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ABSTRACT

The state-of-art methods for distributed estimation of mixtures as-
sume the existence of a common mixture model. In many practical
situations, this assumption may be too restrictive, as a subset of pa-
rameters may be purely local, e.g., if the numbers of observable com-
ponents differ across the network. To reflect this issue, we propose
a new online Bayesian method for simultaneous estimation of local
parameters, and diffusion estimation of global parameters. The algo-
rithm consists of two steps. First, the nodes perform local estimation
from own observations by means of factorized prior/posterior distri-
butions. Second, a diffusion optimization step is used to merge the
nodes’ global parameters estimates. A simulation example demon-
strates improved performance in estimation of both parameters sets.

Index Terms— Diffusion estimation, distributed estimation, ex-
ponential family, mixture models, message passing.

1. INTRODUCTION

Distributed estimation of parameters of stochastic models has at-
tracted a significant attention in the last two decades, particularly
due to a rapid development of cheap ad-hoc wireless sensor networks
consisting of nodes endowed with sensing, data processing and com-
munication capabilities. Their applications range from localisation,
target tracking, intrusion detection, dictionary learning etc. [1].

According to the communication strategies among sources, sev-
eral groups of methods can be recognized. First, the incremental
algorithms, passing and processing information in a Hamiltonian
cyclic path. These algorithms are prone to failures, as each node and
link are single-points of failure, and recovery is an NP-hard problem
[2]. This issue can be solved by the diffusion and consensus strate-
gies. The former perform only a limited amount of communication
among neighboring nodes, typically represented by an exchange of
observations during the adaptation step and an exchange of estimates
during the combination step [1, 3]. The standard consensus strate-
gies involved intermediate steps to reach consensus, but the recent
running consensus algorithms removes this overhead, e.g. [4].

In this paper, we specifically focus on sequential estimation of
mixture models. Under (roughly) common distribution of observa-
tions yi,t across the network, there exist several methods for col-
laborative estimation of mixtures. One branch of solutions is based
on expectation-maximization (EM) algorithm. For instance, Gu pro-
posed a version of a decentralized EM algorithm with a consensus
step evaluating global network statistics between the standard local E
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and M steps [5]. A similar approach, called distributed expectation-
maximization, was proposed by Safarinejadian, Menhai and Kar-
rari [6], where, between the E and M steps, a distributed averag-
ing approach is used to diffuse local sufficient statistics to neigh-
boring nodes and estimate global sufficient statistics in each node.
In the M-step, each node updates parameters of the normal mix-
ture model using the estimated global sufficient statistics. A fully
diffusion-oriented EM algorithm was proposed by Pereira, Pages-
Zamora, and Lopez-Valcarce in [7]. Another branch of solutions,
stemming from the Bayesian theory, is mostly based on variational
inference. The distributed variational Bayesian algorithm (DVBA)
of Safarinejadian, Menhaj and Karrari allows distributed estimation
of normal mixture models [8]. However, DVBA is an incremental al-
gorithm. In order to remove the robustness issue of this topology, the
authors later proposed a peer-to-peer DVBA algorithm, where the
nodes communicate with their neighbors [9]. Recently, Dedecius,
Reichl and Djurić proposed a distributed quasi-Bayesian algorithm
with point-estimated component indicator, applicable to a wide class
of mixture models with component distributions from the exponen-
tial family and suitable for online estimation [10].

With the exception of component weights in [5], the listed algo-
rithms rely on the assumption of (at least roughly) common model
parameters. However, the parameters may differ across the network,
e.g., if the nodes observe different targets maneuvering in a forma-
tion. Then, the collaboration may be based on an assumption of cor-
relation or similarity of inferred parameters [11]. These multitask
diffusion algorithms are mostly LMS-based, e.g. [11, 12] with a few
modifications reflecting, for instance, sparsity [13]. Some more gen-
eral recent algorithms allow unsupervised determination of neigh-
bors belonging to the same cluster [11, 15, 16]. These algorithms
allow static or sequential collaborative estimation of local and global
parameters, and parameters shared by clusters of nodes.

