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Abstract. The presented paper deals with a task of the multi-step prediction with
mixture models under Bayesian methodology. The main contribution of the paper is
a recursive prediction algorithm for mixtures with the dynamic switching model. The
proposed algorithm is based on construction of the weighting vector predicting the
active component and its combination with data predictions from components. With
the help of illustrative examples the paper compares the results with those obtained
for the mixture prediction with the static switching model.
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1 Introduction

The paper deals with a problem of the recursive prediction with mixture mod-
els. A mixture model consists of components describing different modes of the
observed system behavior and a model of their switching. Necessity of solving
such a task can be explained with the help of the following simple example.
Imagine that during driving a vehicle the driver assistance system (DAS) pro-
vides a warning for the driver, which says: “Your driving is dangerous”. It
means that, based on measurements from sensors, DAS classifies the driving
style (i.e., the active component of the mixture) as already dangerous, and at
any instant the vehicle might crash. In reality such a warning is useless for
the driver. Much more information would be brought by predicting the driving
style evolution and by a warning of the type: “Your driving begins to be dan-
gerous”, which means that if the driver continues driving in the detected style,
the vehicle will crash in a moment. This was a motivation of the presented
research.

Research concerned with mixtures are intensively developed. Most of them
focus on the parameter estimation of mixture components and of the switch-
ing model. Papers found in this area are mainly based on (i) the EM algo-
rithm [1], see, e.g., [2,3]; (ii) the Variational Bayes (VB) approach [4,5]; (iii)
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Markov Chain Monte Carlo (MCMC) techniques, e.g., [6–9]. So far a system-
atic methodology of the mixture prediction is still missing.

The presented approach is based on the recursive Bayesian estimation the-
ory [10,11] and primarily inspired by [12,13], which, unlike the above mentioned
sources, represent on-line data-based estimation algorithms avoiding numeri-
cal iterative computations as far as possible. This gives a great potential for
real-time (on-line) applications in data analysis due to eliminating the need
to take care of convergence of algorithms. Such applications are desired, for
instance, in the field of fault detection, on-line diagnostic systems, intelligent
transportation systems, medicine, etc. Mixture models naturally serve for the
data analysis tasks of clustering and classification, which are strictly divided in
data-mining methods, see, e.g., [14,15]. Within the bounds of the considered
recursive mixture estimation theory, these tasks are closely related, which en-
ables to utilize either the clustering or the classification models depending on
the application.

This paper proposes a recursive algorithm of the multi-step prediction for
mixtures with the dynamic switching model. Specific tasks the paper deals
with are (i) construction of the weighting vector predicting the active compo-
nent and its combination with data predictions from components; and (ii) the
parameter estimation of the mixture. The first of them is the main contribu-
tion of the paper, while the second one is solved for the static switching model
in [12] and for the dynamic one in [13]. The presented paper uses these experi-
ences. Results obtained for the mixture prediction with dynamic switching are
compared with those for the static one.

The layout of the paper is as follows. Section 2 provides notations and
introduces models used in the paper. It also recalls the existing algorithms of
estimation of individual models entering the considered mixture model and of
the mixture estimation. Section 3 is devoted to the mixture prediction both
with the static and the dynamic models of switching. Section 4 compares results
of experiments with both the models. Conclusions and plans of the future work
can be found in Section 5.

2 Preliminaries

2.1 General conventions

The following notations are used throughout the text:

• Both the probability density function and the probability function are re-
placed by the abbreviation pdf.
• For continuous random variables A,B and their realizations a, b the con-

ditional pdf is denoted by

fA|B(a|b) ≡ f(a|b).

• For categorical random variables C,D and their realizations c, d the condi-
tional pdf is denoted by

fC|D(c|d) ≡ f(C = c|D = d).



• Mixed distributions of random variablesA,B,C,D with realizations a, b, c, d
are denoted by

fA,C|B,D(a, c|b, d) ≡ f(a,C = c|b,D = d).

• t used as a subscript of a random variable denotes discrete time instants,
where the variable is measured, t = {1, 2, . . .}.

• xt denotes the random variable x measured at the discrete time instant t.
• x∗ is a set of all possible values of the random variable x.
• x(t) is a collection of all available measurements of the random variable x

up to the time instant t, i.e., x(t) = {x0, x1, . . . , xt}, including prior data
x0.

• ∝ denotes equality up to the normalization constant.
• ≡ means equality by definition.
• yt ∈ R is the output measured on the observed system.
• In general, all variables are column vectors.
• ky is the dimension of the vector yt.

