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Abstract – The paper deals with estimation of a mixture
of normal and exponential distributions with the dynamic
model of their switching. A separate estimation of normal
or exponential mixtures is solved by various approaches in
many papers over the world. However, in some application
areas, data are of such a nature that they should be described
by a combination of exponential and normal models. The
paper proposes a recursive Bayesian algorithm of estimation
of such a mixture based on continuously measured data.
Specific tasks the paper solves are: (i) parameter estimation
of both the types of components; (ii) parameter estimation
of the dynamic switching model and (iii) detection of the
currently active component. Results of experiments with real
data are demonstrated.
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I. INTRODUCTION

The presented paper deals with a problem of the recur-
sive estimation of a mixture of normal and exponential
distributions with dynamic model of their switching. In
some application areas it is necessary to consider a
combination of exponential and normal models because
of the nature of measured data. It is extremely important,
for example, in traffic control, for a task of on-line
modeling a speed of cars passing the intersections, where
its description by normal distributions is rather limited.
In observing some longer stop of driving the speed
values remain near zero, and after a start of driving they
gradually grow. Thus, a combination of the exponential
distribution in the beginning of modeled measurements
and normal distributions for the rest of data is suitable.
A similar task is considered in real-time analyzing data
measured on a driven vehicle (for instance, speed, fuel
consumption, pressing the gas pedal, etc.). This issue was
a motivation of the presented research.

A separate estimation of normal mixtures is solved by
different approaches in many papers over the world. The
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approaches are primarily based on (i) the EM algorithm
[1], see, e.g., [2]–[6]; (ii) the Variational Bayes (VB) ap-
proach [7]–[9]; (iii) Markov Chain Monte Carlo (MCMC)
techniques, e.g., [10]–[13]. Exponential mixtures are con-
sidered in, e.g., [14] based on the EM algorithm. A
problem a bit close to the presented one is discussed in
[15]. However, to avoid the off-line numerical computa-
tions, a solution presented in this paper is based on the
entirely different philosophy and inspired by papers [16]–
[19], which propose the recursive Bayesian estimation
algorithms oriented at using the predominantly explicit
solutions with the easily computable approximations.

Mixture models consist of components, describing dif-
ferent modes of the considered system behavior, and
a model of switching the active modes. The random
process describing the switching is called the pointer,
which indicates the active component. This paper is also
based on the experience from [20], which is devoted to the
recursive mixture estimation with the dynamic switching
model.

The paper proposes a recursive Bayesian estimation al-
gorithm of the mixture of exponential and normal distribu-
tions based on continuously measuring the new data. This
is the main contribution of the presented paper. Specific
tasks the paper solves are: (i) parameter estimation of
both the types of components; (ii) parameter estimation
of the dynamic switching model and (iii) detection of the
currently active component.

The layout of the paper is as follows. Section II
introduces notations used in the text and the considered
models and recalls existing algorithms of their estimation.
Section III is the main emphasis of the paper and presents
the estimation algorithm for a mixture of the exponential
and normal components. Section IV provides results of
experiments with real data. Conclusions can be found in
Section V.

II. PRELIMINARIES

A. Notations
The paper uses the following notations:



• Both the probability density function and the proba-
bility function are replaced by the abbreviation pdf.

• For continuous random variables A,B and their
realizations a, b the conditional pdf is denoted by

fA|B(a|b) ≡ f(a|b).

• For categorical random variables C,D and their
realizations c, d the conditional pdf is denoted by

fC|D(c|d) ≡ f(C = c|D = d).

• Mixed distributions of random variables A,B,C,D
with realizations a, b, c, d are denoted by

fA,C|B,D(a, c|b, d) ≡ f(a,C = c|b,D = d).

• t used as a subscript of a random variable denotes
discrete time instants, where the variable is mea-
sured, t = {1, 2, . . .}.

• xt denotes the random variable x measured at the
discrete time instant t.

