations. Our complex moments are
already constructed to have these properties.

4. Moment invariants

Derivation of the rotation invariants computed from complex
moments is relatively easy in 2D.



T. Suk et al. / Pattern Recognition 48 (2015) 3516-3526 3519

4.1. 2D case

From (3) in polar coordinates we see that the complex moment
after the rotation by angle « is

Chy=e"P"0% . cp. (17)

The rotation invariants can be constructed as products:

.
.Hl Chlae (18)
1=
where k;, p;, and q;, (i=1, ..., r) are non-negative integers such
that

r
> kipi—a;)=0. (19)

i=1

Then the phase changes (17) of the moments during rotation are
eliminated (so-called phase cancelation) and the product is invar-
iant to the rotation.

4.2. 3D case

In accordance with the previous sections, we construct absolute
invariants to 3D rotations here. We prove their invariance by the way
how they are derived - we are looking for bases of representations
D9 that are absolute invariants, as it is explained in the previous
sections.

%, is immediately an invariant. For other invariants we have to
construct other forms transforming according to D, see also (14)
and (15).

To be able to calculate more invariants we have to make clear
what is the relation between 3D complex moments of an original
image ¢ and of a rotated image c.(R). To find it we can apply a
rotation to an image in the definition of the 3D complex moments
written in the Cartesian coordinates. After a substitution we can
see that the way how the 3D complex moments are transformed is
determined by the way how the spherical harmonics are trans-
formed. Spherical harmonics under rotations and the 3D complex
moments calculated on rotated images are transformed in the
same way.

Specifically, we get a 3D analogy of (17)

£
AR®)= > Dy,R)c. (20)
m= -7

D%, ,(R) is the Wigner D-matrix already mentioned above as a
matrix irreducible representation corresponding to a particular
D). R is the rotation operator.

We can now proceed in accordance with Section 3.6. Based on
(15) as well as in Lo and Don [14] we construct composite complex
moment forms, see [14]

min(Z,k+¢")
(. 0)f =

m=max(—2¢,k—17¢")

&, ¢, mk—mijkycn ckm 21)

combining bases of representations D” and D to get basis of
representation D?. k denotes single basis elements. cs(#, #)J is then
3D rotation invariant. Substituting the Clebsch-Gordan coeffi-
cients (Z,¢#,m, —m|0,0y=(—1)""™//27+1 it is

cs(6,0) = (=)™, ™, (22)

1
V2041 m;(,

Further we can combine the composite complex moment forms
and the complex moments. Basis of the corresponding tensor

product is then
(8, )iy =—=— \/_ 2( 1 *es(e, ) ey (23)

Analogously, basis of a tensor product corresponding to combining
two composite complex moment forms is

s, 2)jcs (€',

1 J - Vo
= a1 S (=1 et s ) (24)
k= —j

If both forms in (24) are identical, we obtain

2.t

¢21T Z (=1 e st . (25)
k= —

In all the formulas, the parameter j of the Clebsch-Gordan
coefficients must be even, see also indexing in (16). Conceivably,
we can multiply more forms, but as we will see later, the product
of two factors in (23)-(25) is usually sufficient.

We can denote one particular DY on the right-hand side of (14)
as

(D(fl) ® D(fz))(i)_

Then ¢, corresponds to D, ¢,(#, #)3 to (D(’") ® DO, ¢y(z,¢")cy to
((D(f) D(i”))(l) DU))(O) and c(2, f)]cs (¢ )j to ((D(f) D(f ))(l)
@D ® DY )P)O We can use the same expressions for various
moment orders. E;g. D'¥ leads to a sequence of invariants of all even
orders: ¢, ¢, .... The moment cg, is also a rotation invariant, but it is
usually used for scaling normalization.