2.2 Components

In this paper, the observed multi-modal system is described by the mixture
model, which consists of mc static components in the form of the following pdf

f (yt|Θ, ct = i) , ∀i ∈ {1, 2, . . . ,mc} ≡ c∗, (1)

where Θ are parameters of components, and ct ∈ c∗ is the random unmeasured
categorical variable called the pointer, which indicates the component, active
at time t.

Here, each i-th component (1) is specified as the normal regression model

yt = θi + ei;t, ∀i ∈ c∗, (2)

where ei;t is the normally distributed noise of the i-th component with the zero
mean vector and the covariance matrix ri, and {θi, ri} ≡ Θi corresponding to
the i-th component, and Θ ≡ {Θi}mc

i=1 is the collection of parameters of all
components.

2.3 Static switching model

Switching the active components can be described by the static model

f (ct = i|α) , ∀i ∈ c∗, (3)

represented by the transition table

ct ct = 1 ct = 2 · · · ct = mc

f (ct = i|α) α1 α2 · · · αmc

where α is the mc-dimensional vector parameter, which contains stationary
probabilities αi, ∀i ∈ c∗, of activity of individual components (i.e., of individual
values of the pointer ct) and it holds

αi ≥ 0,

mc∑
i=1

αi = 1, ∀i ∈ c∗. (4)



2.4 Dynamic switching model

Switching the components can be also described by the dynamic pointer model

f (ct = i|ct−1 = j, α) , i, j ∈ c∗, (5)

which unlike (3) is provided by the transition table

ct = 1 ct = 2 · · · ct = mc

ct−1 = 1 α1|1 α2|1 · · · αmc|1
ct−1 = 2 α1|2 · · ·
· · · · · · · · · · · · · · ·

ct−1 = mc α1|mc
· · · αmc|mc

where the parameter α is the (mc × mc)-dimensional matrix, and its entries
αi|j are the probabilities of the pointer ct = i under condition that the previous
pointer ct−1 = j, for i, j ∈ c∗ and it holds the similar assumption as (4), which
means that the sum of entries in a row is equal to 1.

2.5 Individual model estimation

This section provides a theoretical background necessary for understanding the
rest of the paper. Bayesian estimation of individual models (2), (3) and (5) is
briefly recalled here. The estimation is based on Bayes rule [11]

f(Θ|y(t)) ∝ f(yt|Θ)f(Θ|y(t− 1)), (6)

where f(Θ|y(t− 1)) is the prior pdf to be reproduced, see the rest of notations
in Section 2.1.

According to [11,12], the individual normal model (2) is estimated via (6)
using the conjugate prior Gauss-inverse-Wishart pdf with the statistics Vt−1
and kt−1 of the appropriate dimensions. Substitution of this conjugate prior
pdf with the initially chosen statistics and the model (2) into (6) allows to
recompute the statistics as follows [11,12]:

Vt = Vt−1 +

[
yt
1

]
[yt, 1] , (7)

κt = κt−1 + 1, (8)

The point estimates of parameters are then recomputed for the time instant t
as follows [11]:

θ̂t = V −11 Vy, r̂t =
Vyy − V

′

yV
−1
1 Vy

κt
(9)

with the help of partition

Vt =

[
Vyy V

′

y

Vy V1

]
, (10)

where Vyy is the square matrix of the dimension ky of the vector yt, V
′
y is the

ky-dimensional column vector and V1 is scalar.



As regards the individual categorical models (3) and (5), their parameter
estimation is the same with the difference in the dimension of their statistics.
According to [10], in the case of the measured values of ct and ct−1 (the last
is necessary only for (5)), the models (3) and (5) are estimated via (6) using
the conjugate prior Dirichlet pdf with the recomputable statistics ϑt−1, which
is the mc-dimensional vector for (3) and the square mc-dimensional matrix for
(5). Their entries for ct = i are updated for (3) in the following way:

ϑi;t = ϑi;t−1 + 1 (11)

and for ct = i and ct−1 = j for (5) as follows:

ϑi|j;t = ϑi|j;t−1 + 1. (12)

The point estimate of the parameter α is then obtained by the corresponding
normalization, i.e., for (3)

α̂i;t =
ϑi;t∑mc

k=1 ϑk;t
, ∀i ∈ c∗. (13)

and for (5)

α̂i|j;t =
ϑi|j;t∑mc

k=1 ϑk|j;t
, ∀i, j ∈ c∗, (14)

see details in [10].
Using the recalled estimation of individual models (2), (3) and (5), the

recursive mixture estimation with switching described by (3) is proposed in [12]
and with (5) – in [13]. The basis for both the algorithms is the construction of
the weighting vector, whose entries are probabilities of activity of components.
These probabilities enter updates of corresponding statistics. A solution to the
problem formulated below utilizes these mixture estimation algorithms.

