
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING
Int. J. Adapt. Control Signal Process. (2016)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/acs.2739

Adaptive kernels in approximate filtering of state-space models

Kamil Dedecius*,†

Institute of Information Theory and Automation, Czech Academy of Sciences, Pod Vodárenskou věží 1143/4, 182 08
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SUMMARY

Standard Bayesian algorithms used for online filtering of states of hidden Markov models from noisy mea-
surements assume an accurate knowledge of the measurement model in the form of a conditional probability
density function. However, this knowledge is often unreachable in practice, and the used models are more
or less misspecified, or it is too complex, making the resulting models intractable. This paper focuses on
these issues from the particle filtering perspective. It adopts the principles of the approximate Bayesian
filtering, where the particle weights are based on the (dis)similarity of the true measurements and the pseudo-
measurements obtained by plugging the state particles directly into the measurement equation. Specifically,
a new robust method for online tuning of the weighting kernel is proposed. Copyright © 2016 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Bayesian estimation heavily depends on a solid knowledge of measurements-generating models in
the form of conditional probability distributions. However, to quote the famous statistician George
Box, “all models are wrong, but some are useful” [1]. Most or all of the models describing real-
world phenomena are more or less idealized, and do not completely reflect their intrinsic attributes,
e.g., due to rarely occurring or not completely understood effects, or simply for mathematical con-
venience. The adopted models are thus incomplete and approximate, that is, to a certain degree
misspecified. As a result, the true measurements may exhibit strong departures from them – the noise
terms may have significantly different or completely unknown distributions, outliers may occur,
some usually mild and neglected effects may be pronounced etc. The misspecification naturally
impairs the parameter estimates, as the standard Bayesian procedures are generally not robust to
it [2].

The present paper focuses on treating these issues in sequential estimation – filtering – of nonlin-
ear state-space models, abounding, e.g., in signal processing, control, target tracking, econometrics,
computer vision, statistics, biology, and many other fields [3–7]. It aims at the class of sequential
Monte Carlo filters, called particle filters, and specifically at their approximate extensions.

The research in the particle filtering domain has devoted a significant attention to the misspec-
ification issues. The solutions can be divided into several branches. One of them involves optimal
(adaptive) distributions used for proposing new samples from the state space, taking the up-to-
date measurements into account in order to stabilize and improve the sampling procedures [6, 8].
Although this approach is intuitively appealing, and also satisfies a sort of optimality criterion, it is
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intractable in most cases [7]. The effort expended in attempting to approximate the optimal proposal
distributions resulted in many methods, see, e.g., [6, 9]. An alternative way towards more robust
particle filters consists in replacing the resampling procedure by a more sophisticated alternative,
favouring particles that are more likely to survive at the next time step. This group of algorithms
comprises primarily the auxiliary particle filters [10–12]. It is also possible to focus clearly on the
case of outlier-contaminated measurements. The solutions involve second-order approximations of
the log-likelihood [13], dynamic data rectification [14], and outlier detection via testing procedures
[15]. A more general and stable approach is filtering with a bank of particle filters, approximat-
ing the nonnormal noise by normal mixtures [16]. Recently, an algorithm was proposed that deals
with imprecise models even more directly by means of the random set theory framework [17, 18].
We note, that these basic algorithms gave rise to an abundance of various modifications, surveyed,
e.g., in [4, 19–22]. This plethora of available algorithms, and the lack of a narrow universal class of
solutions are often viewed as one of the main drawbacks of the particle framework.

A much more universal way around the discussed issues provide the novel approximate Bayesian
filters, e.g. [23–25], allowing to approximate the posterior state distribution in cases where the mea-
surement model is not sufficiently known or it is too complex to be evaluated. These filters, inspired
by the approximate Bayesian computation methods (surveyed, e.g., in [26]), proceed with samples
from the state space that are directly plugged into the measurement equation known, e.g., up to the
noise properties. The resulting particle weights are proportional to the proximity of the obtained
pseudo-measurements to the true measurement. The proximity is measured by means of a ker-
nel function. The generic approximate filter adopts, similarly to the standard (offline) approximate
Bayesian computation literature, a uniform kernel. It either accepts the particles and assigns them
uniform weights, or rejects them if they yield pseudo-measurements too distant from the true mea-
surement [24]. The recent results for the offline domain can be found, e.g., in [25–28], and in [29]
proposing both online and offline (batch) algorithms allowing a gradient-based maximum likelihood
estimation of static parameters in hidden Markov models with intractable likelihoods. It extends the
earlier theoretical results [30] by using some ideas from [31].