4.3. Additional invariance

If we express the spherical harmonics in Cartesian coordi-
nates,” we can use central complex moments to get the translation
invariance:

C’;}:/ / / Y X=X,y =Y, Z2—20)

f(x,y,z)dx dy dz, (26)

where (X¢, Y., Zc) is the centroid of the object.
The complex moments can be normalized to scaling:

Co=— Cse 27)
N +1°
(Cgo)s/n !

where n is the dimension of the space, i.e. n=2 in 2D and n=3 in
3D. Of course, the third index m is not used in 2D.

Thus, if the general 3D complex moments (16) are used for
computation of the rotation invariants, the rotation invariants only
are obtained. If the central moments (26) are used, the combined
invariants to translation and rotation are obtained. If the moments
(27) normalized to scaling are finally used, the scaling invariance
can be further added. This way an arbitrary combination of
invariance to translation, rotation and scaling can be achieved.

21t can be done by substitution sin 9e¥ =
cos 9 =z/\/x2+y? +22.

(x+1y)/\/X2+y2+22 and
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4.4. Automated generation of the invariants

We have programmed the formulas from the last subsection;
the code generates TRS invariants using four methods:

1. Single complex moment c¢J;:
$§=2,4,6,...

2. Single composite complex moment form cs(Z, £)J:

s=2,3.4,...,
f=s,s-2,5—4,...,1.

The last value of # in the loop is not always one, but
1+rem(s+1,2), rem is remainder after division. Regardless,
the loop breaking condition # > 1 is sufficient. It is true for the
following loops, too.

3. Product of a form and a complex moment cs(Z, 7')iCs':

s=2,3.4,...,
s$'=2,4,6,...,5,
j=2,4,6,...5,

f=s,s-2,5—4,...,1,

C=¢,6-2,0—4,...,max(Z—j,1).

where # must satisfy both # > #—j and # > 1.
4. Product of two forms ¢s(¢,¢")ice (2", £");:

s=2,3.4,...,
s$'=2,3,4,...,s,
j=2,4,6,...5,

f=s,s-2,s—4,...,1,
O'=¢,0-2,0—-4,...,max(£—j, 1),

¢ =s,s-2,5—-4,..,1,

' =¢,0'-2,¢"—4,...,max(c —j,1).

4.5. Elimination of the reducible invariants

The number of independent invariants n; can be determined as
a difference between the number of independent moments n,, and
the number of independent degrees of freedom of the transforma-
tion ngey:

N =Ny —Ngey. (28)

Since we have nm=(s’§3) moments up to the order s and
Ngof =7 parameters of TRS in 3D (3 translations, scaling and
3 rotations), we can obtain at most n;= ("33 —7 independent
invariants.

An important part of the process is the elimination of depen-
dent invariants. If a certain set of invariants is dependent, it means
that there exists an invariant which is a function of the others. This
function may have various forms: only a product, linear combina-
tion, or a polynomial (which is in fact linear combination of
various products). The simplest dependent invariants are just zero
or they are identical with the others. Elimination of the linear
dependencies is feasible. The invariants remaining after the
elimination of the linearly dependent ones are called irreducible;
those eliminated are called reducible invariants.®> Elimination of
the polynomial dependencies among irreducible invariants is
much more difficult and this problem has not been fully resolved
yet. A complete removal of all polynomial dependencies has been

3 We must distinguish between reducible/irreducible invariant and reducible/
irreducible group representation.

solved for very small sets of low orders only. The method of
finding all irreducible invariants we propose here is a general-
ization of our previously published method for the 2D affine case
[7].

The process of generation guarantees that the invariants cannot
be identically zero, but surprisingly some of them can be identical.
E.g. if s=4, the following invariants are identical:

C4(4,2)4C4 = C4(4,4),C4,
C4(2,2)4C4 = C4(4, 2),C4,

C4(4,4)4C4(4,2)4 =

9
c4(4,4),c4(4,2),,
Nevsl 4(4,4),€4(4, 2),
C4(4,2)4€4(2,2)4 = €4(4,2),€4(2,2),,
3
c2(2,2)4 = EJE c%(2,2),.