2.6 Problem formulation

The task of the recursive mixture prediction with components (2) and the
dynamic switching model (5) is specified as follows: based on the available data
collection y(t− 1), predict the output of the system for n steps ahead.

3 Recursive mixture multi-step-ahead prediction

3.1 Mixture prediction with the static switching model

To derive the prediction solution with the model (5), it is useful to demonstrate
on a relatively trivial case with the static switching model (3). Derivations are
based on construction of the joint pdf of all variables to be predicted and esti-
mated and application of the Bayes rule and the chain rule [11]. For simplicity,
the prediction is shown here for 2 steps ahead, which means from time t − 1
to t+ 1. Its generalization does not cause any computational complexity. The



mixture predictive pdf with the switching model (3) takes the following form,
for i ∈ c∗,

f (yt+1|y (t− 1)) =
∑
i∈c∗

∫ ∫
f (yt+1, Θ, ct+1 = i, α|y (t− 1))︸ ︷︷ ︸

joint pdf

dΘdα =

=
∑
i∈c∗

∫ ∫
f (yt+1|Θ, ct+1 = i) f (ct+1 = i|α) f (Θ|y (t− 1))

×f (α|y (t− 1)) dΘdα =

=
∑
i∈c∗

∫
f (yt+1|Θ, ct+1 = i) f (Θ|y (t− 1)) dΘ

×
∫
f (ct+1 = i|α) f (α|y (t− 1)) dα, (15)

where the integral over the parameter α provides the point estimate α̂i;t−1
obtained according to (13), see [10]. The integral over the parameter Θ is

evaluated by substituting its point estimates θ̂i;t−1 and r̂i;t−1 (obtained ac-
cording to (9) for the i-th component according to [12]) into each i-th model
(2). Marginalization over the values of unavailable ct is performed by summa-
tion. It can be seen that the prediction in this case reduces to the following
steps: take the point estimates from the previous time instant, substitute them
into all components and make the weighted average of predictions obtained
from all components.

It is seen in (15) that in the static case the mixture prediction for n steps
ahead will have the same form with the substituted last available point esti-
mates. The mixture predictive pdf takes the form:

f
(
yt+(n−1)|y (t− 1)

)
=
∑
i∈c∗

α̂i;t−1 f
(
yt+(n−1)|y (t− 1) , Θ̂i;t−1

)
︸ ︷︷ ︸

ỹi;t+(n−1)

, (16)

where ỹi;t+(n−1) is the output prediction obtained from the i-th component by

substituting θ̂i;t−1 and r̂i;t−1 into (2) for i ∈ c∗, and where α̂i;t−1 plays a role
of the weight of the the i-th component activity. The mixture predictive pdf
could be further used as the distribution. However, in practice it is often useful
to take the point estimate of the predicted value, which can be expressed as
the expectation. The mixture prediction algorithm can be summarized as the
following straightforward algorithm.
Algorithm 1
Initial part (for t=1)

• Specify mc components (2) and the switching model (3).
• ∀i ∈ c∗ set initial statistics of all components Vi;0, κi;0 and ϑ0 of appropriate

dimensions. The statistics can be chosen as small-valued matrices (respec-
tively vectors) for experiments with simulated data and are constructed
from the prior data for the real data application.



• Using these initial statistics, compute the initial point estimates of all pa-
rameters and for all components according to (9) and (13).

On-line part (for t=2,. . . )
Prediction

1. Substitute the previous point estimates θ̂i;t−1 and r̂i;t−1 into each i-th com-
ponent (2) and obtain the n-step-ahead data prediction ỹi;t+(n−1) from the
i-th component.

2. Compute the weighted average of the data predictions from all components
using α̂i;t−1 and ỹi;t+(n−1) and obtain the mixture prediction ŷt+(n−1) (as
its expectation). The prediction of the active component is defined accord-
ing to the maximal entry of the vector α̂t−1.

Estimation
3. Measure the new data yt.
4. ∀i ∈ c∗, substitute yt and the point estimates θ̂i;t−1 and r̂i;t−1 into each
i-th component. Construct the mc-dimensional vector of proximities from
results from all components.

5. Multiply entry-wise the vector of proximities from the previous step and
the point estimate vector α̂t−1 and normalize the result. The result is the
weighting vector wt with entries wi;t, which express the updated probabil-
ities of activity of the i-th component.

