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Abstract—The paper deals with an advanced mathematical
modeling for robot motion control. The explanation focuses
on a composition of suitable mathematical models of robot
dynamics intended for control design. Instead of usual Lagrangian
formulation of dynamics, this paper presents robot dynamics
by Hamiltonian formulation that leads to different physical
descriptive quantities considered for control design. In the case
of Hamiltonian formulation, a momentum is such physical
quantity. In the paper, as representative control approaches,
PD control with gravity compensation and model-oriented
Lyapunov-based control are considered. The control approaches
considering Hamiltonian formulation are demonstrated for sim-
plicity on two-mass robot-arm system. However, the presented
results are generally applicable e.g. to usual articulated multi-
purpose industrial robots-manipulators.
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I. INTRODUCTION

In practice of mechanical engineers, conventional Newton’s
mechanics is predominantly used. For such formalism, a vector
oriented notion of forces is typical. The vector description is
not only one possibility that moreover sometimes is insufficient
and unsuitable. Force interactions in any system can be also
described by scalar functions in more general configuration
space. Let us recall Lagrangian or Hamiltonian functions
[17-[3] corresponding to equations of motion: Lagrange’s
equations or Hamilton’s equations, respectively.

The majority of engineers and scientists use Lagrange’s
equations for expression of robot dynamics [4], [5]. These
equations are then used for realization of robot control.
In general, it is assumed that there are given some limits
for positions, velocities and accelerations, respectively.
Usually, there are given some limits for control torques, too.
The limits of velocities are usually constant for all position
configurations of robots without respecting of the fact that
inertia moments are very different for arbitrary configurations.
Controllers for such robot control approach have usually to ma-
nage complicated control structures, to control strong nonlinear
systems with inconvenient limits [5], [6] and [7].

The Lagrangian formalism is based on kinetic and potential
energies and on a phase space formed by positions and velo-
cities. Momentums are not respected there in this formalism.
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However, in robot-manipulator dynamics, all momentums
change very quickly, usually in the rate 1/10 [7]. Hence, study
of control methods is interesting not only on Lagrangian for-
malism [8], but also on Hamiltonian one. It was investigated as
the approach that uses the property of passivity of the robot [9],
[10]. Such approach can modify the natural energy of the robot
so that it can satisfy the desired objectives (position or tracking
control). Hamiltonian formalism with using a modified Hamil-
tonian [11] was used as new function there. Various choices
are possible for the desired potential energy function [12].
An alternative approach for potential function is in [11].

Here, in this contribution, we would like to find an answer
for the following question: What are key features of Lagran-
gian and Hamiltonian formalism for robot control? Hence, we
shall omit such changes as [11], but shall compare almost
the same algorithms on the same problems of robot controls
defined in Lagrangian or Hamiltonian configuration spaces.

The paper is organized as follows. Section II and III
summary dynamic models based on Lagrangian and Hamil-
tonian formalisms. Section IV explains PD control with gravity
compensation. Section V explores model-oriented Lyapunov-
based control. Finally, Section VI shows solved examples
for two-mass robot-arm system.

II. LAGRANGIAN FORMALISM

A. Lagrange’s Equations

Lagrange’s equations of classical mechanics [1]-[3] are
often used for description of non-trivial mechanical systems.
These equations are usually described by the following form

afay_ o .,
dt\ oq, o, '

where 7 is a number of degrees of freedom (DOF); a scalar
function L =E;—E, is Lagrange’s function, Ej; is kinetic
energy and E, is potential energy; F; are generalized forces
and ¢g; generalized coordinates. For technical applications
[4], [8], the generalized forces £} represent only a sum of non-
conservative forces and complementarily conservative forces
are represented by the potential energy £),.
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B. Lagrange’s Equations of Robot motion

Let us analyze robot-manipulator with » DOF. The kinetic
energy may be described as a quadratic positive definite form

E, =i M@ @)

and potential energy can be written as

E,=-» mG'T/R, 3)
Jj=1

If we use the equation (1), then equations of robot motion can
be derived in the final form

M(q)q + C(q.9)q + g(q) = u “

where M is an inertia matrix of the type nxn, q is a vector
of the type nx 1, C is nxn matrix, which represents Coriolis
and centrifugal forces, g is a vector of gravity influences,
see [5], [6] and [7].