• x∗ is a set of all possible values of the random
variable x.

• x(t) is a collection of all available measurements of
the random variable x up to the time instant t, i.e.,
x(t) = {x0, x1, . . . , xt}, including prior data x0.

• ∝ denotes equality up to the normalization constant.
• ≡ means equality by definition.
• yt ∈ Rky is the output vector of the dimension ky

measured on the observed system.
• In general, all variables are column vectors.

B. Components
In this paper the mixture model consists of mc static

components in the form of the following pdf

f (yt|Θ, ct = i) , ∀i ∈ {1, 2, . . . ,mc} ≡ c∗, (1)

where Θ are parameters of components, and ct ∈ c∗ is
the random unmeasured categorical variable called the
pointer, which indicates the component, active at time t.

One of the components (1) is the exponential pdf ky∏
l=1

al

 exp {−ayt} , (2)

where a is its parameter. It is a vector of the dimension
ky , and al are its entries, l = 1, 2 . . . , ky .

The rest mc − 1 components (1) are the normal pdfs
specified as the static regression models with the normally
distributed noise with the zero mean vector and the
covariance matrix ri, ∀i ∈ {1, 2, . . . ,mc − 1}, i.e.,

(2π)−ky/2|ri|−1/2 exp

{
−1

2
[yt − θi]′r−1

i [yt − θi]
}
,

(3)
where θi and ri are parameters of the i-th normal com-
ponent.

Θ ≡ {{θi, ri}mc−1
i=1 }, a} (4)

is a collection of parameters of all components.

C. Dynamic switching model
Switching the components is described by the dynamic

model
f (ct = i|ct−1 = j, α) , i, j ∈ c∗, (5)

which is represented by the transition table

ct = 1 ct = 2 · · · ct = mc

ct−1 = 1 α1|1 α2|1 · · · αmc|1
ct−1 = 2 α1|2 · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc α1|mc
· · · αmc|mc

where the parameter α is the (mc × mc)-dimensional
matrix, and its entries αi|j are the probabilities of the
pointer ct = i (expressing that the i-th component is
active at time t) under condition that the previous pointer
ct−1 = j, for i, j ∈ c∗ and it holds

αi|j ≥ 0,

mc∑
k=1

αk|j = 1, ∀i, j, k ∈ c∗. (6)

D. Estimation of individual models
The individual Bayesian estimation of (2), (3) and (5)

is briefly recalled here. It is based on Bayes rule [19]

f(Θ|y(t)) ∝ f(yt|Θ)f(Θ|y(t− 1)), (7)

where f(Θ|y(t− 1)) is the prior pdf to be reproduced.
For the individual exponential model (2), substitution of

(2) and the prior exponential pdf with the statistics St−1

and Nt−1 (initially chosen) in (7) enables to recursively
update them for the time t as follows:

St = St−1 + yt, (8)
Nt = Nt−1 + 1. (9)

The point estimate of the parameter a is obtained from

âl;t =
Nt
Sl;t

, l = 1, 2 . . . , ky, (10)

where âl;t are entries of the vector ât, and Sl;t are entries
of the vector St from (8), see, e.g., [21].

For estimation of the individual normal model (3) via
(7), the conjugate prior Gauss-inverse-Wishart pdf with
the recomputable (initially chosen) statistics Vt−1 and
kt−1 of the appropriate dimensions is used according to
[17], [19]. The statistics are updated as follows:

Vt = Vt−1 +

[
yt
1

]
[yt, 1] , (11)

κt = κt−1 + 1, (12)

and the point estimates of parameters are:

θ̂t = V −1
1 Vy, r̂t =

Vyy − V
′

yV
−1
1 Vy

κt
(13)

with the help of partition

Vt =

[
Vyy V

′

y

Vy V1

]
, (14)



where Vyy is the square matrix of the dimension ky of
the vector yt, V ′y is ky-dimensional column vector and V1

is scalar [19].
The individual categorical model (5) in the case of the

measured values of ct and ct−1 is estimated via (7) using
the conjugate prior Dirichlet pdf according to [18] with
the recomputable statistics ϑt−1, which is here the square
mc-dimensional matrix, whose entries for ct = i and
ct−1 = j are updated in the following way:

ϑi|j;t = ϑi|j;t−1 + 1. (15)

The point estimate of α is then obtained by

α̂i;t =
ϑi|j;t∑mc

k=1 ϑk|j;t
, i, j ∈ c∗. (16)

E. Problem formulation

The task is: based on the available data collection,
estimate recursively a mixture of one exponent (2) and
mc − 1 components (3) switching according to (5) with
the unmeasured pointer, i.e., parameters α, θi, ri, a and
the pointer ct.

III. RECURSIVE ESTIMATION OF MIXTURES OF
EXPONENTIAL AND NORMAL COMPONENTS

The algorithm proposed below is inspired by [17],
where the Bayesian recursive estimation of normal mix-
tures with the static pointer model was proposed, and by
[20] solved the problem for the dynamic pointer model.
The derivations are based on construction of the joint pdf
of all variables to be estimated and application of the
Bayes rule and of the chain rule [19]. Here, to save space,
they are explained briefly.

Under assumption of the mutual independence of Θ
and α, and yt and α, and ct and Θ, the joint pdf of all
variables to be estimated takes the form

f(Θ, ct = i, ct−1 = j, α|y(t))︸ ︷︷ ︸
joint posterior pdf

∝ f(yt,Θ, ct = i, ct−1 = j, α|y(t− 1))︸ ︷︷ ︸
via chain rule and Bayes rule

= f (yt|Θ, ct = i)︸ ︷︷ ︸
(1)

f(Θ|y(t− 1))︸ ︷︷ ︸
prior pdf of Θ

× f (ct = i|ct−1 = j, α)︸ ︷︷ ︸
(5)

f(α|y(t− 1))︸ ︷︷ ︸
prior pdf of α

× f(ct−1 = j|y(t− 1)),︸ ︷︷ ︸
prior pointer pdf

∀i, j ∈ c∗. (17)

To obtain recursive formulas for estimation of ct, Θ and
α with the help of (17), it is necessary to marginalize
it firstly over the parameters Θ and α. It will give the
posterior pdf f(ct = i, ct−1 = j|y(t)), which is joint
for both ct and ct−1. In order to obtain the posterior pdf

f(ct = i|y(t)), this joint pdf should be again marginalized
over the values of ct−1.

For marginalization of (17) over parameters Θ, the
integral of (17) over Θ is evaluated by substituting the
point estimate (10) and the i-th point estimates (13)
available from the previous time instant t − 1 and the
currently measured yt into the exponential component (2)
and into each i-th normal component (3) respectively. This
substitution provides the proximity of each component to
the current output yt.

Similarly, the integral of (17) over α provides the
computation of its point estimate (16) using the previous-
time statistics ϑt−1.

After the above marginalization of (17) over Θ and α,
the posterior pdf f(ct = i, ct−1 = j|y(t)) is obtained by
entry-wise multiplying the proximity obtained from each
component, the previous-time point estimate of α and the
prior pointer pdf (ct−1 = j|y(t− 1)). The last is denoted
by wj;t−1 and represents the (initially chosen) probability
of the activity of the j-th component at time t − 1. For
all i, j ∈ c∗, posterior pdf f(ct = i, ct−1 = j|y(t)) is the
square mc-dimensional matrix denoted by Wi,j;t, which
is normalized and summed up over rows to obtain the
posterior pdf f(ct = i|y(t)). The last provides the updated
probabilities wi;t of activity of each i-th component at
time t for i ∈ c∗. The maximal probability wi;t defines
the currently active component, i.e., the point estimate of
the pointer ct at time t.