We would like to contribute to this topic from the probabilisti-
cally consistent and versatile Bayesian viewpoint, allowing abstract
formulation of inference tasks. In particular, we propose a new
method for collaborative estimation of mixture models with local
and global parameter sets. The configuration of parameters is very
general, the mixtures may differ in the number of components, their
weights and the components may have different parameters, too. The
method is generic and applicable to a wide class of mixture mod-
els. Under certain conditions, it simplifies to an analytically tractable
mean-field variational method. The resulting algorithm consists of
two phases. First, the local estimation, where the nodes perform in-
ference of both local and global parameters sets locally from own ob-
servations. Second, the diffusion optimization step, where the nodes
exchange the distributions of global parameters with their neighbors
within 1 hop distance. If the mixture components are exponential
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family distributions, the whole algorithm can be reduced to vari-
ational message passing (e.g., [17]) extended by message-passing
diffusion optimization.

2. PROBLEM STATEMENT

Let us consider a network — a directed or undirected graph of nodes
I = {1, . . . , I}, connected by a set of edges determining the graph
topology. Each node i ∈ I acquires observations yi,t where t =
1, 2, . . . is a discrete time index. These observations can be mod-
elled by mixture models with a common (global) subset of param-
eters. Each node i also communicates with its adjacent neighbors
within 1 hop distance, forming its neighborhood Ii. We emphasize
that i ∈ Ii, too. The adopted communication strategy is diffusion
[1, 3], however, compared to the ordinary diffusion algorithms, the
adaptation step for an observations exchange among nodes is not ap-
plicable here for their potentially different distributions. The com-
bination step merging the parameters estimates is preserved (in a
special form).

The incoming observations yi,t of node i follow a mixture
distribution, i.e., a convex combination of Ki probability distri-
butions called components. Their probability densities are de-
noted pi,k(yi,t|θi,k), where θi,k are component parameters and
k = 1, . . . ,Ki are component indices. Denoting by Θi all unknown
parameters of the considered mixture, we have

pi(yi,t|Θi) =

Ki∑
k=1

φi,kpi,k (yi,t|θi,k) , (1)

where φi = [φi,1, . . . , φi,K ] is a vector of component weights, that
is, positive real numbers taking values in the (Ki − 1)-dimensional
probabilistic simplex. Note, that Θi may be any combination of
φi, θi or Ki. As a minor simplification, we assume the local num-
bers of components Ki to be known a priori.

We face the problem of sequential collaborative estimation of
nodes’ mixtures parameters with the assumption that there exists
a global subset of parameters ΘG, that is common to all network
nodes, and a local subset that is its local complement to Θi,

ΘG =
⋂
i∈I

Θi, and ΘL
i = Θi \ΘG.

The goal is to exploit the existing network in order to collaboratively
arrive at better estimates of ΘG under modest communication re-
quirements. In addition, we conjecture that an improvement in the
estimation of ΘG will induce an improved estimation of ΘL

i .

3. SEQUENTIAL DIFFUSION ESTIMATION

The ordinary sequential Bayesian inference of unknown parameters
Θi relies on a joint prior distribution

πi(Θi|yi,0:t−1) = πi
(

ΘL
i ,Θ

G
i

∣∣yi,0:t−1

)
,

quantifying the current statistical knowledge about ΘL
i and ΘG

up to time t − 1, which is based on the previous observations
yi,1, . . . , yi,t−1, and the pseudo-observations yi,0 determining any
initial knowledge, e.g. from historical data or an expert’s opinion.
The incorporation of new observation yi,t is performed by virtue of
the Bayes’ theorem,

πi(Θi|yi,0:t) =
πi(Θi|yi,0:t−1)pi(yi,t|Θi)∫
πi(Θi|yi,0:t−1)pi(yi,t|Θi)dΘi

. (2)

Unfortunately, this rigorous Bayesian approach to inference of Θi

is impractical not only computationally, but also from aspect of the
distributed estimation. In order to combine information from several
sources (nodes), the distribution of ΘG must have the same form
across the network, conditionally independent of any local parame-
ters ΘL

i . That means,

πi(Θi|yi,0:t) = πi
(

ΘL
i ,Θ

G
∣∣yi,0:t

)
≈ ρi

(
ΘL
i

∣∣yi,0:t

)
ρi
(

ΘG
∣∣yi,0:t

)
. (3)

In other words, the true distribution of ΘL
i and ΘG at each node

i ∈ I must be replaced by two lower-dimensional distributions
ρi(Θ

L
i |·) and ρi(Θ

G|·), the latter with the same functional form
for all i, and whose product is as close to the original distribution
as possible (in the Kullback-Leibler sense). Sometimes, this factor-
ization is natural, e.g., in mixture estimation, where the component
weights may be modelled as independent on component parameters.
More on possible factorizations can be found in [18].

