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Abstract—Diffusion networks where nodes collaboratively es-
timate the parameters of stochastic models from shared obser-
vations and other estimates have become an established research
topic. In this paper the problem of sequential estimation where
information in the network diffuses with time is formulated
abstractly and independently from any particular model. The
objective is to reach a generic solution that is applicable to
a wide class of popular models and based on the exponential
family of distributions. The adopted Bayesian and information-
theoretic paradigms provide probabilistically consistent means
for incorporation of shared observations in the implemented
estimation of the unknowns by the nodes as well as for effective
combination of the “knowledge” of the nodes over the network.
It is shown and illustrated on four examples that under certain
conditions, the resulting algorithms are analytically tractable,
either directly or after simple approximations. The examples
include the linear regression, Kalman filtering, logistic regression,
and the inference of an inhomogeneous Poisson process. The first
two examples have their more or less direct counterparts in the
state-of-the-art diffusion literature whereas the latter two are
new.

Index Terms—Diffusion network, diffusion estimation, adap-
tation, combination, exponential family.

I. INTRODUCTION

NETWORKS of interconnected agents collaboratively
solving distributed inference problems have attained a

considerable research interest in the last decade. This is
due to the wide variety of possible applications, including
environment monitoring, disaster relief management, source
localizations, precision agriculture, and medical applications
[1]–[4]. The nodes in the network share with their neighbors
their private signals and all the information about the vari-
ables of interest, thereby collectively improving the inference
results.

The distributed processing schemes for learning over adap-
tive networks can be classified into three types of strategies:

Manuscript received December 12, 2016; revised December 12, 2016. First
published December 12, 2016; current version published December 12, 2016.
The work of K. Dedecius was supported by the Czech Science Foundation,
grant No. 14–06678P. The work of P. M. Djurić was supported by NSF under
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incremental [5]–[11], diffusion, [12]–[17], and consensus-
based strategies [18]–[23]. The incremental strategies exploit
communication on a cyclic path by connecting all the network
nodes in a Hamiltonian cycle. Because each node and link in
the network represent a single point of failure, the robustness
of this setup is limited and the recovery from a failure requires
a redesign of the network, which is an NP-hard problem [3].

The diffusion strategies, on the other hand, rely on networks
represented by directed or undirected connected graphs with
node degrees usually higher than one. Instead of a cyclic
path, the shared information gradually diffuses through the
whole network by local communication among adjacent nodes
[24]. Typically, the diffusion strategies at each time step are
composed of two phases – (a) an adaptation that updates the
estimates of a node by its neighbors’ observations, and (b)
a combination that merges the neighbors’ estimates. One can
argue that this strategy imitates the behavior of many self-
organized real-world systems, and it is scalable and highly
robust to node or link failures. It also preserves the function-
ality of the network through graceful degradation.

The consensus-based strategies are somewhat similar to the
diffusion strategies. The original consensus strategies rely on
two time scales: (i) sensing, that is, acquisition of observations
across the nodes, and (ii) collaborative processing of the data
through iterations, with the goal of achieving a consensus in
the computation of a desired, e.g., average value. The diffusion
strategies, however, perform both their phases intrinsically on
a single time scale, without the need for any intermediate
iterative steps. We point out though that recent consensus
algorithms remove the requirement for iterations, which brings
these methods closer in spirit to the diffusion methods (e.g.,
the running consensus method [25]). A particular example is
the gossip interactive Kalman filter [26], where each node
runs a Kalman filter. At random times, a node randomly
selects a neighbor and the two swap their states. At any time
instant, a node represents a suboptimal local data fusion center,
which with time incorporates information in measurements
coming from different parts of the network that are randomly
selected. This may be viewed as a counterpart of the diffusion
combination step, but there is no counterpart of the adaptation
step.