The generic approximate filter has attractive asymptotic properties, ensuring convergence to a
biased state estimator under fixed kernel and the number of particles going to infinity, with the
bias tending to zero in the limit of a vanishing kernel scale [24]. However, this double convergence
may be seen impractical [32], and a carefully designed algorithm for scale adaptation (contraction)
is required to achieve reasonable convergence and prevent filter collapsing [33]. A conservative
approach with good theoretical properties is the linear schedule, slowly contracting the scale in time
[34]. An alternative approach determining the scale from the required effective sample size was
reported in [35] and adopted in the generic approximate filter, too.

The uniform kernel used in the generic approximate filter has one more disadvantage: it com-
pletely neglects the proximity of the pseudo-measurements covered by the kernel to the true
measurements, thus giving no information about the filter accuracy during the run time. It only
assures acceptance or rejection of state samples, but the accepted ones are assigned with equal
uniform weights. Although the filter is efficient in a long run, its short-time (or small sample) perfor-
mance is impaired by this strategy. An alternative approach rooted in the kernel density estimation
(KDE) was proposed recently [23]. It considers centered probability kernels with finite second-order
moments. The scale adaptation exploits the standard KDE criterion minimizing the mean integrated
square error, which inevitably calls for its subjective optimization due to the dependence of the
optimal scale on the target density being estimated [36, Chap. 3.3–3.4]. With some additional simpli-
fying assumptions, it results in a simple plug-in rule for scale determination. A potential drawback
of the filter lies in the kernel construction: the kernel scales are independent of the respective values
of the true measurements, and rely only on their stable evolution, well explained by the (imprecise
or intractable) measurement model.

In this paper the problem of adaptive nonuniform kernels is studied from an alternative viewpoint.
The idea is that if the true measurement model were known, its p% highest probability region (HPR)
would cover a related set of possible measurements, including the pseudo-measurements. However,
under the lack of its knowledge, it is surrogated by a convenient probability kernel providing this
coverage. This principle allows to infer states that lead to pseudo-measurement covered by the HPR,
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and to ascribe the state particles weights proportional to the kernel values in a fashion of the standard
particle filter.

The paper is organized as follows: Section 2 succinctly overviews basic principles of the Bayesian
filtration of state-space models from the viewpoint of sequential Monte Carlo filtration and the
approximate filtration. Section 3 develops the novel theory of adaptive kernels, discusses its prop-
erties and summarizes the result in Algorithm 1. Section 4 contains two simulation examples
comparing the performance of the proposed solution with the state-of-the-art solutions and the
particle filter under a well-defined and a misspecified model, respectively. Section 5 concludes
the paper.

2. BACKGROUND ON BAYESIAN FILTERING

Let us consider the discrete-time state-space Markovian models with hidden state variables Xt
determining measurements Yt through

Xt j .Xt�1 D xt�1/ � f .xt jxt�1/; (1)

Yt j .Xt D xt / � g.yt jxt /; (2)

where t 2 N0 denotes the discrete time index, and f .xt jxt�1/ and g.yt jxt / are scalar or multi-
variate (stochastic) state and measurement functions, respectively. These functions may be linear or
nonlinear. In Bayesian practice they are conditional probability densities, expressing the stochastic
nature of the considered processes. The measurements yt are directly observed, while the states xt
are hidden and inferred.

The Bayesian approach to sequential inference – filtering – of xt from acquired measurements
y1Wt D ¹y1; : : : ; ytº relies on a prior distribution with a probability density �.x0/, quantifying the
initial knowledge about the state variable based, e.g., on historical data or expert’s opinion. This
density, representing the Bayesian estimator (filter) of xt , is sequentially updated by virtue of the
Bayes’ theorem

�.x0Wt jy1Wt / / �.x0/

tY
�D1

g.y� jx� /f .x� jx��1/: (3)

That is, the state estimate is recursively evolved and updated according to (1) and (2), respectively.
The analytical tractability of the Bayesian update (3) is rare. One prominent case arises if

f .xt jxt�1/ and g.yt jxt / are linear, or mildly nonlinear but locally differentiable (hence lineariz-
able) functions with uncorrelated zero-mean normal stochastic components. Under normal prior
density �.x0/, the resulting filter is a Bayesian equivalent of the celebrated Kalman filter [37], or
its extended variant [38]. Another tractable case arises if the space of Xt is discrete and finite. How-
ever, these conditions are rather restrictive in practice, as the functions may be nonlinear or their
normality severely corrupted, e.g., by outliers. In such cases, the analytical approximations are not
satisfactory and numerical integrations are problematic in high dimensions [39]. A feasible solution
provide the sequential Monte Carlo methods.