Then we generate all products of the generated invariants,
whose number of factors in one term does not exceed the
generated maximum, and search for identities. This way the
products of the generated invariants are eliminated. The generated
products also serve as a basis for elimination of linear combina-
tions. The numbers of the generated invariants are listed in
Table 1. The first row of the table shows the orders of the
invariants, the second row contains the cumulative number of all
generated invariants up to the given order, the third row contains
the number of the irreducible invariants and the fourth row
contains the theoretical maximum number of the independent
invariants calculated using (28).

4.6. The resulting invariants

The main limitation of the increase of the order of the invariants is
numerical precision. The coefficients of the invariants can theoretically
be expressed as a square root of a rational number. If a coefficient is
stored as a floating-point number, then it sometimes cannot be stored
precisely and we are not able to convert it and further work with it. So,
in the standard arithmetics, the invariants of higher orders than 6 can
be used with coefficients in floating point only. If we continue in the
generation to higher orders, we encounter other difficulties. One of
them being accuracy of the moments themselves, see e.g. [7], the
other is the computing complexity and memory demands associated
with elimination of the reducible invariants.

The complex moment rotation invariants of the second order
are also expressed in 3D complex moments with their normal-
ization to scaling:

D =03 = (c39)/ (o)’
Dy =c(2,2))

1
= \@((6‘2’2)2 =263y +205°50)/(30)

D3 =02(2,2),02 =/ %( —V2(3,)* +3v2¢5,' 9,5,
—3v/3(c51 )23, — 3v3c55%(ch,)?
+6v/205,°¢3,63,)/(cdp)’

Table 1

The numbers of the 3D irreducible and independent complex moment rotation
invariants.

Order 2 3 4 5 6 7

All 4 16 49 123 280 573
Irreducible 3 13 37 100 228 486
Independent 3 13 28 49 77 113
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The complex moment rotation invariants of the third order are
presented as the products of the corresponding composite com-
plex moment forms only:

Dy =c3(3,3)p,

D5 =c3(1, 1),

D = 3(3,3),02,

D7 =33, 1),02,

Dg = 3(1,1),02,

¢9 :C3(3,3)2C2(2,2)2,
¢]0 =C§(3,3)2,

D11 =10c3(3,3),c33,1),,
(p]z = C3(3, 3)2C3(1, 1)2,
D13 =03(3,1),63(1, 1),

In [14], the authors published 12 invariants (in this order): @,
@, and @; of the second order and @4, s, D1, 3(3,1),, P11, P13,
&g, D7 and Pg of the third order. The invariants @1, c4(3,1), and
&4Ds are linearly dependent; we decided to use @;,, because it
has fewer terms (18 instead of 19 in c%(3, 1),). According to (28),
there should be another independent invariant of the third order,
which is @q.

We have chosen the following irreducible invariants of the fourth
order for recognition: cs, c4(4,4)3, c4(2,2)5, ca(4,4)5C2, €4(2,2)5C2,
Ca(4,4)5Csa, Ca(4,2)5Ca, Ca(2,2)5Ca, Ca(4,4)4Ca,  Ca(2,2),03(1,1),,
QZ;(‘L 4)y, €4(4,4)5C4(4,2),, Ca(4,4)5¢4(2,2),, 542;(47 2),, and c4(4,2)
2€4(2,2),.

4.7. Invariants for symmetric objects

In moment-based recognition, the objects having some kind of
symmetry (circular, rotational, axial, dihedral, etc.) often cause
difficulties because some of their moments are zero. If such a
moment is used as a factor in a product, the product always
vanishes. Since the invariants are often products or linear combi-
nations of products of the moments, the object symmetry can
make certain invariants trivial. This is of course not a problem if
there are no two or more classes with the same symmetry; in such
a case vanishing invariants may serve as a discriminatory features.
However, if more classes have the same symmetry, the vanishing
invariants should not be used for recognition as they decrease the
recognition power of the system while increasing computing
complexity. For 2D rotation invariants this problem was discussed
thoroughly in [23].