Numerous diffusion-based inference algorithms were pro-
posed in the last decade, most of them based on the least-
squares principle. The basic diffusion that uses the least mean
squares (LMS) criterion was originally proposed in [13], [27],
followed by numerous modifications reflecting, e.g., model
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sparsity [28] and node-specific parameters [29], [30]. Another
group of solutions relies on the recursive least-squares (RLS)
method, with the basic diffusion RLS being reported in [12]
and its modified version with partial diffusion saving commu-
nication resources in [17]. In the field of linear state-space
models, the diffusion Kalman filters were proposed in [31].
During the combination phase, these filters fuse the local point
estimates by leaving the connected covariance matrices intact.
Indeed, this saves communication resources, but may lead
to inconsistent estimates. This issue was addressed by a co-
variance intersection-based combination phase [32]. The way
towards stochastic optimization with non-smooth regularizers
applicable, e.g., to logistic regression, was recently introduced
too. In [33], the authors consider data with an unknown
distribution, and proceed with non-smooth regularization of
the expected loss function in the role of a risk function.
Naturally, there are many other diffusion algorithms, and they
consider inference of mixtures [34]–[36] or use particle filters
[24], [37], [38].

A common feature of the existing methods is their indepen-
dent derivation from a particular traditional estimation method,
e.g., RLS and LMS estimation or Kalman filtering. Recogniz-
ing the common principles of inference, we propose to adopt
the probabilistic Bayesian paradigm, providing theoretically
consistent yet highly versatile methods. The formulation of
the diffusion framework in this scope, originally proposed by
the first author in [16], then yields a generic Bayesian diffusion
estimator, such that (i) its application to a wide class of models
is straightforward and under certain conditions it is analytically
obtained, and (ii) its use in conjunction with many popular
Bayesian techniques is straightforward without modifications
including forgetting techniques for tracking slowly varying
parameters [16] and dynamic model averaging [39].

We stress that this paper aims at formulating a general
Bayesian framework for diffusion estimation, naturally yield-
ing basic diffusion-based estimation methods as special cases.
We work with models based on the exponential family of
distributions. The paper does not aspire to develop methods
competing with particular problem-oriented diffusion algo-
rithms like the colored-noise RLS [14], node-specific pa-
rameter estimation [30] or the like. The paper significantly
extends earlier results of one of the authors, devoted to specific
generalized linear models cases [16], [40], [41]. In particular, it
proposes a consolidated Bayesian framework for the diffusion
inference of a wide class of models, and provides a consistent
explanation of its derivation and properties.

II. PRELIMINARIES ON BAYESIAN ESTIMATION

Consider discrete-time sequential modeling of a stochastic
process with observations yt, t = 1, 2, . . . determined by an
unknown parameter θ and, if present, an explanatory variable
zt, e.g., the regressor. First, we assume that θ is fixed and
later in Sections VIII and IX where we address hidden Markov
models and slowly time-varying parameters, respectively, it is
relaxed.

The statistical approach to modeling portrays the true
observations-generating system by a model represented by a

probability distribution with a density f(yt|zt, θ). If zt is not
present, we have f(yt|zt, θ) ≡ f(yt|θ). Whatever the goal of
modeling is, be it forecasting, smoothing or filtering, a reliable
determination of the value of θ is of paramount importance.

The present paper adheres to the sequential Bayesian
framework, where one estimates the unknown parameter θ
by exploiting a prior distribution π(θ|y0:t−1, z0:t−1), which
quantifies the accumulated knowledge about θ from the past
observations y0:t−1 = {y0, . . . , yt−1} and regressors z0:t−1 =
{z0, . . . , zt−1}. The values y0 and z0 can be viewed as pseudo-
observations, expressing any available knowledge at the be-
ginning of modeling, including total ignorance. The Bayes’
theorem then sequentially incorporates the newly observed yt
and zt via

π(θ|y0:t, z0:t) ∝ f(yt|zt, θ)π(θ|y0:t−1, z0:t−1). (1)

In writing the above equation, we assume
f(yt|y0:t−1, z0:t, θ) = f(yt|zt, θ), which implies that
the observation yt is independent of previous observations
given the latest explanatory variables zt and the parameters θ.
This is a standard assumption in statistical signal modeling.
As already outlined, in the last part of the paper, we present
four examples, and for each of them, we show the validity
of this assumption. We also point out that if this assumption
cannot be used, the methodology presented in the sequel still
holds but with appropriate modification in notation.