2.1. Sequential Monte Carlo

The class of sequential Monte Carlo methods, also known as the particle filters [40], approximates
the target density �.x0Wt jy1Wt / by a set of N Monte Carlo samples (termed particles) x.i/t with
weights w.i/t in the point-mass sense

�.x0Wt jy1Wt / �

NX
iD1

w
.i/
t ıx.i/t

.xt /; (4)
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where ı
x
.i/
t
.xt / is the Dirac delta measure located at x.i/t . The samples x.i/t are obtained from a

convenient proposal distribution q
�
x
.i/
t jx

.i/
0Wt�1; yt

�
. The weightsw.i/t taking values in the unit .N �

1/-simplex are sequentially updated by the Bayes’ theorem,

w
.i/
t / w

.i/
t�1

g
�
yt

ˇ̌̌
x
.i/
t

�
f
�
x
.i/
t

ˇ̌̌
x
.i/
t�1

�
q
�
x
.i/
t

ˇ̌̌
x
.i/
0Wt�1; yt

� : (5)

A significant research effort has been devoted to optimal design of the proposal distribution
[6, 8]. However, for the sake of the present paper, we stick with the generic bootstrap filter [40],
using the state function f .xt jxt�1/ for this purpose. The propagation of samples through the state
density provides a general, simple and powerful approach to filtering time series. The particle filter
works well for standard problems where the model is a good approximation to the data [10]. The
bootstrap variant of (5) thus simplifies to

w
.i/
t / w

.i/
t�1g

�
yt j x

.i/
t

�
: (6)

A subsequent resampling mechanism is usually introduced to prevent the filter from collapsing due
to a high concentration of weights mass to a few particles, or even to a single particle. Resampling
constructs a new set ofN particles by drawing with replacement from the original set

°
x
.i/
t

±
iD1;:::;N

with regard to
°
w
.i/
t

±
iD1;:::;N

. A subsequent propagation through the proposal distribution spreads

the particles in the regions of potentially high probability. Several resampling methods have been
proposed, from the basic multinomial resampling, where the probability of x.i/t being drawn is equal
to its weight w.i/t , to systematic resampling methods minimizing the introduced variance [4, 39].

2.2. Approximate filters

The standard Bayesian filtering methods assume that the measurement model (2) is known in
the form of a probability density. However, as it was discussed in Introduction, this (expressed)
knowledge is often very limited due to the complexity of the observed process (typically the noise
properties), or due to physical limitations. Alternatively, the model may be prohibitively complex
and/or numerically intractable.

Assume, however, that there exists a form of the measurement model (2) that allows to simulate
pseudo-measurements u.i/t by plugging the state particles x.i/t into it. This model may be a highly
complex probability density, a differential equation (similarly to the static case studied in [41]),
a stochastic process, or even a noise term-free equation. Then, the posterior density �.x0Wt jy1Wt /
can be approximated by a density Q�.x0Wt jy1Wt / represented with samples x.i/t from f .xt jxt�1/, that
produce pseudo-measurements u.i/t � g

�
yt jx

.i/
t

�
lying within a predefined neighborhood of the

true yt ,

Q�.x0Wt jy1Wt / D �.x0/

Z
Q�.x1Wt ; u1Wt jy1Wt /du1Wt

/ �.x0/

tY
�D1

�Z
Qgy� ;"� .u� /g.u� jx� /du�

�
f .x� jx��1/;

(7)

where the kernel function Qgy� ;"� .u� / defines the neighborhood. This is the generic approximate
Bayesian filter [24]. Note, that the update (7) is an approximate variant of the Bayesian update (3),
yielding the posterior importance weights w.i/t

w
.i/
t / w

.i/
t�1 Qgyt ;"t

�
u
.i/
t

�
; (8)
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c.f. Equation (6). Naturally, it is possible to benefit from sampling M pseudo-observations°
u
.i;j /
t

±
jD1;:::;M

for each particle x.i/t and proceed with an averaged version of (8),

w
.i/
t / w

.i/
t�1

PM
jD1 Qgyt ;"t

�
u
.i;j /
t

�
M

;

as proposed in [35]. In any case, the choice of Qgyt ;"t .ut / is a critical part of the filter design, and
the present paper is devoted to this issue.