The probability wi;t for i ∈ {1, 2, . . . ,mc − 1} is used
in the updates (11), (12) of the statistics of the i-th normal
component according to [17], i.e.,

Vi;t = Vi;t−1 + wi;t

[
yt
1

]
[yt, 1] , (18)

κi;t = κi;t−1 + wi;t, (19)

and now in the update (8) – (9) of the exponential
component as follows:

St = St−1 + wi;tyt, (20)
Nt = Nt−1 + wi;t, (21)

where i /∈ {1, 2, . . . ,mc−1} used in (18)–(19), but i ∈ c∗.
The update (15) is performed for the matrix-form

statistics with entries ϑi|j;t in the following way. In [20]
the solution was introduced with the approximation based
on the Kerridge inaccuracy [22]. Here, for simplicity, it
is updated similarly to [17], but modified for the dynamic
case:

ϑi|j;t = ϑi|j;t−1 +Wi,j;t, i, j ∈ c∗. (22)

The initial statistics Vi;0, κi;0, S0, N0 and ϑ0 can be
chosen as the small-valued matrices (respectively vectors)
of the appropriate dimensions. For the real data applica-
tion it is suitable to construct them from some part of the
prior data.

The algorithm can be summarized as follows.



Algorithm
Initial part (for t=1)
• Specify the exponential component (2), mc − 1

normal components (3) and the switching model (5).
• Set initial statistics of all components Vi;0, κi;0, S0,
N0 and ϑ0.

• Using these initial statistics, compute the initial point
estimates of all parameters and for all components
according to (10), (13) and (16).

• Set the initial mc-dimensional vector w0.
On-line part (for t=2,. . . )

1) Measure the new data yt.
2) For all components, substitute yt and the point

estimates θ̂i;t−1 and r̂i;t−1 into each normal com-
ponent, and ât−1 into the exponential component.
Construct the mc-dimensional vector of proximities
from results from all components.

3) Multiply entry-wise the resulted vector from the
previous step, the prior weighting vector wt−1 and
the point estimate matrix α̂t−1.

4) The result of this entry-wise multiplication is the
matrix with entries Wi,j;t. Normalize this matrix.

5) Perform the summation of the normalized matrix
over rows and obtain the updated vector wt with
entries wi;t.

6) Detect the currently active component according to
the maximal probability wi;t, if necessary.

7) Update all statistics, using wi;t and Wi,j;t according
to (18), (19), (20), (21) and (22).

8) Recompute the point estimates of all parameters
according to (10), (13) and (16) and use them for
Step 1 of the on-line part of the algorithm.

IV. RESULTS

Here the proposed algorithm is validated by testing on
real data measured on a vehicle during driving each 0.2
seconds. Two measured variables create the vector yt. One
of them expresses pressing the gas pedal [%], and the
second one is the engine torque [Nm]. The whole number
of the used data is 17000 data items.

The chosen number of normal components is 5, which
means that the whole number of components together
with the exponential one is 6. One of the most illus-
trative visualization of the approach is the evolution
of the parameter estimates during the on-line part of
the algorithm. However, to save space it is not shown
here. The finally obtained stabilized point estimates are
demonstrated below. The point estimate of the parameter
a of the exponential component takes the form

ât =

[
1.80
0.11

]
. (23)

The point estimates of the regression coefficients of 5
normal components are

θ̂1;t =

[
18.08
44.76

]
, θ̂2;t =

[
39.07
84.36

]
,

θ̂3;t =

[
52.77
124.32

]
, θ̂4;t =

[
72.21
180.1

]
,

θ̂5;t =

[
93.58
224.67

]
. (24)

The point estimates of the covariance matrices r̂i;t of each
normal component of the dimension (2×2) are not shown
here to save space. The obtained point estimate α̂t of the
switching model is the matrix of the dimension (6× 6).