In 2D, there are only two infinite sequences of symmetry
groups (rotational and dihedral) and one infinite generalization
(circular). In 3D, there are 7 infinite sequences of symmetry
groups, 7 separate symmetry groups of regular bodies (e.g. tetra-
hedron or cube) and 3 infinite generalizations (conic, cylinder and
sphere). Each symmetry brings additional linear dependency into
the complex moments and makes certain invariants vanishing. A
detailed study can be found in [24].

5. Experiments on benchmark data

We carried out two experiments to show the behavior of our
invariants. The aim of the first one was to demonstrate rotation
invariance, robustness and recognition power in case of classes
that are similar to one another and that are even difficult to
distinguish visually. The second experiment was performed on
generic objects that are easy to recognize by humans but their big
intra-class variability makes the task very difficult for algorithms.

We used the Princeton Shape Benchmark [25] in both experi-
ments. The database contains 1814 3D binary objects given by
triangular patches of their surfaces.

5.1. Airplane recognition

In this experiment, we worked with six classes of jet planes.
Each class was represented by only one template plane, see Fig. 1.
To create “undefined” airplanes, we rotated each template 10
times randomly and added a zero-mean Gaussian noise to the
coordinates of the triangle vertices of the airplane surface. This
resulted in rotated airplanes with noisy surfaces, see Fig. 2 for two
examples.

To measure the impact of the noise we used signal-to-noise
ratio (SNR), defined in this case as

SNR = 10 log (62, /6%,). (29)

where oy, is the standard deviation of the object coordinates in the
corresponding axis, i.e. o in the x-axis, oy, in the y-axis and oy, in
the z-axis, analogously o, is the standard deviation of the noise in
the a-axis, a € {x,y,z}. 6,4's are set to equalize SNR for every axis in
the experiment. We used 10 SNRs from 3.44 dB to 55 dB. On each
level, the noise was generated 2 times and the average success rate
was calculated.

We used 100 irreducible invariants up to the 5th order from
volume moments and the nearest-neighbor rule in their space for
airplane classification. The obtained success rates are visualized in
Fig. 3. The recognition was error-free for low noise (SNR > 35 dB),
which illustrates the rotation invariance and discrimination power.
As the noise becomes heavier, the success rate decreases from
100% for SNR > 35 dB to 20% for SNR=6.67 dB. In the latter case,
the deviation of the invariants differ so much that their values for
different airplanes may overlap. However, in this noisy case even
the visual recognition is tricky for a non-trained person.

To compare the results achieved by means of moments to a
different method, we repeated this experiment using a spherical
harmonic representation (SHR) from [3]. The method first decom-
poses an object into concentric spherical layers. Every layer is then
approximated as a function on a layer and projected on different
irreducible subspaces D). L, norms of these projections then form
rotation invariants. Since this method requires volumetric data, we
converted the objects to the volumetric representation with
resolution 200 voxels in the directions of their maximum sizes.
We used 47 layers approximately 2 voxels thick. The angular
spherical coordinates 9, ¢ (latitude and longitude or elevation and
azimuth) were quantized into 64 bins. Spherical harmonics from
the zeroth to the fifth orders were used, i.e. we had six features in
each layer and 282 features altogether. The amplitudes of fre-
quency components of all orders form the rotation invariants.

The success rate is shown again in Fig. 3. Compared to the
success rate of the complex moments, we can observe several
differences. Low noise (SNR > 30 dB) does not harm the recogni-
tion by moments at all while SHR is below 90%. The reason is that
SHR is not a complete description of an object because it uses only
the amplitudes while the phases are omitted. The results would
probably be better if finer sampling was used. For bigger noise to
23 dB the success rates of both methods are comparable. For heavy
noise below 7 dB the results are practically random.