6. ∀i ∈ c∗ update all statistics, using wi;t according to [12] as follows:

Vi;t = Vi;t−1 + wi;t

[
yt
1

]
[yt, 1] , (17)

κi;t = κi;t−1 + wi;t, (18)

ϑi;t = ϑi;t−1 + wi;t. (19)

7. ∀i ∈ c∗ recompute the point estimates of all parameters according to (9)
and (13) and use them for step 1 of the on-line part of the algorithm, i.e.,
for the next prediction.

3.2 Mixture prediction with the dynamic switching model

The multi-step-ahead prediction of the mixture with the dynamic switching
model is a more complicated task because of the ct−1 in (5). Derivations are
similarly based on construction of the joint pdf of all variables to be predicted
and estimated with application of the Bayes and the chain rule [11] as in Sec-
tion 3.1. Here, the mixture predictive pdf takes for i ∈ c∗ the following form
(for simplicity, shown again for 2 prediction steps):

f (yt+1|y (t− 1))

=
∑

k,i,j∈c∗

∫ ∫
f (yt+1, ct+1 = k, ct = i, ct−1 = j,Θ, α|y (t− 1))︸ ︷︷ ︸

joint pdf

dΘdα =



=
∑

k,i,j∈c∗

∫ ∫
f (yt+1|Θ, ct+1 = k) f (ct+1 = k|ct = i, α) f (ct = i|ct−1 = j, α)×

×f (ct−1 = j|y (t− 1)) f (Θ|y (t− 1)) f (α|y (t− 1)) dΘdα =

=
∑

k,i,j∈c∗

∫
f (yt+1|Θ, ct+1 = k) f (Θ|y (t− 1)) dΘ×

×
∫
f (ct+1 = k|ct = i, α) f (ct = i|ct−1 = j, α) f (α|y (t− 1)) dα

×f (ct−1 = j|y (t− 1)) =

=
∑

k,i,j∈c∗
ỹk;t+1α̂k|i;t−1α̂i|j;t−1wj;t−1 = diag (ỹt+1) α̂2

t−1diag (wt−1)︸ ︷︷ ︸
ŵt+1

, (20)

where diag denotes a diagonal matrix created from a vector; ỹk;t+1 denotes the
prediction obtained from the k-th component (2) with the substituted point

estimates θ̂k;t−1 and r̂k;t−1, k ∈ c∗; and ỹt+1 is a vector [ỹ1;t+1, . . . , ỹmc;t+1].
Again, the previous point estimates are used, but the weighting vector is pre-
dicted for 2 steps ahead as ŵt+1 = α̂2

t−1diag (wt−1). The weighted average
of individual predictions is taken, however, now the weights are entries of the
predicted weight ŵt+1.

The algorithm for n prediction steps can be summarized as follows. The
initial part of the algorithm is the same as for the mixture estimation task, see
[13]. Similarly as in Section 3.1 it is based on the estimation solution from [12].
Here, it can be seen that within the considered theory, the used models can be
applied either for the clustering (estimation) or the classification (prediction)
task.
Algorithm 2
Initial part (for t=1)

• Specify mc components (2) and the switching model (5).
• ∀i ∈ c∗ set the initial statistics of all components Vi;0, κi;0 and ϑ0.
• Using these initial statistics, compute the initial point estimates of all pa-

rameters and for all components according to (9) and (14).
• Set the initial mc-dimensional vector w0.

On-line part (for t=2,. . . )
Prediction

1. Substitute the previous point estimates θ̂i;t−1 and r̂i;t−1 into each i-th com-
ponent (2) and obtain the data predictions ỹi;t+(n−1) from the i-th compo-
nent.

2. Multiply entry-wise the prior vector wt−1 and the previous point estimate
matrix α̂t−1 and obtain the prediction of the weighting vector, i.e.,

ŵt+(n−1) = α̂n
t−1diag (wt−1) . (21)



3. Compute the weighted average of the data predictions from all compo-
nents using ŵi;t+(n−1) and ỹi;t+(n−1) and obtain the mixture data predic-
tion ŷt+(n−1).

Estimation
4. Measure the new data yt.
5. For all components, substitute yt and the point estimates θ̂i;t−1 and r̂i;t−1

into each i-th component. Construct the mc-dimensional vector of proxim-
ities from results from all components.

6. Multiply entry-wise the resulted vector from the previous step, the prior
weighting vector wt−1 and the point estimate matrix α̂t−1.