A thorough inspection of (1) reveals a feature crucial for the
following development: the observations can be incorporated
as a batch, that is, for any positive τ ≤ t,

π(θ|y0:t, z0:t) ∝ π(θ|y0:τ−1, z0:τ−1)
t∏

τ̃=τ

f(yτ̃ |zτ̃ , θ). (2)

The resulting knowledge about θ is described by the posterior
distribution, whose statistics may serve as point estimates.
Mostly, the mean is preferred, but the mode or median are
frequently used too [42].

The greatest hindrance of the Bayesian approach lies in its
rare cases of analytical and/or computationally low-cost nu-
merical tractability of posterior distributions. Still, if the model
f(yt|zt, θ) belongs to the exponential family of distributions
[43], there is a way towards analytical results.

Definition 1 (Exponential family of distributions). Assume
a random variable y conditioned by the variable z and the
parameter θ. The exponential family of distributions is a class
of distributions with probability density functions of the form

f(y|z, θ) = h(y, z)g(θ) exp [ηᵀT (y, z)] ,

where η ≡ η(θ) is the natural parameter, T (y, z) is a sufficient
statistic of a fixed size, h(y, z) is a known function, and g(θ)
is a known normalizing function. If η(θ) = θ, the family is
called canonical.

The definition requires vectorization of all matrices included
in the argument of the exponential function. However, to pre-
vent confusion, a popular approach is to rearrange the relevant
terms using the trace operator preserving these matrices, and
to call the resulting unvectorized terms the natural parameters
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η and sufficient statistics T (·) too. The result is a more com-
prehensible “unvectorized” version of the standard Definition
1. The normal distribution (13) is a classical example.

Several important distributions belong to the exponential
family including the normal, beta, gamma, multinomial, and
Poisson distributions. The exponential family distributions are
closely related to the conjugate prior distributions of θ, making
the Bayesian updates (1) and (2) analytical [44].

Definition 2. Assume that y given z and θ follows an expo-
nential family distribution. The conjugate prior distribution of
θ is a distribution with a probability density function of the
form

π(θ) = q(ξ, ν)g(θ)ν exp [ηᵀξ] ,

where ξ is a hyperparameter of the same size as T (y, z),
ν ∈ R+ is a scalar hyperparameter, and q(ξ, ν) is a known
function. The symbol g(θ) is the same function as in the
exponential family distribution.

It is straightforward to see that under conjugacy, the
Bayesian update (1) takes the form of a simple prior hyper-
parameters update, i.e.,

ξt = ξt−1 + T (yt, zt), and νt = νt−1 + 1. (3)

The update corresponding to (2) has the form

ξt = ξτ−1 +
t∑

τ̃=τ

T (yτ̃ , zτ̃ ), and νt = ντ−1 + t− τ + 1.

It will be shown that the functional form of the conjugate
prior also provides analytically tractable merging of posterior
distributions.

III. ESTIMATION BY DIFFUSION

We consider a network represented by a connected undi-
rected graph consisting of a set of nodes (vertices) I =
{1, . . . , I}. The nodes are linked by a set of edges which
determine the topology of the network. Each node i ∈ I
directly communicates only with the nodes from its neighbor-
hood (nodes that share edges with i). We denote this set by Ii
and assume that it includes the node i too. The estimation by
diffusion runs by exchanging measurements between the nodes
during an adaptation phase and exchanging estimates during
a combination phase. These phases will be described below
in terms of Bayesian probability theory. We discriminate four
different schemes: one that employs adaptation only (A), one
with combination only (C), and two that use the two phases
but in different orders. We refer to the latter two as adapt-
then-combine (ATC) and combine-then-adapt (CTA) schemes.
Table I summarizes the available diffusion strategies.