The second step is the diffusion optimization of the distribution
of ΘG. From node i ∈ I viewpoint, it is possible to view the neigh-
bors’ distributions ρj(ΘG|·) as hypotheses about ΘG. The goal is to
optimally merge these hypotheses into a single distribution ρ̃i(ΘG|·)
that is as close to individual hypotheses as possible.

Consistently with the Bayesian theory, both steps will exploit the
Kullback-Leibler divergence as the measure of proximity of proba-
bility distributions. For two probability densities f(x) and g(x), the
latter absolutely continuous with respect to the former, the Kullback-
Leibler divergence is defined as

D [f(x)||g(x)] = Ef(x)

[
log

f(x)

g(x)

]
. (4)

This divergence is a premetric: it is nonnegative and equal to zero
if f = g almost everywhere, but it is neither symmetric, nor does it
satisfy the triangle inequality.

For the sake of simplicity, we adopt the assumption that the
nodes know which parameters are local and which are global. This
situation occurs, e.g., if different types of sensors are used for taking
observations. The proposed algorithms is as follows:

Algorithm formulation

We aim to design a distributed algorithm for online mixtures estima-
tion performing the following two steps:

1. Local estimation:
At each node i ∈ I, locally estimate parameters ΘL

i and ΘG in a
Kullback-Leibler-optimal factorized form

D
[
ρi
(

ΘL
i

∣∣·) ρi (ΘG
∣∣·) ∣∣∣∣∣∣πi (ΘL

i ,Θ
G
∣∣·)]→ min .

2. Diffusion optimization:
At each node i ∈ I, find the Kullback-Leibler-optimally merged
distribution ρ̃(ΘG|·) using the neighbors’ distribution ρj(ΘG|·) as
hypotheses about ΘG,

ρ̃i(Θ
G
∣∣·) = arg min

ρ∗i

|Ii|−1
∑
j∈Ii

D
[
ρ∗i

(
ΘG
∣∣·) ∣∣∣∣∣∣ρj (ΘG

∣∣·)] .
(5)
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3.1. Local estimation

Local estimation asserts approximation of the intractable true density
πi
(
ΘL
i ,Θ

G|·
)

by individual lower-dimensional densities ρi
(
ΘL
i |·
)

and ρi
(
ΘG|·

)
as in (5). That is, the goal is to perform minimization

of the Kullback-Leibler divergence

D
[
ρi
(

ΘL
i ,Θ

G
∣∣·) ∣∣∣∣∣∣πi (ΘL

i ,Θ
G
∣∣yi,0:t

)]
= Eρi(ΘL

i ,Θ
G|·)

[
log

ρi
(
ΘL
i ,Θ

G
∣∣·)

πi
(
ΘL
i ,Θ

G
∣∣yi,0:t

)]
= Eρi(ΘL

i |·)

[
log ρi

(
ΘL
i

∣∣·)]+ Eρi(ΘG|·)

[
log ρi

(
ΘG
∣∣·)]

− Eρi(ΘL
i |·)

Eρi(ΘG|·)

[
log πi

(
ΘL
i ,Θ

G
∣∣∣·)] . (6)

It is straightforward to see that the minimization of (6) with respect
to ΘL

i and ΘG leads to minimizations of expected Kullback-Leibler
divergences with lower-dimensional densities. Because the mini-
mum is reached under equal arguments of the Kullback-Leibler di-
vergence, the solution is given by the system

ρi
(

ΘG
∣∣·) = cL exp

{
Eρi(ΘL

i |·)

[
log πi

(
ΘL
i ,Θ

G
∣∣∣·)]} ,

ρi
(

ΘL
i

∣∣·) = cG exp
{
Eρi(ΘG|·)

[
log πi

(
ΘL
i ,Θ

G
∣∣∣·)]} ,

where cL and cG are normalization constants.
The presented factorization is closely related to the mean-field

variational Bayesian inference [19, 20]. Indeed, it is possible to fur-
ther factorize the particular densities ρi(ΘL

i |·) and/or ρi(ΘG|·) and
proceed with the ordinary variational Bayes method, sequentially
seeking a consistent solution by revising the lower-dimensional den-
sities in a circular way until a convergence criterion is met. The
mean-field variational algorithms are guaranteed to converge [21].
In the sequential estimation framework, usually a few iterations are
performed at each time step, using previous observations stored in
memory. The posterior distributions from the previous time step then
serve as the prior distributions. More elaborated methods for online
variational inference suitable for large data can be found in [22, 23].

