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Abstract

Distributed inference of parameters of mixture models by a network
of cooperating nodes (sensors) with computational and communication
capabilities still represents a challenging task. In the last decade, sev-
eral methods were proposed to solve this issue, predominantly formulated
within the expectation-maximization framework and with the assumption
of mixture components normality. The present paper adopts the Bayesian
approach to inference of general (non-normal) mixtures via the Markov
chain Monte Carlo simulation from the parameter posterior distribution.
By collaborative tuning of node chains, the method allows reliable estima-
tion even at nodes with significantly worse observational conditions, where
the components may tend to merge due to high variances. The method
runs in the diffusion networks, where the nodes communicate only with
their adjacent neighbors within 1 hop distance.

1 Introduction

Collaborative processing of data by geographically distributed agents (sensors)
has attracted considerable attention in the last decade, particularly due to the
rapid development of cheap adhoc wireless sensor networks. In the domain of
statistical signal processing, the goal of collaboration is to arrive at (in a sense)
better estimates of the parameters of interest. The cooperation mode is mostly
dictated by the logical topology of the network, and may be centralized, decen-
tralized or run incrementally in a Hamiltonian cycle [1]. The centralized topol-
ogy suffers from high computational and communication requirements imposed
on the processing center — a single point of failure (SPoF). The Hamiltonian
topology somewhat reduces the communication burden, but has SPoF at each
node and link, and its reconfiguration is an NP-hard problem [2]. Therefore, we
focus on diffusion networks, where the nodes collaborate only with their adja-
cent neighbors within 1 hop distance [1, 3]. This mode has excellent robustness
to node and link failures, and does not require high computational and commu-
nication performance of the network or its parts. Principally, the diffusion data
processing is similar to the running consensus strategies with a limited amount
of cooperation among nodes per time instant [4, 5].

While there exists abundance of methods for distributed estimation of nu-
merous models, decentralized estimation of mixtures – convex combinations of
probability distributions – is still rather underdeveloped. The existing methods
are mostly based on expectation-maximization (EM) and assume normal com-
ponents. For instance, Nowak [6] proposed the decentralized and multiple-steps
decentralized EM algorithms for the Hamiltonian topology. A similar algorithm
for this network type is due to Safarinejadian et al. [7], who later alleviated
the network topology constraints to point to point networks [8]. Their method
allows estimation of both the model order and parameters via sequential eval-
uation of global sufficient statistics and averaging of their local counterparts
(E step), followed by re-estimation of parameters (M step). Gu proposes a de-
centralized EM algorithm with local E step and consensus-based M step [9].
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The probably first diffusion algorithm is due to Weng et al. [10], followed by
Pereira et al. [11], whose EM-based algorithm propagates available information
across the network with a faster term for information diffusion and a slower
term for information averaging. However, it is again oriented on normal mix-
tures only. The first component distribution-independent method for diffusion
mixture estimation was proposed by Towfic et al. [12]. Its M step is solved by
an adaptive diffusion process with a Newton’s recursion. Very recently, Dede-
cius et al. [13] developed a Bayesian method for online mixture estimation from
sequentially incoming data that can be used for any component distributions
that have conjugate priors.

1.1 Contribution

The goal of this paper is to propose an adaptive diffusion method that over-
comes the limitations of the existing methods. Namely, it (i) does not require
normal components, (ii) provides means for simultaneous estimation of local
and global mixture parameters, and (iii) allows efficient estimation even under
heterogeneous conditions across the network, when the components virtually
merge. The method is inspired by the delayed rejection adaptive Metropolis
(DRAM) algorithm of Haario et al. [14], explained and reformulated for the
diffusion setting below.

2 Basic DRAM algorithm

Assume a target posterior distribution of a parameter θ given a set of obser-
vations y with an analytically intractable probability density function π(θ|y).
Starting from an arbitrary initial point θ0 ∈ suppπ(θ|y), the traditional Metropolis-
Hastings algorithm simulates a sequence of random samples (θt)t=1,2,... whose
empirical distribution converges to the target. The algorithm proceeds with
new candidates θ′t sampled from a convenient user-selected proposal distribu-
tion q(θ′t|θt−1), that are accepted as θt with probability

α1(θt−1, θ
′
t) = min

1,

π(θ′t|y)
q(θ′t|θt−1)

π(θt−1|y)
q(θt−1|θ′t)

 . (1)

Under rejection, the value of θt−1 is duplicated and assigned to θt. Symmetry of
the proposal density q(θ′t|θt) makes the denominators in (1) cancel and results
in the basic Metropolis algorithm considered in the sequel. For details of the
Metropolis-Hastings algorithm, see, e.g., [15].