III. HAMILTONIAN FORMALISM

Physicists developed analytical mechanics in the form that
can be used in all branches of physics. Hamilton’s equations
have a special meaning in quantum mechanics. Forces, velo-
cities and accelerations are not as so important for study
of elementary particles as energies and momentums. So, let us
study the meaning of Hamiltonian formalism for a control
purpose of robot-manipulators.

Physicists formulated Hamilton function and other notions
with using components of positions and momentums. For aim
of this paper, let a vector-matrix description be used. For exam-
ple, generalized momentum p; are defined as

oL

=—, j=1,2,-,n 5
2, J ®)

p;

Let all vectors be defined classically as p = (ps, -, pa)’,
q = (g1, ", qn)", etc. Then, the relation (5) can be rewritten

in the following form
oL
=|— 6
b (8(1} ©

Form (6) is more suitable for our description of mathematical
formulae. Similarly, the definition of Hamilton function is

H=;p,.q,-—L = H=p'q-L @)

Although the Lagrange function L is a function of vectors q
ant its time derivation q, the Hamilton function is a function

of q and p. So, we can generally write

L:L(qaqat)a H:H(qapat) (8)

Then the equations (1) can be rewritten

CCEC N
dt\ oq oq

The partial derivation of H from (7) with using (9) gives

o _ oL )
dq  0oq
and hence from (6) and (9), we obtain the equation
[aﬁj —F-p (n
oq

Similarly the partial derivation of (7) with respect to vector p
and using (9) and (6) follows to

o\ .
ar) - 12
(j q (12)

Both equations (11) and (12) may be rewritten in the form

(o) . oH )
A o

Set of equations (13) is a vector representation of well-known
Hamilton’s equations. These equations are usually written
as components of the vectors defined in (13).

A. Main Idea

The momentums and moments of movements are very
different in arbitrary configurations of robots. The classical
methods of robot control use information on position and velo-
city. It predetermines, that control methods based on feedback
of positions and generalized momentums, will be different
in results. In robotics the generalized momentum is really
momentum or moment of movement, respectively. Hence,
Hamiltonian formalism may be better for aims of robot control
than the Lagrangian one. In the following part we develop
analogical differential equations of robot dynamics with using
Hamilton’s equations.
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B. Differential Equations of Robot Dynamics

Arbitrary robot may be considered as the time invariant
system. Then, it is well known that the Hamiltonian (7) is full
energy that is the sum of kinetic and potential energies.
Because the Lagrangian L depends on positions and velocities
and Hamiltonian depends on positions and generalized
momentums, we can rewrite the relations (8) as

L(qa q) =Ek(q9 Q)—E,,(Q) (14)

H(q,p) =E,(q,p) + E, (q) (15)

If (10) is used, then we can derive a very interesting result

OE,(q,p) _ 9K, (q.9)

aq aq (16)
The partial derivative of (14) yields
g—(L]=—6E‘;2’ D_gq (17)
where the derivative of the potential energy is
oE,
oq & (q) (18)

If we use (16), (17) and (10), then the vector p in (13) yields
the result

. oE. (q,p))
p=F-g(q, t)—[%} (19)

The relations (2) and (6) yield

. oL OE, .,
= —= = M
p 24 04 q (20)

Now we obtain from (20) the relation

q=M"p @n

If (21) is substituted into (2), then we obtain the expression
of the kinetic energy in the space (q, p)

E(q,p)= %pTM" (@p (22)

Expression (22) is right for Hamiltonian H. Equation (13) is
then the same as (21). Now, equations (19) and (21) fully
describe the robot dynamics in the Hamiltonian formalism.

