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ABSTRACT
We address the problem of sequential parameter estimation
over networks using the Bayesian methodology. Each node
sequentially acquires independent observations, where all the
observations in the network contain signal(s) with unknown
parameters. The nodes aim at obtaining accurate estimates of
the unknown parameters and to that end, they collaborate with
their neighbors. They communicate to the neighbors their
latest posterior distributions of the unknown parameters. The
nodes fuse the received information by using mixtures with
weights proportional to the predictive distributions obtained
from the respective node posteriors. Then they update the
fused posterior using the next acquired observation, and the
process repeats. We demonstrate the performance of the
proposed approach with computer simulations and confirm its
validity.

Index Terms— parameter estimation over networks,
Bayes theory, mixture models, model averaging

1. INTRODUCTION

In networks of interconnected nodes, an important class of
inference problems is the signal and information processing
with local collaboration and where no central unit exists.
The nodes typically acquire their own observations, and they
process them in order to detect, estimate, or classify the
observations. They share with their neighbors their findings
in terms of point estimates [1], decisions [2], or probability
distributions [3], and use them to improve their inference.
These types of problems are of growing interest, and their
solutions find applications in diverse areas including, social
sciences, engineering, and biology.

An important issue in problems of inference over net-
works is how the shared information is exploited optimally
by the nodes for improved learning. In this paper, we are in-
terested in exploring ways of doing it by relying on Bayesian
∗The first author was supported by NSF under Award CCF-1320626.
†The second author was supported by the Czech Science Foundation,
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theory. More specifically, we assume that the nodes acquire
observations that contain signals with the same functional
forms. Furthermore, the nodes know that some, if not all,
of the unknown signal parameters of interest have the same
values in the observations of the different nodes. The signals
are distorted by independent noise processes that may have
different strengths for different nodes or may be even of dif-
ferent type. Our interest is in sequential processing of the
data, where at a given time instant t a node uses its prior to
update it to a posterior that contains the information in the
observation received at t. The node then shares this posterior
with its neighbors. From the received posteriors, the nodes
create a prior of the unknown parameters that will be used for
processing the next observation. Thus, we assume that there
is only one exchange of information among the neighboring
nodes between two received observations.

A key operation for improving the learning from neigh-
bors is the fusion of all the posteriors of the neighbors. In this
paper, we propose that we linearly combine these posteriors,
thus creating a mixture distribution. We also propose that the
mixing coefficients of this mixture are proportional to the re-
spective predictive distributions of the observations evaluated
at new observations and where the predictive distributions are
based on the nodes’ posteriors. One can readily show that the
mixing coefficients evolve with time as the accuracy of pre-
diction of the posteriors increases or decreases. It is important
to point out that since the overall posterior is a mixture dis-
tribution, one has to make sure that the size of these mixtures
does not grow with time. This entails that before sharing the
posteriors with the neighbors, the nodes have to reduce the
mixture complexity.

In the next section, we present the problem. In Section
3, we explain the proposed procedure for learning from
neighbors. In the following Section 4, we briefly outline
ways for approximating the posterior distributions that are
shared among neighbors. In Section 5, we present simulations
of a normal linear regression process that demonstrate the
performance of the proposed approach. Finally, in Section
6 we provide our concluding remarks.
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2. PROBLEM FORMULATION

Suppose that we have a connected network with N nodes
that only communicate with their neighbors. We denote the
set of indices of neighbors of node i by Ni. The index of
node i is also in Ni. Each node receives private observations
yi,t ∈ Rdy sequentially in time, where yi,t is the observation
of the ith node at t with t ∈ N0, and dy is the dimension
of yi,t. The observations of the nodes are modeled by a
parametric distribution given by `(yi,t|θ), where θ ∈ Rdθ is
a parameter vector that is unknown to all the nodes, and dθ is
the dimension of θ.

We discriminate among several distributions. They are

p(θ|Ii,t−1) : prior of θ at t,
π(θ|yi,t, Ii,t−1) : posterior of θ at t,
π̃(θ|yi,t, Ii,t−1) : approximated posterior of θ at t,
`(yi,t|θ) : distribution of yi,t given θ,
p(yi,t|yj,t−1, Ii,t−2) : predictive distribution of yi,t.

In the above list, Ii,t symbolizes the information acquired
by node i by time t and which is quantified by the posterior
distributions of all the nodes in Ni, or formally

Ii,t : {π̃(θ|yj,τ , Ij,τ−1), j ∈ Ni, τ = 0, 1, · · · , t}. (1)

It goes without saying that in Ii,t
π̃(θ|yi,τ , Ii,τ−1) = π(θ|yi,τ , Ii,τ−1), (2)

that is, the own posteriors of node i are not approximated. For
succinct notation, in the fusion of information of node i, we
will symbolize π(θ|yi,τ , Ii,τ−1) by π̃(θ|yi,τ , Ii,τ−1).