3. ADAPTIVE CHOICE OF QGYT ;"T .UT /

The generic approximate Bayesian filter [24], inspired by the static approximate Bayesian computa-
tion methods surveyed, e.g., in [26], constructs an admissible set of u.i/t around the true measurement
yt with a radius "t ,

Qgyt ;"t

�
u
.i/
t

�
/ 1h

jju
.i/
t �yt jj6"t

i; "t > 0: (9)

This Qgyt ;"t .�/ is also known as the uniform kernel [23]. In order to prevent the filter from collaps-
ing, the scale (radius) "t must be properly tuned, e.g., to reach a preset effective sample size [35].
Although this approach enjoys good asymptotic properties, its uniform weighting strategy prevents
the user from determination of more probable particles at particular time instants. This drawback is
eliminated in [23], where the authors propose a procedure for online tuning of nonuniform kernels.
It is based on the kernel density estimation (KDE) framework [36], and selects the optimal kernel
scale based on the empirical distribution of u.i/t . However, only a suboptimal solution is reachable
due to quite strong assumptions (e.g., the optimal scale depends on the unknown distribution being
estimated). The procedure strongly relies on the past evolution of state particles, and neglects the
location of the actual true measurement yt , which can be seen as a drawback if the past data were
not informative enough.

Finally, it should be remarked, that the kernel idea coincides with a noisy extension of the under-
lying hidden Markov process (1)–(2) with a new sequence of observations ¹Yt C Vtº, where Vt is a
random noise distributed according to the kernel Qgyt ;"t .�/. More on this interpretation can be found,
e.g., in [29, Sec. 2].

In the subsequent section, a new method for evaluation of particle weights is devised, that stems
from the generic approximate Bayesian filter, but to some degree exploits the attractive kernel-based
viewpoint of the KDE-based filter.

3.1. Proposed kernel tuning procedure

The aim of the proposed procedure is to reflect the proximity of the simulated pseudo-measurements
u
.i/
t to the true measurement yt under very mild assumptions. The underlying idea is that the 100p%

highest probability region (HPR) of the true measurements-generating model, i.e., the unknown or
intractable conditional probability density g.yt jxt /, would cover the corresponding region of pos-
sible measurements, including the pseudo-measurements emerging from admissible particles x.i/t .
However, the true model is unknown or intractable. Thus, we surrogate it by a convenient symmet-
ric kernel Qgyt ;"t .ut / centered at yt , whose scale "t assures the coverage of a preset proportion of
pseudo-measurements ˛=N by a p-HPR of this kernel. Indeed, this kernel is not equivalent to the
true model, but ensures that the asymptotic convergence of the filter is preserved by conservation
of a high proportion of admissible particles, favouring the more probable ones. The kernel must
be invariant under a location change, and scalable, i.e., belong to the location-scale family of sym-
metric distributions [42]. Many popular distribution are members of this family, e.g., the normal,
Cauchy, Student’s t, exponential and Laplace distributions, to name a few.
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The kernel adaptation consists of two subsequent steps:

1. Finding uŒ˛�t , the pseudo-measurement that has the ˛th least distance from yt . This step
involves computing the distances jjyt � u

.i/
t jj for all i D 1; : : : ; N .

2. Setting the kernel location parameter to yt and the scale parameter "t so that uŒ˛�t lies on the
boundary of the resulting p-HPR, i.e.,ˇ̌̌

ˇ̌Z u
Œ˛�
t

yt

Qgyt ;"t .ut /dut

ˇ̌̌
ˇ̌ D p

2
: (10)

This approach has several attractive features:

� The posterior particle weights are nonuniform and proportional to the proximity of the simu-
lated pseudo-measurements u.i/t to the true measurement yt . This is particularly useful in the
resampling step, where the more probable particles are replicated and those with negligible
weights removed [43].
� The kernel construction around yt is worthwhile if the particles have not sufficiently explored

the state space yet. The particles are gradually concentrating around the true value of x.i/t even
in the case of their initial too high or too low dispersion.
� The method admits a wide class of kernels, including the heavy-tailed ones, better reflecting

high-dispersion processes.
� Under most of the kernels, outlying yt do not violate the filter stability, because the kernel scale

becomes appropriately high, and the distant pseudo-measurements occupy relatively flat kernel
tails. This will be demonstrated in Figure 2.
� The computation of the posterior weights (8) is principally the same as in the bootstrap particle