A. Adaptation phase

Assume that the nodes i ∈ I observed yi,t and know zi,t.
The aim of the adaptation phase is to enrich the statistical
knowledge of each node by incorporation of the neighbors’
observations. In a Bayesian context, this means to perform a
batch update similarly to (2) with a fixed time index as in a
static (non-sequential) case. Fixing a node i ∈ Ii and denoting

its prior density πi(θ|ζi,t−1), where ζi,t−1 represents all the
information available to node i by time t− 1, which includes
its own past observations and those of its neighbors, as well
as the parameters of all previous posteriors of its neighbors,
the update takes the form

πi(θ|ζi,t) = πi(θ|ζi,t−1, ȳi,t, z̄i,t) (4)

∝ πi(θ|ζi,t−1)
∏

j∈Ii

[f(yj,t|zj,t, θ)]cij,t , (5)

where the “bar” notation in (4) refers to all the new observa-
tions and explanatory variables available to node i at time t,
cij,t ∈ {0, 1} are adaptation weights assigned by the node i to
its neighbors j ∈ Ii. If the observation yj,t is not an outlier,
then cij,t = 1; otherwise, cij,t = 0. The hyperparameters of
the conjugate prior densities are updated as follows:

ξi,t = ξi,t−1 +
∑

j∈Ii

cijT (yj,t, zj,t),

νi,t = νi,t−1 +
∑

j∈Ii

cij . (6)

Obviously, the communication requirements of the adaptation
phase are directly determined by the size of the sufficient
statistic T (yj,t, zj,t). Provided that before vectorization – see
comment below Definition 1 – this statistic is described by
an M × N matrix of floating point numbers, then a node i
needs to obtain (|Ii| − 1)MN floating point numbers, where
| · | denotes cardinality of the argument.

B. Combination phase

The purpose of the combination phase is to share and
collaboratively improve — optimally combine — the estimates
of the nodes. If the combination phase follows after the
adaptation phase, i.e., the adapt-then-combine (ATC) strategy
is adopted, the estimates are represented by the local posterior
distributions πi(θ|ζi,t) resulting from (5). Alternatively, the
combine-then-adapt (CTA) strategy combines the local prior
distributions πi(θ|ζi,t−1) before the adaptation phase. Below,
we describe the combination phase for both strategies, though
the rest of the paper puts emphasis on the ATC strategy.

In Bayesian theory, a measure for optimality that is often
advocated is the Kullback-Leibler divergence (KLD). The goal
is to find such a final density π̃i(θ|ζi,t) (or π̃i(θ|ζi,t−1)) whose
divergence from the densities πj(θ|ζj,t) (or πj(θ|ζj,t−1)) of all
the neighbors j ∈ Ii is minimal. The following proposition
gives a solution of this task.

Proposition 1. Given a node i ∈ I, densities πj(θ|·) of its
neighbors j ∈ Ii and unit |Ii|-simplex weights aij,t expressing
the degree of belief of i in the j’s information, the density
π̃i(θ|·) combining πj(θ|·) in the Kullback-Leibler optimal
sense and minimizing the cumulative loss

∑

j∈Ii

aij,tD
(
π̃i (θ|·)

∣∣∣∣πj (θ|·)
)
, (7)

where the KLD is given by

D
(
π̃i (θ|·)

∣∣∣∣πj (θ|·)
)

= Eπ̃i

[
log

π̃i (θ|·)
πj (θ|·)

]
,
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has the form

π̃i (θ|·) ∝
∏

j∈Ii

[πj(θ|·)]aij,t .

Proof. Using the definition of the KLD and properties of
expectation and logarithm it follows that
∑

j∈Ii

aij,tD
(
π̃i (θ|·)

∣∣∣∣πj (θ|·)
)

=
∑

j∈Ii

aij,tEπ̃i

[
log

π̃i (θ|·)
πj (θ|·)

]

=Eπ̃i

[
log

π̃i(θ|·)
c
∏
j∈Ii [πj(θ|·)]aij,t

]
=D


̃πi(θ|·)

∣∣∣∣∣

∣∣∣∣∣c
∏

j∈Ii

[πj(θ|·)]aij,t

,

where c is a proportionality constant. From the definition of
the KLD, convexity of − log(·), and the Jensen’s inequality,
it follows that

D


̃πi(θ|·)

∣∣∣∣∣

∣∣∣∣∣c
∏

j∈Ii

[πj(θ|·)]aij,t

=Eπ̃i

[
log

π̃i(θ|·)
c
∏
j∈Ii [πj(θ|·)]aij,t

]

= Eπ̃i

[
− log

c
∏
j∈Ii [πj(θ|·)]aij,t
π̃i(θ|·)

]

≥ − log Eπ̃i

[
c
∏
j∈Ii [πj(θ|·)]aij,t
π̃i(θ|·)

]
= − log 1 = 0.