We assume that at t = 0 each node has an initial distribu-
tion denoted by π(θ|Ii,−1), where Ii,−1 is all the information
available to the node at the beginning of modeling. These
distributions are approximated (if necessary) by π̃(θ|Ii,−1)
and broadcasted to the neighbors. After receiving all the ini-
tial distributions from the neighbors, each node forms a fused
prior of θ. The new prior of node i is denoted by p(θ|Ii,0),
and we express the formation of the prior by

{π̃(θ|Ij,−1)}j∈Ni =⇒ p(θ|Ii,0). (3)

After receiving the first observations, each node exploits
Bayes’ theory to update its knowledge about θ, i.e., it forms a
posterior according to

π(θ|yi,1, Ii,0) ∝ `(yi,1|θ)p(θ|Ii,0), (4)

where ∝ stands for “proportional to.”
Once the nodes obtain their posteriors according to (4),

they approximate them with π̃(θ|yj,1, Ij,0) for reasons that
will become clear in the sequel. Then they broadcast the
approximated posteriors to their neighbors. Every node that
receives such posteriors aims again at fusing this information
with the information in its own posterior by implementing

{π̃(θ|yj,1, Ij,0)}j∈Ni =⇒ p(θ|Ii,1). (5)

The distribution p(θ|Ii,1) is a prior of θ of node i for
processing the next observation yi,2.

Now, the next observation is received and the process is
repeated. First, the posteriors π(θ|yj,2, Ij,1) are formed, they
are approximated and then broadcasted to the neighbors. With
these posteriors, the nodes form new priors p(θ|I2) and so on.

The main problem is formulated as follows: how should
the nodes process all the available posterior distributions
so that they will have improved learning of the unknown
parameters θ?

3. PROPOSED LEARNING

We address the stated problem by relying on the Bayesian
theory. We view the distributions received from the neighbors
as different “models” for describing the observed data. In
the Bayesian literature, when one deals with different models,
typically one resorts to model selection. In model selection,
the basic task is to select the best model from a set of
considered models using a predefined criterion. In our
problem, however, we will not aim at picking the best
distribution and keeping it, but instead we will preserve
all the available distributions through the concept of model
averaging [4, 5].

In our setting, a node does not know anything about the
quality of the data of the neighbors used for obtaining their
posteriors. All a node knows is the received parameter poste-
riors from the neighbors. The node then wants to use all the
available information to form one posterior. The main ques-
tion then is how to fuse the available posteriors. We propose
to use as a posterior a mixture of all the posteriors where the
weights of the mixands of the posterior are sequentially up-
dated. This formation of posteriors will be performed in a
principled way. Next we describe the main idea in more de-
tail.

The focus will be on node i. At time t = 0, this node
receives the initial prior distributions of the parameter θ,
π̃(θ|Ij,−1), from all its neighbors, i.e., j ∈ Ni. The node
i assigns weights to each of the neighbors (including itself)
denoted bywj,0, wherewj,0 ≥ 0, and

∑
j∈Nj wj,0 = 1. Then

the node forms its prior by

p(θ|Ii,0) =
∑
j∈Ni

wj,0 π̃(θ|Ij,−1). (6)

If the node has no prior history of “trust” in its neighbors,
it assigns equal weights, i.e., wj,0 = 1/|Ni|, with |Ni|
representing the size of the set Ni.

Next, the node i receives the first observation and evalu-
ates the posterior of θ by

π(θ|yi,1, Ii,0) ∝ `(yi,1|θ)p(θ|Ii,0)

= `(yi,1|θ)
∑
j∈Ni

wj,0 π̃(θ|Ij,−1). (7)
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Thus, the posterior of θ of node i is a mixture distribution
with |Ni| components. It is clear that if the nodes report these
distributions at the next time instant, the number of mixands
will quickly explode and will become unmanageable. The
only way to proceed from here on is to obtain an approxi-
mation of π(θ|yi,1, Ii,0), by π̃(θ|yi,1, Ii,0). There are many
approaches of finding an approximation π̃(θ|yi,1, Ii,0), and
this will be addressed further below. Here we only maintain
that for t ≥ 1, if the approximation π̃i,1(θ|yi,1) is a mixture,
it always has the same number of components.

At time t = 1 node i also quantifies the “quality” of its
own prior and the priors received by its neighbors. To that
end, we propose that the node treats the priors as models for
describing future data. In other words, we propose that the
quality of the priors of the nodes is evaluated by the predictive
distributions obtained by the priors.