filter, the only difference is that while the particle filter exploits the measurement model (like-
lihood), the approximate filter uses the kernel. The approximate filter is much more robust as
it does not rely on a correct measurement model (2), of course at the cost of a slightly worse
tracking performance if this knowledge is present.
� The computational complexity of the approximate filter depends on the used kernel. Compared

with the bootstrap particle filter, the approximate filter with normal kernel increases the com-
plexity only by (i) searching of uŒ˛�t , and (ii) tuning of "t ; both these operations are very cheap
with respect to the (identical) evaluation of posterior weights. On the other side, there are ker-
nels (e.g. the Cauchy kernel) that provide a much cheaper computation of the posterior weights
than the bootstrap particle filter assuming a normal measurement model.
� The asymptotic results of the generic particle filter are not influenced, i.e., the convergence of

the filter is preserved.

3.2. Computation of "t

While the first step relies on standard sorting algorithms, the adaptation of "t is a slightly more
complicated. Equation (10) requires that uŒ˛�t is either a .1�p/=2-quantile of Qgyt ;"t .ut / if uŒ˛�t 6 yt ,
or .1�p/=2Cp D .1Cp/=2-quantile if uŒ˛�t > yt , respectively. Generally, the �-quantile is given
by the quantile function. Denoting the cumulative distribution function of a random variable „ as

F.�/ D Pr.„ 6 �/ D �; � 2 Œ0; 1�;

the quantile function is its inverse, F �1.�/. If F belongs to the location-scale family, then the
distribution of the variable ‡ D a C "„ with a 2 R and " > 0 belongs to this family too, and its
quantile function has the form

Q.�/ D aC "F �1.�/; � 2 Œ0; 1�: (11)

With the help of (11) it is already possible to determine the scale parameter "t of Qgyt ;"t .ut /. We
identify the location a with the true measurement yt , and the �-quantile with uŒ˛�t . Instead of
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Figure 1. Scheme of the kernel tuning. Top: the ticks represent the pseudo-observations u.i/t , the dashed and
dotted lines stand for the true observation yt and the identified uŒ˛�t , respectively. Middle: The kernel scale
parameter "t is sought such that uŒ˛�t is a .1 � p/=2-quantile of the adopted kernel. Alternatively, if uŒ˛�t
were greater than yt , the symmetric .1Cp/=2-quantile would be used. For better exposition, the cumulative
distribution function (CDF) is used instead of its inverse – the quantile function. Bottom: The found scale "t

parameterizes the kernel used for the determination of the (nonnormalized) particle weights.

determining whether uŒa�t is smaller or greater than yt , it suffices to rely on kernel symmetry, and
consider the nonnegative distance and the quantile right of yt , i.e., � D .1C p/=2. Then,

"t D

ˇ̌̌
Q
�
1Cp
2

�
� yt

ˇ̌̌
F �1

�
1Cp
2

� D

ˇ̌̌
u
Œ˛�
t � yt

ˇ̌̌
F �1

�
1Cp
2

� : (12)

The principle of kernel scale tuning is depicted in Figure 1. The evaluation of quantile functions
often requires numerical methods or approximations. However, in several important cases, closed-
form expressions are available. Two prominent analytically tractable examples are given in the
following section.

3.3. Examples of kernels

In this section, we derive the adaptation rules for the normal and Cauchy kernels, respectively.
Figure 2 demonstrates the difference between these two kernels.

The normal kernel with a positive scale parameter (equivalently standard deviation) "t , translated
to yt , is given by

Qgyt ;"t

�
u
.i/
t

�
/ exp

0
B@
ˇ̌̌
u
.i/
t � yt

ˇ̌̌2
"2t

1
CA : (13)
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Figure 2. Normal and Cauchy kernel adaptation. The square marker denotes the true measurements yt while
the point markers represent pseudo-measurements u.i/t . If yt is an outlier (top), the goal is to avoid degen-
eration of weights w.i/t of u.i/t by assignment of relatively noninformative (nearly uniform) weights via flat
kernels. If yt attains values close to u.i/t (bottom), then the weights w.i/t should appropriately reflect this
closeness. The Cauchy kernel is narrower around the location parameter than the normal kernel, but has

significantly heavier tails. The posterior weights are proportional to the value of the kernel.