7. The result of this entry-wise multiplication is the matrix with entries Wi,j;t

with i, j ∈ c∗. Normalize this matrix.
8. Perform the summation of the normalized matrix over rows and obtain the

updated vector wt with entries wi;t.
9. ∀i ∈ c∗ update the statistics Vi;t and κi;t using wi;t according to (17) and

(18) and the statistics ϑi|j;t using Wi,j;t as follows:

ϑi|j;t = ϑi|j;t−1 +Wi,j;t, i, j ∈ c∗, (22)

see details in [13], where the estimation solution is introduced with the
approximation based on the Kerridge inaccuracy [16]. However, here for
simplicity, the weighting vector is used in the corresponding updates simi-
larly to [12], which computationally coincides with updates in [13].

10. ∀i ∈ c∗ recompute the point estimates of all parameters according to (9)
and (14) and use them for step 1 of the on-line part of the algorithm, i.e.,
for the next prediction.

4 Results

The quality of prediction with both the above algorithms was compared on a
series of experiments in Scilab (see www.scilab.org). Here the most illustrative
of them are demonstrated.

Three components (i.e, mc = 3) with the two-dimensional output vector are
simulated using the regression coefficients θ1 = [1 1]′, θ2 = [5 4]′, θ3 = [6 0]′

and the noise covariance matrices r1 = r2 = r3, which are chosen the same for
all components as the two-dimensional unit matrices. The models of switching
α used for the simulation should not be too uncertain. 1000 data samples
are generated. The initial statistics are chosen as follows: Vi;0 is the three-
dimensional zero matrix for each i ∈ {1, 2, 3}; κi;0 is zero for each component;
and ϑ0 is the zero three-dimensional vector for the static case and the zero
square (3 × 3) matrix for the dynamic switching. The initial point estimates
are computed using these statistics according to Algorithms 1 and 2. The initial
weighting vector chosen for Algorithm 2 is w0 = [0.33 0.33 0.34]. The on-line
parts of both the algorithms are performed as the time cycles for 1000 time
instants.

To show initial advantages of the algorithms, Figure 1 shows the 0-step-
ahead prediction with both of them, which is a simple estimation of the output



yt before its measuring obtained by substituting the point estimates into the
components. In this case, the prediction detects three clusters the same for
both algorithms.

Fig. 1. The 0-step-ahead mixture prediction with static (left) and dynamic (right)
switching. Notice that the results provide three predicted clusters similarly for both
the algorithms.

Starting with the 1-step-ahead prediction, the difference becomes noticeable
in favor of the dynamic case. Figure 2 provides the 1- and the 3-step-ahead
predictions with the static switching. It is seen that the predicted values are
compressed around the center of all components. With an increasing number
of prediction steps the results with the static switching remain the same, thus
they are not shown here to save space.

Fig. 2. The 1- and 3-step-ahead mixture predictions with static switching. Notice
that the predicted values are compressed around the center of all components.

Figure 3 demonstrates results obtained with the dynamic switching for 1,
3, 5 and 15 steps of prediction respectively. Here, unlike the static prediction,
the dynamic one still allows to detect the simulated clusters for 1, 3 and 5
steps. It worsens around the 15th step, where predicted values start to be
located around the center of the figure. After that it does not change with an
increasing number of steps.



Fig. 3. The 1, 3, 5, 15-step-ahead mixture predictions with dynamic switching. Notice
the predicted values detect three clusters for 1, 3, 5 steps. They start to be compressed
around their center for the 15-step-ahead prediction.

To summarize the experimental part of the work, it should be said the multi-
step-ahead mixture prediction with the static switching remains the same, while
with the dynamic switching it first provides noticeably better results, and then
it naturally worsens. Thus, the static prediction is similar to the dynamic one
for a significant number of steps ahead.

5 Conclusions

The paper focuses on recursive Bayesian algorithms of the multi-step-ahead
prediction for mixtures with the dynamic model of switching the components.
The static case is also considered for comparison with a dynamic one. The pro-
posed algorithm enables to predict the weighting vector containing probabilities
of activity of the mixture components, which is the task highly desired in many
areas of data analysis (fault detection, on-line diagnostic systems, intelligent
transportation systems, etc.). The provided examples demonstrate advantages
of the dynamic mixture prediction in comparison with the static one.

The paper presents the solution only for normal components. However,
the proposed algorithm is not restricted in this sense and can be applied for
mixtures of other components with recomputable statistics (e.g., categorical,
exponential, etc.). This will be an issue of the future work.
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