First we write the predictive distribution of yi,1,

p(yi,1|Ii,0) =

∫
Θ

`(yi,1|θ)
∑
j∈Nj

wj,0π̃(θ|Ij,−1)dθ

=
∑
j∈Ni

wj,0

∫
Θ

`(yi,1|θ) π̃(θ|Ij,−1)dθ

=
∑
j∈Nj

wj,0p(yi,1|Ij,−1), (8)

where

p(yi,1|Ij,−1) =

∫
Θ

`(yi,1|θ)π̃(θ|Ij,−1)dθ (9)

is the predictive distribution of yi,1 by using the posterior
of node j ∈ Ni, π̃(θ|Ij,−1), and where the predictive
distribution is computed at yi,1.

The quality of π̃(θ|Ij,−1) is measured by the weight wj,0.
The trust in node j is now updated according to

wj,1 ∝ wj,0

∫
Θ

`(yi,1|θ)π̃(θ|Ij,−1)dθ

= wj,0p(yi,1|Ij,−1). (10)

We note that the weights wj,1 will be used in the formation of
the priors of θ while processing the observations yi,2.

From the above, the sequential nature of the processing
of the next observations is clear. First the nodes approximate
their posteriors π(θ|yj,1, Ij,0) with π̃(θ|yj,1, Ij,0) and trans-
mit them to their neighbors. Before yi,2 is observed, the node
i forms the prior of θ obtained from its own posterior and
the received posteriors of the neighbors π̃(θ|yj,1, Ij,0) and ac-
cording to

p(θ|Ii,1) =
∑
j∈Ni

wj,1 π̃(θ|yj,1, Ij,0). (11)

This prior is updated to the posterior π(θ|yi,2, Ii,1) by

π(θ|yi,2, Ii,1) ∝ `(yi,2|θ) p(θ|Ii,1). (12)

The distribution π(θ|yi,2, Ii,1) is approximated by a sim-
pler distribution, π̃(θ|yi,2, Ii,1), and it is transmitted to its
neighbors. Then the new weights of the neighbors of i are
computed by

wj,2 ∝ wj,1p(yi,2|yj,1Ij,0), (13)

where

p(yi,2|yj,1, Ij,0) =

∫
Θ

`(yi,2|θ)π̃(θ|yj,1, Ij,0)dθ. (14)

The process continues following the same steps.
The summary of the implementation of the method is

described below. The description is given for node i. At
time t = 0, the node assigns weights to its neighbors wj,0
and it receives from the neighboring nodes the distributions
π̃(θ|Ij,−1). It is assumed that at time t − 1 (where t =
1, 2, · · · ) the node i receives posteriors of θ from its neigh-
bors, π̃(θ|yj,t−1, Ij,t−2). Also, at that time the node has its
updated weights wj,t−1, j ∈ Ni.

Operations performed at time t:

1. Construction of the fused prior,

p(θ|Ii,t−1) =
∑
j∈Ni

wj,t−1 π̃(θ|yj,t−1, Ij,t−2).

2. Computation of the posterior,

π(θ|yi,t, Ii,t−1) ∝ `(yi,t|θ) p(θ|Ii,t−1).

3. Approximation of the posterior π(θ|yi,t, Ii,t−1) by
π̃(θ|yi,t, Ii,t−1).

4. Transmission of π̃(θ|yi,t, Ii,t−1) to the neighbors.

5. Update of the weights wj,t−1 to wj,t by

w̃j,t = wj,t−1p(yi,t|yj,t−1, Ij,t−2),

and

wj,t =
w̃j,t∑

k∈Nj w̃k,t
,

and where

p(yi,t|yj,t−1, Ij,t−2) =

∫
Θ

`(yi,t|θ)π̃(θ|yj,t−1, Ij,t−2)dθ.

4. APPROXIMATIONS OF THE POSTERIORS

There are many methods for approximating the mixtures with
simpler distributions. Here we mention a few.

Perhaps the simplest approach is to use the moment
matching method. Suppose we want to approximate
π(θ|yi,t, Ii,t−1) with π̃(θ|yi,t, Ii,t−1). We compute the
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moments of θ with respect to πi,t(θ|yi,t) and choose the
parameters of π̃i,t(θ|yi,t) so that the moments of θ remain the
same.

One big class of methods is based on exploiting a measure
of divergence of two densities (e.g., the Kullback-Leibler
divergence). The main idea is to choose a distribution
π̃(θ|yi,t, Ii,t−1) that comes from a certain admissible family
and that minimizes the dissimilarity of π(θ|yi,t, Ii,t−1) and
π̃(θ|yi,t, Ii,t−1). For example, one can aim at mixture
reduction by way of merging the mixture components by
using the Kullback-Leibler divergence [6].