The quantile function of N
�
yt ; "

2
t

�
for � 2 Œ0; 1� has the form

Q.�/ D yt C "tˆ
�1.�/; (14)

where ˆ�1.�/ denotes the quantile function of the standard normal distribution N .0; 1/. That is,
for � D .1C p/=2 the rule for "t is given by

"t D

ˇ̌̌
u
.Œ˛�/
t � yt

ˇ̌̌
ˆ�1

�
1Cp
2

� : (15)

The Cauchy kernel is a heavy-tailed kernel with a positive scale "t , translated to yt , and defined by

Qgyt ;"t

�
u
.i/
t

�
/

0
B@1C

ˇ̌̌
u
.i/
t � yt

ˇ̌̌2
"2t

1
CA
�1

: (16)

The quantile function of Cauchy.yt ; "t / for � 2 Œ0; 1� has the form

Q.�/ D yt C "tF
�1.�/

D yt C "t tan

�
�

�
� �

1

2

	�
(17)

where F �1.�/ denotes the quantile function of the standard Cauchy distribution Cauchy.0; 1/.
For � D .1C p/=2, the rule for "t is given by

"t D

ˇ̌̌
u
.Œ˛�/
t � yt

ˇ̌̌
tan

�
�p
2

� : (18)

This kernel is particularly appealing for its heavy tails, suitable for filtration under outliers, and for
its computational simplicity.
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Algorithm 1: Approximate filtration with adaptive kernels

1 Initialization:
2 Set the HPR value p, the number of covered pseudo-measurements ˛ and the number of

particles N .
3 Sample initial state particles x.i/0 ; i D 1; : : : ; N from a suitable prior distribution �0.x0/.
4 Set uniform initial particle weights w.i/0 D 1=N .
5 Online steps:
6 for t D 1; 2; : : : do
7 Acquire true measurement yt .
8 Perform state prediction — Equation (1).
9 Simulate pseudo-measurements u.i/t by plugging x.i/t into the measurement equation (2).

10 Find uŒ˛�t , the ˛th least distant pseudo-measurement.
11 Calculate kernel scale "t , Equation (12).
12 Perform weights update, Equation (8).
13 Resample.
14 end

4. EXAMPLES

The following two simulation examples demonstrate the robustness and tracking performance of the
proposed kernel adaptation algorithm, and compares it with the state-of-the-art approaches, namely
the generic method [24] and the KDE-based method with a plug-in rule [23]. In particular, the
purpose of the first example is to show that the tracking performance is relatively close to the boot-
strap filter employing a correct model. The second example demonstrates the superior properties of
the proposed method under model misspecification. The mean square error (MSE) is used as the
performance indicator,

MSE D
1

t

tX
�D1

. Ox� � x� /
2

D
1

t

tX
�D1

 
NX
iD1

w.i/� x
.i/
� � x�

!2
:

4.1. Example 1: Tractable model and comparison with the bootstrap particle filter

The first example is a benchmark proving that the performance of the proposed adaptive approximate
filter is close to the performance of the bootstrap particle filter. We stress, that while the particle filter
assumes full knowledge of the measurement model, the approximate filter alleviates this assumption
and proceeds only with a noise term-free equation.

A simplified (linear) version of a state-space model popular in the particle filtering literature [28,
44] was adopted:

xt D
xt�1

2
C

25xt�1

1C x2t�1
C 8 cos.1:2t/C vt ; vt � N .0; 1/;

yt D xt C wt ; wt � N .0; 102/;
(19)

initialized from x0 D 0. The length of the series was 500 samples, the noise variables vt and wt
were independent and identically distributed. Six variants of sequential Monte Carlo filters were
compared: (A) the generic approximate filter [24] with a uniform kernel preserving 90% of sam-
ples, (B) the KDE-based approximate filter with a normal kernel [23], (C) the KDE-based filter with
a quasi-Cauchy kernel [23], (D) the proposed approximate filter with a normal kernel, (E) the pro-
posed approximate filter with a Cauchy kernel, and finally (F) the bootstrap particle filter with a full
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knowledge of the model (19). The same initial set of 1000 particles
°
x
.i/
0 ; i D 1; : : : ; 1000

±
ran-

domly sampled from the uniform distribution U.�100; 100/ was used in all filters. The HPR value
p D 0:95, and covered 90% of pseudo-measurements. A multinomial resampling was performed at
each time step. 100 repetitions of the experiment were performed to obtain representative results.