C. Reduction for Robot Control
Let us define a skew symmetric matrix S [7] as follows

k=1

1< . (oM, oM,
s ==% o Tk
. 22%( 20, o ] (23)

It can be proved that then holds

sq:qu_l(iq(qTM q)} 24)

If we use (2) and (16), then the robot dynamic equations
may be rewritten into the following compact form

q=M"p (25)

. 1 - B
p:(EM—S]M'p—g+u (26)

where, the vector F was replaced by u. The vector u will be
a control vector similarly as in (4). The equations (25) and (26)
are the final equations that describe the dynamics of robot
motion.

IV. POSITION CONTROL

This chapter considers conventional problems of robot
control. For the simplicity, all following methods will be
demonstrated in the join space that is for joint space control.
The task of space control or motion and force control will be
omitted. Since the space represented by coordinates (q, p) is
Hamiltonian phase space [2], [3], we will call the control in this
space simply control in Hamilton space. On the other hand,
the control in Lagrangian phase space [4], that is represented
by coordinates (q,q) [1]-[4], will be simply called control

in Lagrange space.
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A. Position Control in Hamiltonian Space

Let us consider the simplest problem of position control.
The controlled system (robot) is described by equations (25)
and (26). Let the controller (regulator) be described as

u=g+Ae+B(0-p) 27)

where A and B are positive definite diagonal matrices, g is
gravity compensation for the robot and e = qus—q. This
approach may be called PD control with full gravity com-
pensation. The analogical versions for robot control described
by Lagrange’s equations are in [5], [7] etc.

The target position qq in terms of joint coordinates is fixed.
Consider a set point control problem, in which the posture
of the robot arm is allowed to asymptotically approach
the target state (q4, p) = (qa4, 0). Substitution the control law
(27) into (26) yields

p:[%M—SjM]p+Ae+B(0—p) (28)
Let us consider a quadratic form

_1 T ag-! 1 T
W—EPM p+EeAe20 (29)

The time derivation of (29) along the trajectory given by (28),
and with using that S is skew symmetric, yields

W=-—p'M'Bp <0 (30)

Since B is a diagonal positive definite matrix and the inverse
of matrix M is positive definite, then the multiplication of these
matrices in (30) is positive definite, so the quadratic form (30)
is negative semi-definite. Then by Lyapunov theory of stability
the control process is stable. However, we would like to obtain
a better result.

We have now to prove that as p = 0, the robot does not
reach a configuration q # qq. This can be done by the La Salle
invariant set theorem [13]. The set of points in the neigh-
borhood of the equilibrium that satisfies

W =0 (31)

is such that p =0 and p =0 . From (28), it follows that e = 0.
Hence, the equilibrium point given by e = 0, p = 0 is the only
possible equilibrium for the controlled system and is the lar-
gest invariant set in that set of points. Hence, the equilibrium
point is asymptotically stable.

B. Comparison with the Control in Lagrangian Space

Consider the equation (4), where

c :Gmsj (32)

The PD control law is given by [5]-[7] etc.
u=g+Ae+B(0—q) (33)

Let us consider a quadratic form

R P
V—Eq Mq+5e Ae >0 (34)
Similarly to (30) we obtain the time derivation of V'
V=-qBq <0 (35)

Let us consider the case, where at time # = 0 is W = V. Using
equation (26) the equation (30) can be rewritten

W=-—q'BMq < 0 (36)

and hence the relations (35) and (36) follow to
W<V < ¢'BM-E)q =0 (37)

B is positive definite, hence W < V if and only if the ma-

trix M—E is positive semidefinite, too. If this matrix is
positive definite the trajectory of W is under the trajectory of V/
in time.

Note, that W and V are positive definite. If W and V
represent the quality of control, then the control given by (27)
in Hamilton phase space is better than the control (33)
in Lagrange space for the same setting of the parameters
in matrices A and B.

V. TRACKING CONTROL

The tracking control problem in the joint space consists
of a given time-varying trajectory qq(f) and its derivatives.
Several schemes for performing these objectives do exist.