That is, the KLD is nonnegative and minimal (zero), if

π̃i(θ|·) ∝
∏

j∈Ii

[πj(θ|·)]aij,t a.e.,

which concludes the proof.

Note that here we only proved the form of the optimal
posterior. In other words, we know what it is if we know
the coefficients aij . How we find the best set of coefficients
is addressed in Section V.

An immediate consequence of Proposition 1 is the simplic-
ity of the combination of conjugate priors. Namely, if the ATC
strategy is adopted, we can write,

ξ̃i,t =
∑

j∈Ii

aij,tξj,t, and ν̃i,t =
∑

j∈Ii

aij,tνj,t. (8)

Alternatively, if the CTA strategy is used, the combination of
conjugate priors takes the form

ξ̃i,t−1 =
∑

j∈Ii

aij,tξj,t−1, and ν̃i,t−1 =
∑

j∈Ii

aij,tνj,t−1.

(9)

In the case of the ATC strategy, the optimal density
π̃i(θ|ζi,t) is the final estimation product at the time instant
t. Subsequently, at the next time step, it serves as the prior
distribution πi(θ|ζi,t−1) in (5). On the other hand, in the CTA
strategy, π̃i(θ|ζi,t−1) does not contain the t-time observations
yet. It enters the adaptation step (5) where it is identified with
πi(θ|ζi,t−1).

The communication load of the combination phase at the ith
node is equal to that of the adaptation phase plus the need to
transmit |Ii| − 1 floating point numbers required for νj,t, j ∈
Ii. There are cases where the νs are not needed for inference,
as is the case for the Kalman filter, Section VIII.

Strategy First step Second step
ATC Adaptation (6) Combination (8)
CTA Combination (9) Adaptation (6)
A Adaptation (6) —
C Adaptation (6) with cij,t = 1[i=j] Combination (8)

TABLE I
DIFFUSION STRATEGIES: ADAPT-THEN-COMBINE (ATC),

COMBINE-THEN-ADAPT (CTA), ADAPTATION-ONLY (A), AND
COMBINATION-ONLY (C) AS A SPECIAL CASE OF ATC.

Finally, we remark that the Kullback-Leibler optimality
criterions are widespread in the information fusion literature.
For instance, in the consensus probability hypothesis density
filters [45] and [46] it is approached during an iterative
consensus step.

IV. PROPERTIES OF DIFFUSION ESTIMATORS

This section discusses some important properties of the
diffusion estimator. The time indexing corresponds with the
ATC strategy.

A. Asymptotics of the adaptation phase

The asymptotic properties of the adaptation phase are
fully in agreement with the consistency of Bayes’ estimators,
underpinned by the law of large numbers (“more observa-
tions lead to better estimates”). Generally, if g(y|z) is a
true observations-generating density and f(y|z, θ) is a model
chosen to approximate it, then the estimation goal is to find θ̂
such that

θ̂ = arg min
θ∈Θ

D (g(y|z)||f(y|z, θ)) , (10)

where Θ is a compact set. Simply put, the consistency of
the Bayesian estimator states that with the growing number
of observations, the posterior point estimates converge to the
value θ̂ that minimizes (10), or to a pseudo-true parameter
that minimizes the divergence under model imprecisions [51].
The purpose of the adaptation phase is to accelerate this
convergence by increasing the number of observations. Note
also the conceptual similarity of (10) and (7).

Since the adaptation step is in accordance with the classical
asymptotic properties of Bayesian inference, the reader is
referred to relevant literature [47], [49], [51], [52].