The resulting statistics of the final mean square errors (MSE) are depicted in Figure 3 in the form
of box plots, depicting the lower and upper quartile forming the box, the median MSE lying between
them, and the whiskers whose length is 1.5 times the interquartile range. The particle filter (F) was
very stable as expected, its final MSE values were very similar regardless of the noise realizations.
The cases (D) and particularly (E) standing for the proposed method with adaptive normal and
Cauchy kernels, respectively, are relatively close to the performance of the particle filter (F). The
KDE-based filters were sensitive to the choice of kernel. While the quasi-Cauchy kernel (C) led to
results close to the proposed method (D), the normal kernel (B) led to significantly worse tracking
performance, similar to the generic method (A).

Figures 4 and 5 depict one particular realization of measurement noise wt and the resulting set-
tings of kernel scales, respectively. The character of evolution of "t is similar in both cases. The
reactions to significant values of wt will be more apparent in the next example.

Based on the simulation results it is possible to state that the performance of the proposed approx-
imate filter is close to the performance of the bootstrap particle filter, which assumes full knowledge
of the state-space model (19). Furthermore, the solution is not overly sensitive to the choice
of kernel.

Figure 3. Example 1 — box plots of MSE of 100 independent experiment runs for (A) the generic approx-
imate filter, (B) KDE-based filter with normal kernel, (C) KDE-based filter with quasi-Cauchy kernel, (D)
proposed filter with normal kernel, (E) proposed filter with Cauchy kernel, and (F) the bootstrap particle

filter. The dots depict outlying values.

Figure 4. Example 1 — normal noise realization wt . Histogram of relative frequencies and box plot. The
box depicts upper and lower quartiles, between the lies the median. The whiskers have length of 1.5 times

the interquartile range. The dot on the right-hand side depicts an outlier.
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Figure 5. Example 1 — evolution of the normal and Cauchy scales "t (top, middle) with respect to normal
noise realizations (bottom).

4.2. Example 2: Heavy-tailed stable noise

The purpose of the second example is to demonstrate the robustness of the proposed method in cases
where the particle filter suffers tracking problems due to model misspecification, namely outliers.
In particular, this example deals with observations corrupted by the Lévy’s alpha-stable distributed
noise [45]. More concretely, its special case – the Cauchy distribution – is used. It has undefined
mean value and variance but unlike most other Lévy’s alpha-stable distributions it has an analytically
tractable probability density function. Nevertheless, the observation noise properties are ignored in
the approximate filter, which allows its direct use in the other cases without any adjustments, while
the standard particle filters would require more or less substantial modifications, often without a
guarantee of success unless a tedious tuning is performed.

Let us consider the following model initialized from x0 D 0,

xt D
xt�1

2
C

25xt�1

1C x2t�1
C 8 cos.1:2t/C vt ; vt � N .0; 1/;

yt D
x2t
20
C wt ; wt � Cauchy.0; 1/;

(20)

and t D 1; : : : ; 500. This state-space model coincides with the popular nonlinear benchmark model
frequently used in Monte Carlo literature (e.g., [28, 44]), with the exception for the measurement
noise which, in our case, has the heavy-tailed Cauchy distribution located at the origin and with a
unit scale. Figure 6 depicts an example of noise realizations used in one of the 100 independent
experiment runs.
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Figure 6. Example 2 — Cauchy noise realization wt , histogram of relative frequencies limited to Œ�30; 30�,
and scale-broken box plot (below). The box plot is divided intro three parts. The middle one depicts the box
(upper and lower quartiles, and the median between them) and the whiskers of 1.5 times the interquartile
range. Its scale is linear. The left and right parts depict the outliers and extreme values using logarithmic

scales.

Figure 7. Example 2 — mean squared error box plots for 100 independent experiment runs for (A) the
generic approximate Bayesian filter, (B) KDE-based filter with normal kernel, (C) KDE-based filter with
quasi-Cauchy kernel, (D) proposed filter with normal kernel, (E) proposed filter with Cauchy kernel, and (F)

the particle filter.

All six filters denoted again (A)—(F) started from the same initial set of 1000 particles sampled
from U.�100; 100/, the adaptive kernels of filters (D) and (E) were constructed to cover 90% of
pseudo-measurements by a 95% HPR. A multinomial resampling procedure was performed each
time step. The particle filter setting assumed a (misspecified) measurement model with a normal
noise. This approach, standardly adopted in particle filtering, naturally leads to estimation difficul-
ties, and calls for stabilization techniques discussed in Introduction. The role of the particle filter
in this example is only demonstrative and other filters are not compared with it. On the other hand,
the approximate filters plug the state particles x.i/t directly into the misspecified variant of the mea-
surement model (20). More precisely, an underspecified observation model without the noise term
is assumed.