In the next section, the described local estimation via factorized
densities will be extended by diffusion optimization of the poste-
rior distribution of ΘG. Then, it will be shown, that if the distribu-
tions of the mixture components belong to the exponential family,
the proposed method is analytically tractable as a message passing
algorithm.

3.2. Diffusion optimization

Each node i ∈ I has access to densities ρj(ΘG|·) of its neighbors
j ∈ Ii, representing hypotheses about the true parameter ΘG. In-
stead of working with the whole system of individual densities, we
want to replace them by a single density ρ̃i(ΘG|·). In particular, we
seek an element from the set of all admissible densities minimizing
the average divergence to all individual densities,

ρ̃i(Θ
G
∣∣·) = arg min

ρ∗i

|Ii|−1
∑
j∈Ii

D
[
ρ∗i (Θ

G
∣∣·)∣∣∣∣∣∣ρj(ΘG

∣∣·)]

= arg min
ρ∗i

D

ρ∗i (ΘG
∣∣·)∣∣∣∣∣
∣∣∣∣∣ ∏
j∈Ii

[
ρj(Θ

G
∣∣·)]1/|Ii|


=
∏
j∈Ii

[ρj( ΘG| · )]1/|Ii| . (7)

The resulting Kullback-Leibler-optimal distribution ρ̃i(ΘG|·) is thus
a geometric average of neighbors’ distributions. In the Bayesian dif-
fusion framework, this merging coincides with the combine step,
preferably performed on neighbors’ posterior distributions [25].
However, in our case, the local estimation method is iterative, and
(7) may be used between any subsequent iterations to speed up
convergence. This promising topic is postponed to further research.

Generally, the variational estimation of the posterior distribution
is inaccurate in the early stage of the online learning and gradually
becomes accurate as learning proceeds [24]. Therefore, it is reason-
able to start with a higher number of local iterations to speed up this
convergence, and to decrease it later down to one iteration between
two diffusion steps. The proposed collaboration by fusion of poste-
rior distributions can be seen as a weighted Bayesian learning that
contributes to the inference process (this will become more apparent
in the ongoing section).

4. COMPONENTS FROM THE EXPONENTIAL FAMILY

If the mixture components belong to the exponential family of dis-
tributions, the local estimation can take the form of a message pass-
ing algorithm. In general, any random variable yt has an exponen-
tial family distribution with a parameter ϑ, if its probability density
function can be written in the form

p(yt|ϑ) = exp [η · Ty(yt)−A(η)− k(yt)] , (8)

where η ≡ η(ϑ) is a natural parameter, Ty(yt) is a sufficient statis-
tic, A(η) is a log-partition (normalizing) function and k(yt) is a
function of yt. The particular form is not unique. The Bayesian
estimation of ϑ is analytically tractable if the prior distribution of
ϑ is conjugate, i.e., parameterized by hyperparameters ξt−1 of the
same size as Ty(yt) and real scalar νt−1, and with a density of the
form

πϑ(ϑ|ξt−1, νt−1) = exp [η · ξt−1 − νt−1A(η)]

− exp [h(ξt−1, νt−1)] , (9)

where A(η) is the same function as in the exponential family distri-
bution and h(ξt−1, νt−1) is a known function. The posterior distri-
bution of ϑ is then given by updated hyperparameters

ξt = ξt−1 + Ty(yt), and νt = νt−1 + 1. (10)

In the local estimation step, the component densities pi,k(yi,t|θi,k)
from Equation (1) and the convenient prior distributions for θi,k are
rewritten to compatible forms according to (8) and (9). Similarly, the
component indicators for yi,t, determining which component gener-
ated the actual yi,t, are modelled by multinomial distributions with
the probabilities (i.e., component weights φi,k) provided by the con-
jugate Dirichlet distribution. The local estimation algorithm then
iterates by passing messages – expectations – from the prior distri-
butions to the components and multinomial indicator models, which,
in turn, return messages containing the sufficient statistics updating
the prior hyperparameters in a sense (10). This is known as the vari-
ational message passing [17].