In many applications, the normal distribution N (θt−1,Σ) is a popular choice
for the proposal distribution. Under normality and known covariance of the
target it is even possible to set the proposal covariance so that the algorithm
performs in a weak sense optimally [16]. However, the target covariance is rarely
known. Haario et al. [17] propose its recursive empirical estimation from the
already simulated samples; this method is called adaptive Metropolis (AM).
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The main drawback of AM inherited from the basic Metropolis algorithm
is the poor exploration of the target density under specific conditions where α1

is too low, e.g. under a local bad fit of the proposal. To resolve this issue, it
is possible to extend AM by delayed rejection (DR) algorithm of Mira [18]. It
employs a given number of normal proposals used at different stages. Whenever
a candidate θ′t is rejected according to (1) (with q1 ≡ q), instead of retaining the
same position, another candidate θ′′t is proposed from the higher stage proposal
q2(θ′′t |θ′t) and accepted with probability

α2(θt−1, θ
′
t, θ
′′
t ) =

π(θ′′t |y)
q1(θ′t|θt−1)q2(θ′t|θ′′t )

π(θt−1|y)
q1(θ′t|θ′′t )q2(θt−1|θ′t)

[1− α1(θ′′t , θ
′
t)]

[1− α1(θt−1, θ′t)]
.

Often, a scaled first-stage proposal is used for the second stage. It is naturally
possible to design several stages, in this paper we stick with two for simplicity.
The resulting DRAM algorithm thus combines the global (AM) adaptation with
the improved local (DR) exploration. Due to the proposal adaptation, DRAM
does not preserve the Markovian property, however, it is ergodic [14]. In the next
section, we modify the DRAM algorithm for the diffusion mixture estimation.

3 Diffusion mixture estimation with DRAM

A diffusion network is a directed or undirected graph consisting of a set of nodes
I = {1, . . . , I} representing the agents, that are connected by vertices determin-
ing their communication links [1]. Each node i ∈ I can communicate with its
adjacent neighbors j ∈ I, i.e., the nodes within 1 edge distance. These nodes
form the i’s neighborhood Ii; note that i ∈ Ii, too. The diffusion estimation
algorithms exploit information obtained from the neighborhood Ii to improve
the estimation performance at node i. To avoid confusion, the superscript [i]

will denote the quantities related to ith node in the sequel. For instance, the
symbol y[i] is the set of measurements taken by node i.

3.1 Diffusion DRAM algorithm

The proposed distributed mixture estimation method assumes the mixture mod-
els of the form

p
(
y[i]
∣∣∣φ, δ, ϑ[i]) =

K∑
k=1

φkpk

(
y[i]
∣∣∣δk, ϑ[i]k ) , (2)

where i ∈ I is the node index, y[i] is a set of observations taken by the ith node,
φ = [φ1, . . . , φK ]ᵀ is a vector of global component weights taking values in the
unit K-simplex, δ = {δ1, . . . , δK} are global component parameters and ϑ[i] =

{ϑ[i]1 , . . . , ϑ
[i]
K} are local component parameters. The unknown parameters to be

estimated are φ, θ and ϑ[i]. A classical example is the normal mixture model
where the nodes assume identical locations (global parameters δ) with different
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observation noise (local parameter ϑ[i]). The assumption of common φ may be
potentially restrictive if some nodes have very different observation conditions,
e.g. there are missing observations connected with some components, but it
may be easily relaxed.

The Bayesian estimation of global parameters θ = {φ, δ} and local ϑ[i] pro-
ceeds with the prior distribution π(θ, ϑ[i]), that being updated via the Bayes’
theorem yields the posterior distribution

π
(
θ, ϑ[i]

∣∣∣y[i]) = π
(
φ, δ, ϑ[i]

∣∣∣y[i])
∝ p

(
y[i]
∣∣∣φ, δ, ϑ[i])π (φ, δ, ϑ[i]) . (3)

Now, the aim is to simulate samples from the clearly analytically intractable
posterior distribution using the DRAM procedure with collaborative adaptation.
The respective steps are described below.