The well-known is inverse dynamic control [14] and com-
puted torque control [15] Any others are the passivity based
control and the Lyapunov-based control [12]. Here, there
is introduced one of Lyapunov-based control [16] that is
model-based control with state transformation [17] just lending
to exponentially stable control behavior in view of Lyapunov
theory of stability.
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A. Tracking Control in Hamiltonian Space
Let the following transformation vectors be defined as

e=q,—q, z=M(é+Ae), y=p-z (38)

The control system described by (25) and (26) let be controlled

by the control law

u:y—(%M—S]Mly+g—Bz (39)

where matrices A and B are suitably chosen tuning matrices.
From (26) and (39), feedback equation can be obtained as

; :[%M—SJMIZ B2z (40)

Let us define a quadratic form

WZ%ZTM'IZZO (41)

where its time derivative along trajectory of (40) leads to

W=-2M'Bz< 0 (42)

The multiplication of matrices in the quadratic form (42)
are positive definite. Now we can proceed as in [16] and derive
exponential stability for robot control, where vectors z, q
and its appropriate time derivatives are exponential stable
considering positive definite matrices A and B as follows

A=diag(a1,--~,a,,), B:diag(bla"'nbn) (43)

B. Tracking control in Lagrangian space
Like in the previous part let us define new vectors y, z

e=q,—q, z=¢eé+Ae, y=q-z (44)

The control law for controlled system is defined by
u=My+Cy+g-Bz (45)
If this control law is substituted into (4), then feedback is:
z=-M'Cz-M'Bz (46)

Note, that asymptotical stability of the control process can be
proved as in the previous part.

4
Voo x
Fig. 1. Scheme of two-mass robot arm system.

VI. SOLVED EXAMPLES

Let us consider a two-mass robot-arm system in Fig. 1.
It consists of the robot arm of length / with negligible mass
in comparison with two masses m; and m, outlying for a dis-
tance d. The system has 2 DOF with corresponding two ge-
neralized coordinates ¢ and » and two momentums p; and p;.
The arm is led through a prismatic joint connected to the basic
frame by a rotational joint. The system can be described
in Hamiltonian formalism by (25) and (26) with parameters:

<[t ook ool ool ]

[(m,(r=d) +my*)" 0
0 (m,+m,)"

M= (47)

Ty s [ +m)ri—mdr —p((m,+m,)r—md)
( - j__¢((m|+mz)r_m1d)a 0

2

which were used for the control design both PD Control
and model-based exponentially stable control. The testing
trajectory (Fig. 2, ‘quatrefoil’) of mass point m, is composed
according to [18] for maximum tangential velocity v, = 5ms™.

Cartesian coordinates:

® initial and final point 0.9 z(t) [m]|-{ 0.3 — y(t) [m]
® reversal point N S
0.7 — =0

XY - Graph (1 y [m], — = [m]) 0.6 )
| 051\ f-
0.4 :

0.2

"0 02 04 o6

-0. - 5
04 05 06 07 08 0o 02

Fig. 2. Testing trajectory of mass point m, for tracking control.

[lustrative comparative examples of the tracking control
applied to the robot arm system (Fig. 1), given by parameters
[=1m, d = 0.2m, m; = my = 10kg, are shown in joint Fig. 3.
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Fig. 3. Tracking control of system (Fig. 1) along trajectory (Fig. 2): time histories [s] of control actions, kinetic energy, generalized coordinates and their errors.

Fig. 3 shows the comparison of the tracking control in both
Lagrandian and Hamiltonian formalisms for the identical system.
Even though tracking of desired values looks similar, time
histories of control errors (four bottom subfigures) and kinetic
energies demonstrate better behavior of the control process
in Hamiltonian space using different descriptive parameters.

CONCLUSION

The paper shows strong features of Hamiltonian formalism
useful for efficient robot control. It is obvious that Hamiltonian
formalism considers dynamics and internal energy distribution
in robotic systems more naturally by means of specific quanti-
ties — momentums. It is a significant finding for future work.
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