From (9) and the diffusion optimization step (7) it follows, that
merging of posterior distributions takes the form

ξ̃i,t =
1

|Ii|
∑
j∈Ii

ξj,t, and ν̃i,t =
1

|Ii|
∑
j∈Ii

νj,t.
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Remind, that it can be performed between any two subsequent it-
erations of the message passing algorithm, e.g. to speed up con-
vergence, or after the local estimation step to save communication
resources. Also remark its principal similarity with the Bayesian
update under conjugacy (10) – this is where the cornerstone of this
merging lies.

5. SIMULATION EXAMPLE

This example demonstrates the sequential diffusion estimation of
a normal mixture model by a network consisting of 16 nodes. Its
topology is depicted in Figure 1. The mixture has the form

yi,t|ΘL
i ,Θ

G ∼
Ki∑
k=1

φi,kN (µi,k,Σi,k),

where µi,k and Σi,k are the mean vectors and covariance matrices.
The first component observed by all network nodes has parameters

µ1 =

[
−5
−5

]
, Σ1,i =

[
1.5 + εi 0.9

0.9 2.0 + ε′i

]
,

where εi, ε′i ∼ Exp(0.5) are i.i.d. random samples from the ex-
ponential distribution. The second component is observed by nodes
i ∈ {7, . . . , 16} only. Their parameters are

µ2,i =

[
0
0

]
, Σ2,i =

[
2.0 + εi 0.8

0.8 3.0 + ε′i

]
,

where εi, ε
′
i ∼ Exp(0.5) are i.i.d. random samples from the

exponential distribution. The component weights in nodes i ∈
{7, . . . , 16} are φi = [0.7, 0.3]. The parameters sets are

ΘG = {µ1}, and ΘL
i = {µ2,i,Σ1,i,Σ2,i, πi}.

(Note that there is a potential for cooperation in estimation of µ2,i

and φi.) The estimation starts from the initial normal (N ), inverse-
Wishart (iW) and Dirichlet (Dir) prior distributions

µ1 ∼ N
(
[−7,−7]ᵀ, 15 · I[2×2]

)
,

µ2 ∼ N
(
[7, 7]ᵀ, 15 · I[2×2]

)
,

Σ1,Σ2 ∼ iW
(
5, 0.1 · I[2×2]

)
,

π ∼ Dir([1, 1]).

The single-component nodes provide their information to all neigh-
bors, but incorporate ρi(ΘG|·) only from other single-component
nodes. 1000 observations were generated for each node, the estima-
tion starts when the first 100 observations are received. At each time
t, 5 iterations of the local estimation step are performed, then, the
diffusion optimization follows.

As a performance measure, we employ MSE averaged over the
network (denoted by AMSE). The evolution of AMSEs under coop-
eration and no-cooperation are depicted in Fig. 2 for µ1 and µ2,i,
Fig. 3 for Σ1,i and Σ2,i and Fig. 4 for πi. We conclude, that the
proposed method leads to a significant improvement in estimation
of µ1. Moreover, it simultaneously helps the estimation of other pa-
rameters.

Since the memory length for yi,t would be limited in practice,
we also performed a simulation with a queue-type memory for 100
observations. The results were very similar to those presented here,
the method performed very slightly worse in terms of AMSE.

Finally, we remark that [5] provides an algorithm that allows dis-
tributed mixture estimation with inhomogeneous component weights
across the network, but assumes identical components.
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Fig. 1. Topology of the diffusion network.
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Fig. 2. Evolution of logarithm of AMSE of µ1 and µ2,i under coop-
eration (Coop.) and no cooperation (No coop.).
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Fig. 3. Evolution of logarithm of AMSE of Σ1,i and Σ2,i under
cooperation (Coop.) and no cooperation (No coop.).
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Fig. 4. Evolution of logarithm of AMSE of πi under cooperation
(Coop.) and no cooperation (No coop.).
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