3.1.1 Diffusion sampling and 1st stage DR adaptation

Each node i ∈ I starts with simulating
(
θ
[i]
t , ϑ

[i]
)
t=1,2,...

from the posterior den-

sity π
(
θ, ϑ[i]

∣∣y[i]) using the basic DRAM algorithm outlined in Section 2. Let us
focus on θ, as sampling from ϑ[i] follows standard procedure. The two-stage DR

employs two normal proposal distributions N
(
θ
[i]
t−1, C

[i]
1,t

)
and N

(
θ
[i]
t−1, C

[i]
2,t

)
,

respectively. After certain amount of steps, chosen either a priori or randomly,

each node i ∈ I receives the last sample θ
[j]
t from a randomly chosen neighbor

j ∈ Ni. This sample is accepted at node i with probability

α[i←j] = min

1,
π
(
θ
[j]
t , ϑ

[i]
∣∣∣y[i])

π
(
θ
[i]
t , ϑ

[i]
∣∣∣y[i])

 (4)

leading to

θ
[i]
t+1 ← θ

[j]
t . (5)

Since the acceptance of neighbor’s sample may mean that its proposal distribu-
tion better reflects statistical properties of the target posterior distribution, its
adoption is a part of the algorithm, too:

C
[i]
1,t+1 ← C

[j]
1,t. (6)

This exchange should prevent the chains from being stuck in high probability
areas and to explore the target support as much as possible. Robustness to

invalid C
[i]
1,t+1 is preserved by its periodic optimization (see Algorithm 1).
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3.1.2 Diffusion 2nd stage DR adaptation

The second nodes cooperation feature – recentering and fixing the second stage
proposals – starts after a reasonable number t0 of steps after initialization. Until
this time instant, e.g. scaled first stage proposal can be used.

The collaborative tuning of the second stage proposal is realized either ran-
domly or after every n3 steps. It consists in finding the “best” neighboring node
k ∈ Ii and adoption of its statistical knowledge about mean (or alternatively
mode) of the posterior component distribution. Node k is determined at step t
according to the following posterior likelihood maximization criterion:

k = argmax
j∈Ii

π
(
θ̂[j], ϑ[j]

∣∣∣y[j]) , (7)

where θ̂[j] is computed as the mean of the last t− ta samples of the chain
(
θ
[j]
t

)
.

After finding the best node k ∈ Ii, we fix the proposal at the approximate
mean, leading to N (θ̂[k], ·). The advantage of this approach lies in stabilization
of the sampling process, as the worse nodes second stage proposals are relocated
and fixed in the high probability regions.

3.1.3 Local optimization of proposals

Local AM optimization of the proposal covariance matrices [14, 17] relies on the
sample covariance matrix

C
[i]
t = cov

(
θ
[i]
0 , . . . , θ

[i]
t

)
.

The resulting proposals covariance matrices

C
[i]
1,t = sd · C [i]

t , (8)

C
[i]
2,t = ε · C [i]

t , (9)

where sd, ε > 0 are the scaling factors. Gelman et al. [16] show, that un-
der normal target distribution and normal proposal, sd = 2.382/d, d being the
dimension, optimizes in a weak sense mixing properties of the Metropolis algo-
rithm. The other scaling factor ε < sd is used to tighten the second proposal.
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Algorithm 1 Distributed DRAM

Initialization: For all i ∈ I, set the number of steps n1 between AM covariance

updates, set the number n2 of steps between exchanges of θ
[j]
t and C

[j]
1,t, j ∈ Ni,

set the number of steps n3 between exchanges of second stage DR proposals.

Set constants sd, ε, ta and t0. Set initial proposals and sample initial points θ
[i]
0 .

For t = 1 : T do:

1. DR 1st stage: Propose θ
′,[i]
t ∼ N

(
θ
[i]
t−1, C

[i]
1,t−1

)
;

2. DR 2nd stage (if θ′t rejected):

Propose θ
′′,[i]
t ∼ N

(
θ̂[i], C

[i]
2,t−1

)
.

If t ≤ t0, θ̂[i] ≡ θ[i]t−1.