Another set of approaches can be found in [7], where
the Occam’s window method is applied. In [8], an approach
based on function approximation is proposed. The approxi-
mation minimizes an upper bound of the approximation error
between the original and the simplified model as measured by
the L2 distance.

5. SIMULATIONS

The following simulation example demonstrates the proper-
ties of the proposed collaborative estimation method. We con-
sider a network of six nodes i = {0, . . . , 5} depicted in Fig. 1.
Each node receives 400 observations generated by a normal
regression process

yi,t = θ>xi,t + εi,t,

where θ = [0.4,−0.8, 0.3, 0.1]> is the common vector of
regression coefficients, xi,t ∼

∏4
j=1 Uj(0, 1) are nodes-

specific regressors, and the zero-mean normal noise εi,t has
a standard deviation 0.9 at node 3 and 0.2 elsewhere.

0
1

2

3

4
5

Fig. 1. Topology of the network used for simulation.

The estimation of θ exploits the multivariate normal
prior distributions N (µi,t−1,Σi,t−1), initialized with µi,0 =
[0, 0, 0, 0]> and Σi,0 = 100 · I4×4. The prior weights are
uniform. The fusion procedure is based on the moment
matching method and yields a single normal distribution with
mixture moments as parameters,

µ̃i,t−1 =
∑
j∈Ni

wj,t−1µj,t−1,

Σ̃i,t−1 =
∑
j∈Ni

wj,t−1

(
µj,t−1µ

>
j,t−1 + Σj,t−1

)
− µ̃i,t−1µ̃

>
i,t−1.
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Fig. 2. Evolution of the decimal logarithm of the mean
squared error averaged over the network. The three grey
bands correspond to failure periods.

In order to demonstrate the robustness of the proposed
method, three failure periods were introduced:

t ∈ {40, . . . , 50} — The prior distribution of node 4 was
reset to the initial prior distribution.

t ∈ {100, . . . , 125} — Node 5 measurements were void, that
is, y5,t = 0 in this period.

t ∈ {200, . . . , 205} — The prior distribution of node 3 was
reset to the initial prior distribution.

Otherwise, the process is stable. Due to this stability, the
exchanged distributions may gradually get highly similar,
which influences the dynamics of the weights. This effect
is suppressed by increasing their uncertainty by means of
exponential flattening, independently introduced in [9, 10],
and used in a similar fashion in dynamic model averaging
[11].

We compare two scenarios. First, the nodes collaborate
according to the proposed method, i.e., they share their
distributions with neighbors, and proceed with them with
adaptively inferred weights. Second, the nodes do not
collaborate at all, and perform the parameter inference only
locally.

The estimation performance is measured by the mean
squared error averaged over the network (AMSE). Its evolu-
tion is depicted in Fig. 2 for both scenarios. The collaboration
improved the estimation quality considerably. The reactions
to failures are fast and relatively stable. Figure 3 shows the
weights evolutions at the network nodes. From the plots, we
can conclude that the proposed algorithm has several appeal-
ing features. First of all, it effectively discounts nodes with
a higher noise variance (Node 3). Second, it immediately re-
acts to failures and quickly recovers from them. Finally, the
weights assigned to neighbors with similar statistical prop-
erties tend to concentrate under regular (failure-free) condi-
tions.
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6. CONCLUSIONS

In this paper we proposed the concept of model averaging for
fusion of information in sequential estimation over networks.
The nodes of a network process their own observations by
using the Bayesian paradigm. They exchange their posteriors
with their neighbors which are then fused to form a prior
for processing the next observations. The obtained priors
are mixtures with mixand coefficients that keep evolving
with time and that reflect the predictive performance of
the distributions received by the respective neighbors. The
proposed method was tested on a network with six nodes
where the nodes observe a regression process and with three
types of disruptions. The results revealed several appealing
features of the method.
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reduction using reverse Kullback-Leibler divergence,” arXiv
preprint arXiv:1508.05514, 2015.

[7] D. Madigan and A. E. Raftery, “Model selection and account-
ing for model uncertainty in graphical models using Occam’s
window,” Journal of the American Statistical Association, vol.
89, no. 428, pp. 1535–1546, 1994.

[8] K. Zhang and J. T. Kwok, “Simplifying mixture models
through function approximation,” Neural Networks, IEEE
Transactions on, vol. 21, no. 4, pp. 644–658, 2010.

[9] J.Q. Smith, “The multiparameter steady model,” Journal of
Royal Statistical Society, Ser. B, vol. 43, pp. 256–260, 1981.

[10] V. Peterka, “Bayesian approach to system identification,”
Trends and Progress in System identification, vol. 1, pp. 239–
304, 1981.
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Fig. 3. Evolution of neighbors’ weights at nodes 0 to 5. The
three grey bands correspond to failure periods.
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