B. Asymptotics of the combination phase

Recall that during the combination phase the nodes combine
posterior densities provided by their neighbors. This entails
that this information diffuses through the network, unlike
the information in the measurements exchanged during the
adaptation phase.

In order to examine the combination phase properties, we
adopt the following three assumptions:

1) The operational conditions are regular in the sense
that there is no error associated with the nodes or
communication links, e.g., due to their malfunctions.
This assumption can be removed by appropriate tuning
of aij,t and cij,t.
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2) The estimation conditions are regular in the sense that
the observations follow the considered models and gen-
erally allow estimation of their parameters.

3) The initial prior distributions πi(θ|ȳ0, z̄0) are (weakly)
informative, i.e., there is no misleading or convergence-
preventing prior information. Ipso facto, the large sam-
ple theory guarantees estimates convergence even under
misleading prior distribution if its support covers the true
parameter value. This technical assumption, routinely
applied in practice, assures that the posterior distribution
correctly quantifies the state of knowledge about θ.

First, we recall a proposition on asymptotic posterior nor-
mality from [48] (see also [49]). We assume the following
conditions to hold:

C1 As t → ∞, the largest eigenvalue of Σt tends to
zero.

C2 For any ε > 0, there exists T and δ > 0 such that
for any t > T and θ ∈ Bδ(θ̂t) = {θ ∈ Θ; |θ −
θ̂t| < δ} (with Θ being the support of θ), Σ−1

t (θ) =
∂2 log π(θ|y0:t,z0:t)

∂θ∂θᵀ exists and satisfies

I−A(ε) ≤ Σ−1
t (θ)Σt(θ̂t) ≤ I +A(ε)

where I is a dθ × dθ identity matrix and A(ε) is a
dθ×dθ symmetric positive semidefinite matrix whose
largest eigenvalue tends to zero as t→∞.

C3 For any δ > 0,
∫
Bδ(θ̂t)

π(θ|y0:t, z0:t)dθ → 1 as t→
∞.

Proposition 2. For each t, consider π(θ|y0:t, z0:t) as the
density function of a random quantity θ and define, φt =
Σ−1
t (θ − θ̂t). Then given C1 and C2, C3 is a necessary and

sufficient condition for the distribution of φ to converge to
f(φ) = (2π)−dθ/2e−

1
2φ

ᵀφ.

Proof: See [48].

Asymptotic normality of the posterior distribution of the
constant parameter θ is assumed in the sequel.

Next, we present a proposition about the KLD between the
posteriors of a fusion center and a noncooperative node.

Proposition 3. Let πC(θ|ζt) = πC(θ|y1,0:t, . . . , yI,0:t, z1,0:t,
. . . , zI,0:t) be the normal posterior density of a fusion center
that receives the sufficient statistics of all the nodes in a net-
work of two or more nodes, and πi(θ|ζi,t) = πi(θ|yi,0:t, zi,0:t)
the normal posterior density of a noncooperative node i.
Assume that the Fisher information matrix of each node in
the network is the same. Then, the Kulback-Leibler distance
between πC(θ|ζt) and πi(θ|ζi,t) remains finite as t→∞.

Proof: The Kulback-Leibler distance between πC(θ|ζt) and
πi(θ|ζi,t) is given by

D(πC(θ|ζt)||πi(θ|ζi,t) =
1

2

(
tr
(
Σ−1
c,tΣi,t

)
+ ln

( |Σc,t|
|Σi,t|

)

−dθ +
(
θ̂c,t − θ̂i,t

)ᵀ
Σ−1
c,t

(
θ̂c,t − θ̂i,t

))
.

When t→∞, we have [48]

Σc,t → ItF (θ̂c,t),

where F (θ̂c,t) is the Fisher information matrix, and I is the
number of nodes in the network. Similarly,

Σi,t → tF (θ̂i,t),

Under the conditions C1-C3, we have that both θ̂c,t and θ̂i,t
tend to θ as t→∞. Let

θ̂i,t − θ <
1

tε
1,

for some ε > 0 and where 1 = [1 1 · · · 1]ᵀ. Then,

θ̂c,t − θ <
1

(It)ε
1.