A significant difference between the methods is in their complex-
ity. The computation time 2.5 min of SHR against 0.5 s of the complex
moments for recognition of one airplane is approximately 300 times
longer. To calculate SHR, the object must be actually represented as a
volume by its voxels while the moments can be calculated just from
the triangulated surface. In this experiment the objects typically
consisted of several thousands of surface triangles while the number
of voxels was several millions. This leads to the huge difference in
complexity. On the other hand, the exponential computing complexity
with respect to the moment order against the linear computing
complexity with respect to SHR order is negligible when both orders
equal five. This extreme complexity of SHR also prevented us from
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Fig. 1. The airplanes used in the experiment.
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Fig. 2. Example of the rotated and noisy airplane from Fig. 1b with SNR (a) 26 dB and (b) 3.4 dB.

using finer voxel grid. If we did it, we would probably approach 100%
success rate for low noise but the experiment would take several
weeks of the CPU time.

5.2. Recognition of generic classes

In the second experiment we tested performance of the invariants
in a task the invariants are not designed for - recognition of generic
objects. Classification to generic classes (such as “car”, “bike”, and
“dog”) is easy for humans because they incorporate their experience,

prior knowledge and contextual information. For automatic systems
this task is very difficult due to high intra-class variability and usually
requires high-level of abstraction, structural description and advanced
classification techniques. Here we tried to resolve this task for a
limited number of classes by the same invariants as in the previous
experiment.

We have chosen six generic classes of the Princeton Shape Bench-
mark database: sword, two-story home, dining chair, handgun, ship,
and sedan. The classes were represented by their training sets
consisting of 15 swords, 11 houses, 11 chairs, 10 handguns, 10 ships
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and 10 cars (see Fig. 4 for one template per class). The independent
test sets contained 16 swords, 10 houses, 11 chairs, 10 handguns, 11
ships and 10 cars. In this experiment we use surface moments defined
in the next section. For this purpose we use an analogy of the 3D
complex moments calculated only on a surface. We do not describe
them here in detail, because their properties related to 3D rotation
invariance are the same. In the following section we show how they
can be calculated.

100
90 -

80

70
—— vol. complex moments

—=©O— spherical harmonic r.

60

50

success rate [%]

40

30

20

5 10 15 20 25 30 35 40 45 50 55
SNR [dB]

Fig. 3. The success rate of the invariants from the volume complex moments
compared to the spherical harmonic representation.

a b

The overall recognition rate was 82.4%, which is higher than we
originally expected. It shows that the invariants capture certain global
characteristics that are common for all representatives of a generic
class. This property does not have any theoretical justification -
generic classes are defined by means of other properties than those
measurable by moments. For other classes and/or other training sets
the success rates could be different. For comparison we repeated the
same experiment using the Lo and Don invariants [14]. The success
rate dropped to 79.4% because the Lo and Don set is incomplete and
does not contain certain invariants which we derived.

5.3. Computation of the moments of triangulated objects

3D images are usually given in a volumetric representation as a
“data cube” of voxels. Such representation is typically produced by
CT, MRI and many other 3D imaging devices. Then the moments
are calculated directly from the definition by volume integration,
for instance as

Mpgr = / / / XPyiz'f(x,y,z) dx dy dz (30)

in case of geometric moments. We call them volumetric moments.
However, for binary 3D shapes the volume representation is
highly redundant. They can be unambiguously represented by
their surface only. In a discrete case, the most common surface
representation is via triangulation. Then the whole object is fully
determined by the triangle vertices, the number of which is
relatively low compared to the number of voxels. This efficient
representation is also employed in the Princeton dataset.

C

Fig. 4. Examples of the class representatives: (a) sword, (b) two story home, (c) dining chair, (d) handgun, (e) ship and (f) sedan from the Princeton Shape Benchmark.
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To calculate moments from the object surface, two basic options
are available. The first one is to apply the Gauss-Ostrogradsky
Theorem and calculate volume moments (30) by integration over
the surface, while the second option is to work directly with surface
moments [26] defined for geometric moments as

Spgr = [fsxPyZ" dS, 31)

where S is the surface of the object. For triangulated surfaces, there
exists an efficient algorithm how to calculate both surface and volume
moments [27]. The core formula is

¢ p'q!r!
PE (p+q+r4n)!