The box plots — Figure 7 — depict the MSE statistics. Again, it is apparent that the proposed
filters are robust to the choice of kernels, with the Cauchy kernel providing slightly better tracking
performance. Quite interestingly, the MSEs of all 100 runs of the proposed filters are very concen-
trated around the medians, which indicates high robustness to different heavy noise realizations.
Finally, Figure 8 depicts the evolutions of normal and Cauchy kernel scales, and the noise time
series in one experiment run. The adaptive method reflects well the noise evolution.

The conclusion of this example is that the proposed approximate filter is robust to the
choice of kernel and has a superior stability under heavy-tailed noise, despite the underspecified
measurement model.
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Figure 8. Example 2 — evolution of the normal and Cauchy scales "t (top, middle) with respect to Cauchy
noise realizations wt (bottom). Details of the first 100 values are given.

5. CONCLUSION

The class of approximate Bayesian filters provides excellent filtering properties in cases where the
standard Bayesian methods suffer from a measurement model misspecification or intractability. This
paper proposes an alternative approach to adaptation of the filter kernel, that is based on the assump-
tion that the kernel should assure high coverage of the admissible pseudo-measurements generated
by the filter. Two simulation examples demonstrate that the tracking performance is close to the
bootstrap particle filter under well-specified model scenario, and under misspecification the pro-
posed algorithm provides results superior to the state-of-the-art methods. In addition, the algorithm
is not overly sensitive to kernel choice.

The future work involves an optimal setting of multivariate kernel under strong pseudo-
measurements asymmetry, further acceleration possibilities (e.g., in a sense similar to [46]) and a
focus on collaborative filtering in networks of cooperating agents studied, e.g., in [47, 48].
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15. Maiz CS, Molanes-Lopez EM, Miguez J, Djurić PM. A particle filtering scheme for processing time series corrupted

by outliers. IEEE Transactions on Signal Processing 2012; 60(9):4611–4627.
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26. Green PJ, ŁAtuszyṅski K, Pereyra M, Robert CP. Bayesian computation: A perspective on the current state and

sampling backwards and forwards. Statistics and Computing 2015; 25(4):835–862.
27. Ehrlich E, Jasra A, Kantas N. Gradient free parameter estimation for hidden Markov models with intractable

likelihoods. Methodology and Computing in Applied Probability 2015; 17(2):315–349.
28. Martin JS, Jasra A, Singh SS, Whiteley N, Del Moral P, McCoy E. Approximate Bayesian computation for

smoothing. Stochastic Analysis and Applications 2014; 32(3):397–420.
29. Yildirim S, Singh SS, Dean T, Jasra A. Parameter estimation in hidden Markov models with intractable likelihoods

using sequential Monte Carlo. Journal of Computational and Graphical Statistics 2015; 24(3):846–865.
30. Dean TA, Singh SS, Jasra A, Peters GW. Parameter estimation for hidden Markov models with intractable

likelihoods. Scandinavian Journal of Statistics 2014; 41(4):970–987.
31. Poyiadjis G, Doucet A, Singh SS. Particle approximations of the score and observed information matrix in state space

models with application to parameter estimation. Biometrika 2011; 98(1):65–80.
32. Marin JM, Pudlo P, Robert CP, Ryder RJ. Approximate Bayesian computational methods. Statistics and Computing

2012; 22(6):1167–1180.
33. Biau G, Cėrou F, Guyader A. New Insights Into Approximate Bayesian Computation. Annales de l’Institut Henri
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47. Kȧrnẏ M, Andrẏsek J, Bodini A, Guy TV, Kracik J, Ruggeri F. How to exploit external model of data for parameter

estimation? International Journal of Adaptive Control and Signal Processing 2006; 20(1):41–50.
48. Dedecius K, Djuriċ PM. Diffusion filtration with approximate Bayesian computation. 2015 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP); 2015:3207–3211.

Copyright © 2016 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2016)
DOI: 10.1002/acs


	Adaptive kernels in approximate f iltering of state-space models
	Summary
	Introduction
	Background on Bayesian filtering
	Sequential Monte Carlo
	Approximate filters

	Adaptive choice of yt,t(ut)
	Proposed kernel tuning procedure
	Computation of t
	Examples of kernels

	Examples
	Example 1: Tractable model and comparison with the bootstrap particle filter
	Example 2: Heavy-tailed stable noise

	Conclusion
	REFERENCES