Finally, if we use F (θ̂i,t) ≈ F (θ̂c,t) for very large t, we can
readily show that

lim
t→∞

D(πC(θ|ζt)||πi(θ|ζi,t) =
1

2

(
dθ
I

+ dθ ln I − dθ
)
.

When I > 1, this distance is greater than zero. �

Now we state a proposition which maintains that under
certain conditions the KLD between the posteriors of a fusion
center and a cooperative node, respectively, tends to zero.
We prove the proposition for a network where the nodes
implement only the combination scheme.

Proposition 4. Let the conditions C1-C3 hold. Assume further
that the coefficients aij,t are not functions of time, that the
network is fully connected, and that the weight matrix A with
elements aij satisfies the following three conditions:

C4 1ᵀA = 1ᵀ,
C5 A1 = 1,
C6 ρ (A− (1/I)11ᵀ) < 1,

where ρ(·) is the spectral radius of the argument. Then

lim
t→∞

D (πC(θ|ζt)||πi(θ|ζi,t)) → 0.

We prove the proposition by following the proof of a related
theorem from [50]. Before we proceed, we define the precision
matrices Λi,t and Λc,t by Λi,t = Σ−1

i,t and Λc,t = Σ−1
c,t . First,

we need three lemmas.

Lemma 1. Let A in Proposition 3 be defined by conditions
C4-C6 and let the conditions C1-C3 hold. Let also

∆i,t = Λi,t − Λc,t,

δi,t = θ̂i,t − θ̂c,t.
Then for all i ∈ I and for all t ≥ 0, the elements of ∆i,t and
δi,t are bounded.

Proof: The proof is analogous to the proof of Lemma 1 in
[50], and so we do not repeat it here.

Lemma 2. Let the conditions C1-C6 hold. Then

lim
t→∞

Λ−1
c,t = 0dθ×dθ .

lim
t→∞

Λ−1
i,t = 0dθ×dθ ,

where 0dθ×dθ stands for a dθ×dθ matrix with elements equal
to zero.
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Proof: The proof follows the same lines as those from the
proof of Lemma 2 in [50], and we omit it here.

The next lemma is a straightforward application of Propo-
sition 1 to normal densities.

Lemma 3 (Combination of normal densities). Let πj (θ|·) be
n-variate normal densities with column mean vectors µj,t ∈
Rn and covariance matrices Σj,t ∈ Rn×n, j ∈ Ii. Let aij,t be
positive weights taking values in the unit |Ii|-simplex. Then,
the density

π̃i(θ|·) ∝
∏

j∈Ii

[πj(θ|·)]aij,t (11)

combined according to Proposition 1 is again a normal density
with a mean vector and covariance matrix given by

µ̃i,t=Σ̃i,t


∑

j∈Ii

aij,tΣ
−1
j,t µj,t


 and Σ̃i,t=


∑

j∈Ii

aij,tΣ
−1
j,t



−1

.

(12)

Proof. Let us drop the time indices. The normal density
πj(θ|·) can be written in the exponential family form

πj (θ|µj ,Σj) = (2π)
−n
2 (det Σj)

−1
2 e

−1
2 (θ−µj)ᵀΣ−1

j (θ−µj)

∝ exp

{
Tr

([
µᵀ
jΣ−1

j

− 1
2Σ−1

j

]ᵀ [
θᵀ

θθᵀ

])
− 1

2
µᵀ
jΣ−1

j µj

}
(13)

with

ηj =

[
µᵀ
jΣ−1

j

− 1
2Σ−1

j

]
and T (θ) =

[
θᵀ

θθᵀ

]
.

The weighted geometric product (11) with θ fixed leads to

η̃i =

[
µ̃ᵀ
i Σ̃−1

i

− 1
2 Σ̃−1

i

]
=
∑

j∈Ii

aijηj =
∑

j∈Ii

aij

[
µᵀ
jΣ−1

j

− 1
2Σ−1

j

]
,

from which the claimed result follows.

This result is also known as the covariance intersection.