(kij)EK:
2 (S ks)!) v ﬁ
| i_I(?‘E11(1{’;!)'])>;Afi,/f—[1<a§p)k’ (32)

where tq can be either s, or myg, N is the number of the triangles, £
is a set of such 3 x 3 matrices k; with non-negative integer values that

S kij=p, 7 1 kyj=q and Y7, kyj=r, af’ is a matrix of the

vertex coordinates of the #-th triangle, i is the index of the coordinate,
and j is the index of the vertex, A, = |l <a§§’—a§f>) x (ag’—aﬁ)) Il is
double the oriented area of the triangle and the number of dimensions
n=2. In MATLAB, the formula (32) can be implemented very
efficiently because its inner part (the sum over all triangles) needs
not to be implemented as a loop, but can be accomplished as a single-
instruction matrix operation.

We can use the formula (32) with a slight modification to
calculate the volume moments. Each triangle is extended to the
tetrahedron with the fourth vertex at the origin. The result equals
that of (30), where the function f(x,y,z) =1 inside the tetrahe-
drons and f(x,y,z) = 0 outside them. The symbol A, is now 6-tuple
the oriented volume of the tetrahedron with the fourth vertex at
the origin A, =det(a’) and n=3. If the triangulated object is
closed, the result does not depend on the position of the origin,
therefore we fill the holes by additional triangles just in case in our
experiments.

Finally, the geometric moments calculated using (32) are con-
verted to the complex moments as follows: we express the corre-
sponding spherical harmonics in Cartesian coordinates as a poly-
nomial:

S
K +y? +2PYI kY. D)= D QXY 33)
kxkykz =0

teddy bear 1

120
100
80
60
40
20

~
150 0

and then the complex moment is computed as

S
= Uitk (34)

kxkykz =0
kx+ky +kz =5

6. Experiment on real data

The last experiment was done with real 3D objects and their real
rotations. We took a teddy bear and scanned it by means of Kinect
device. Then we repeated this process five times with different
orientation of the teddy bear in the space. Hence, we obtained six
scans differing from each other by rotation and also slightly by scale,
quality of details and perhaps by some random errors. For a
comparison we also scanned another teddy bear of different shapes
(see Fig. 5). When using Kinect, one has to scan the object from several
views and Kinect software then produces a triangulated surface of the
object, which is basically the same representation as we employed in
the previous section. In order to demonstrate that the invariants can
be calculated not only from the surface representation but also from
the volumetric representation, we converted each teddy bear figure
into 3D volumetric representation of the size approximately 100 x
100 x 100 voxels. Then we calculated the volumetric geometric
moments of each scan by (30), converted them to the complex
moments by (34) and computed the invariants @;-®oo from them.
In Fig. 6 you can see the values of the invariants @,, ®;,, @;s. The
values of the first teddy bear almost do not depend on the particular
rotation (STD over the six instances is 0.019 (@), 0.019 (&;3) and
0.017 (@15)). On the other hand they are significantly different from
the values of the second teddy bear, which demonstrates both
desirable properties - invariance and discrimination power.

7. Conclusion

We have proposed and implemented an algorithm to generate
3D rotation moment invariants of arbitrary orders based on the
results of group representation theory. The rotation invariants
from the complex moments were computed up to the 7th order,
with the result of 486 irreducible invariants. The coefficients were
converted from the floating-point numbers to the square roots of
rational numbers in 100 irreducible invariants up to the 5th
order, a vast majority of them being published for the first
time. The irreducible invariants are available on our website

b

teddy bear 2

X S Y
150 0

Fig. 5. Volumetric representation of two teddy bears.
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Fig. 6. Values of the invariants calculated in the experiment with the teddy bears.

[28]. The method includes elimination of linearly dependent
invariants, but for now it does not contain identification of
polynomial dependencies among the invariants.
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