3. Each n1 steps update C
[i]
t = cov

(
θ
[i]
0:t

)
.

4. Each n2 steps randomly choose j ∈ Ii and set

θ
[i]
t ← θ

[j]
t and C

[i]
t ← C

[j]
t with probability (4).

5. if t ≥ t0:
Each n3 steps select k ∈ Ii such, that

k = argmax
j∈Ii

π
(
θ̂[j], ϑ[j]

∣∣∣y[j]) .
Set for all j ∈ Ii the 2nd stage proposal mean to θ̂[k].

6



1

2

3

4

5

6
7

8

9

Figure 1: Diffusion network layout.

4 Simulation Results

We assume a randomly generated diffusion network consisting of 9 nodes I =
{1, . . . , 9} depicted in Fig. 1. The nodes estimate the parameters of a three
component normal mixture model

Y [i]
τ ∼

3∑
k=1

φkN
(
y[i]τ

∣∣∣µk, σ2,[i]
k

)
, τ = 1, 2, . . . , 5000,

with the global parameter θ = {φ, µ}, φ = [0.2, 0.25, 0.55]ᵀ and µ = [2, 6.5, 13.5]ᵀ,
and the local standard deviations σ[i] = [1.4 + 0.1i, 0.9 + 0.1i, 2.7 + 0.3i]. Ob-
viously, with higher (noise) variance the components tend to merge, see Fig. 2.
One of the main and most challenging goals is the reliable detection of these
merging components.

The aim of each node is to estimate the global vectors µ and φ and the local
vector σ[i] using the described diffusion DRAM. For comparison, we consider
the same task with isolated nodes employing the basic DRAM procedure and
the (non-Bayesian) diffusion EM algorithm of Towfic et al. [12], whose step size
is 0.01 and combiner weights are uniform.

The adopted prior distribution for DRAM scenarios is

π
(
φ, µ, σ[i]

)
=Dir(φ|1)×N (µ|m, 152I3×3)×U

(
σ[i]
∣∣∣0, 10

)
where the vector m contains values of the k-means clustering centroids from
obtained from the set of observations of the first node. The simulation from the
target posterior density employed ordering constraint µ1 < µ2 < µ3 to prevent
label switching [19]. The setting of Algorithm 1 is as follows: T = 25000,
ta = t− 500, n1 = 5, n2 = 500, t0 = 5000 and n3 = 500. The final inference is
based on the last 15000 samples, i.e the burn-in period is 10000 draws.

The algorithm performance assessment is based on the estimates mean squared
error averaged over the network (AMSE). The resulting AMSEs are given in Ta-
ble 1. It is not surprising to see that collaboration leads to significantly better
results. The main reason is that the non-collaborating nodes with high variances
fail to properly identify the three-component mixture. Instead, they fit a two-
component mixture. This is a demonstration of a well-known deeper issue: the
observation noise hides the phenomenon of interest, which may in certain appli-
cations lead to (for instance physically) absurd results. The proposed method
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Figure 2: Nodes data sets.

yields better results than the diffusion EM algorithm [12], naturally at the cost
of a higher computational burden.

5 Conclusion

The paper proposes a distributed MCMC algorithm of DRAM type, whose
settings are collaboratively tuned during the estimation process in an unsuper-
vised way. Its important feature is the ability to detect and effectively estimate
merging components under spatially heterogeneous (noise) variances. Unlike
the existing distributed (mostly EM-based) solutions, the method is not limited
to normal mixtures. Its performance is superior to the basic non-collaborative
DRAM and to the diffusion EM [12], of course at the cost of higher computa-
tional burden associated with the MCMC framework.
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Table 1 AMSEs summary for chosen parameters and total AMSE of all param-
eters.

Parameter DRAM Diff. DRAM Diff. EM [12]

µ1 1.9612 0.0043 0.0001
µ2 0.0166 0.0650 0.0102
µ3 0.2600 0.0013 0.0238
σ1 0.1495 0.0047 0.1080
σ3 0.1154 0.0129 0.5066
σ3 0.2838 0.0159 0.1520
φ1 0.0371 0.0000 0.0002
φ2 0.0025 0.0000 0.0002
φ3 0.0039 0.0001 0.0001∑

AMSE 2.8300 0.1042 0.8012
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