A selected fragment of results of the estimation of
switching the components is shown in Figure 1. 500 data
items are chosen for the clear visible presentation. It
can be seen that the activity of the components switch
among all 6 of them. This confirms that the model is
well established.

Figure 1. Switching the active components
Value 1 corresponds to the exponential com-
ponent, while the rest of values denote normal
components. Notice that all the components
are switching.

With the aim of validation of the approach, the obtained
point estimates of parameters are used for predicting
the data by substituting them into corresponding models.
Figure 2 shows a selected fragment in the beginning of
the on-line part of the algorithm, where pressing the gas
pedal is plotted against the engine torque. 6 clusters (here
components) are visible. Figure 3 demonstrates the same
results approximately in the middle of the on-line part of
the algorithm with the already accumulated data and the
sufficiently updated statistics. It leads to refining the point
estimates and better predicting.

The illustrative presentation of the obtained results is
shown in Figure 4 in the form of the histogram plot.
Frequencies corresponding to values of pressing the gas
pedal near zero represent the exponential component. The
rest of values are covered by 5 normal distributions.



Figure 2. Clusters in the beginning of the estimation
The top figure plots the real measurements
of pressing the gas pedal against the engine
torque. The bottom figure shows the same for
the predicted data. Notice 6 visible clusters in
the bottom figure.

Figure 3. Comparison of real and predicted data
Here the same results as in Figure 2 are shown
with the already accumulated data and the
sufficiently updated statistics. Notice that the
predicted data in the bottom figure correspond
to the real data in the top figure.

V. CONCLUSIONS

The paper considers a problem of the recursive estima-
tion of mixtures of exponential and normal distributions.
The task can be significant for the on-line analysis of
specific data, where their description by one type of
distributions (here normal) is not sufficient and leads to
limitations. The paper explores a possibility to describe

Figure 4. Histogram of real and predicted data
Notice frequencies of the clearly visible one
exponential component near zero values. The
rest of them correspond to five normal compo-
nents. Notice correspondence of the predicted
data in the bottom figure to the original real
data in the top figure.

data by the combination of exponential and normal dis-
tributions and presents the recursive Bayesian estimation
algorithm. The results obtained during the experimental
part of the work with real measurements validate the
approach and show it as competitive.

Plans of the future work in the considered context
are directed at further systematic developing the recur-
sive mixture estimation theory from the viewpoint of
clustering and classification of data. They include ex-
ploring the following issues: (i) extension of the estima-
tion algorithms for different combinations of components
(categorical, uniform and other (for instance, general
triangular) distributions); (ii) the mixture estimation with
the dynamic data dependent switching model; (iii) multi-
step prediction of activity of components, etc.
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[11] S. Früwirth-Schnatter, “Fully bayesian analysis of switching gaus-
sian state space models,” Annals of the Institute of Statistical
Mathematics, vol. 53, no. 1, pp. 31–49, 2001.

[12] A. Doucet and C. Andrieu, “Iterative algorithms for state estima-
tion of jump markov linear systems,” IEEE Transactions on Signal
Processing, vol. 49, no. 6, pp. 1216–1227, 2001.

[13] R. Chen and J. S. Liu, “Mixture kalman filters,” J. R. Statist. Soc.B,
vol. 62, pp. 493–508, 2000.

[14] K.Barger, “Mixtures of exponential distributions to describe the
distribution of poisson means in estimating the number of unob-
served classes,” Ph.D. dissertation, Cornell University, 2006.

[15] J. Silver, M. E. Ritchie, and G. Smyth, “Microarray back-
ground correction: maximum likelihood estimation for the nor-
mal–exponential convolution,” Biostat, vol. 10, no. 2, pp. 352–363,
2009.

[16] D. M. Titterington, A. Smith, and U. Makov, Statistical analysis
of finite mixture distributions. Wiley series in probability and
mathematical statistics: Applied probability and statistics. Wiley,
1985.
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