Proof of Proposition 3: The Kullback-Leibler distance will
satisfy (11) if

lim
t→∞

(
θ̂c,t − θ̃i,t

)
= 0dθ×1, (14)

lim
t→∞

Λc,tΛ̃
−1
i,t = 0dθ×dθ , (15)

where θ̃i,t is the estimate of the ith node after the combination
step and 0dθ×1 is a dθ × 1 vector of zeros.

We now rewrite (12) as

θ̃i,t=Λ̃−1
i,t


∑

j∈Ii

aijΛj,tθ̂j,t


 ,

where θ̂i,t is the estimate of the ith node at t after adaptation
by using only its own observations. Next we use Lemma 1
and write

θ̃i,t = (Λc,t + ∆̃i,t)
−1

×
∑

j∈Ii

aij(Λc,t + ∆j,t)(θ̂c,t + δj,t)

According to the matrix inversion lemma,

(Λc,t + ∆̃i,j)
−1 = Λ−1

c,t − Λ−1
c,t (Λ

−1
c,t + ∆̃−1

i,t )−1Λ−1
c,t ,

and by using Lemmas 1 and 2, we immediately have

lim
t→∞

Λ−1
c,t (Λ

−1
c,t + ∆̃−1

i,t )−1 = 0dθ×dθ ,

and that all the elements of Λ−1
c,t δi,t converge to a zero vector.

This proves the condition (14).
We prove the condition (15) by using

Λc,tΛ
−1
i,t = Λ−1

c,t (Λc,t + ∆i,t)
−1,

and

lim
t→∞

Λ−1
c,t∆i,t = 0dθ×dθ ,

which follows from Lemmas 1 and 2. The last two equations
prove (15). �

C. ATC versus CTA estimators

The literature on diffusion estimation often proposes both
the adapt-then-combine (ATC) and the combine-then-adapt
(CTA) strategies, though it has been repeatedly shown that the
ATC-based algorithms outperform the CTA-based ones [3].
The Bayesian paradigm allows to prove this fact abstractly,
independently of any particular model case. It suffices to
show that the ATC estimator involves more observations than
its CTA counterpart; the rest then follows from the outlined
asymptotic properties.

Let us omit time indices and the explanatory variables
for simplicity. Without a loss of generality, assume that the
network nodes i ∈ I start with the same prior distribution
πi(θ), cij = 1 for all i and j, and that the weights aij
are assigned. The ATC estimator at i combining the adapted
posterior densities yields the following density:

π̃i(θ|ȳ) ∝
∏

j∈Ii

[
πj
(
θ|{yk}k∈Ij

)]aij

∝
∏

j∈Ii


πj(θ)

∏

k∈Ij

[f(yk|θ)]cij


aij

∝ πi(θ)
∏

j∈Ii
k∈Ij

[f(yk|θ)]aij . (16)

The CTA estimator produces the following density:

π̃i(θ|ȳ) ∝
∏

j∈Ii

[πj(θ)]
aij
∏

j∈Ii

[f(yj |θ)]cij

∝ πi(θ)
∏

j∈Ii

f(yj |θ). (17)

The comparison of (16) and (17) reveals that both the ATC
and CTA estimators involve observations from the neighbors
of i. However, the former additionally involves observations
from all the neighbors of the neighbors.
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D. Combination-only and adaptation-only estimation

An interesting case occurs if cij,t = 1[i=j] in ATC, leading
to

π̃i(θ|ζt) ∝
∏

j∈Ii

[πj(θ|ζt−1)f(yj,t|zj,t, θ)]aij,t ,

from which it follows that at time t, the estimator at node i
updates the posterior by using its observations only. That is,
the adaptation phase is replaced by a local Bayesian update.
Compared to the ATC, the observations of the other nodes
in the network are available to i through the neighbors’
posterior densities with a time delay equal to the number of
hops to these nodes minus 1. This means that the ATC and
combination-only estimators are asymptotically equivalent.
This can be useful in practice, e.g., in processing big data sets
to avoid the adaptation phase, which saves on communication
resources. This phenomenon will be demonstrated in the
examples.

The adaptation-only estimation sets aij,t = 1[i=j], that
is, the combination step is skipped. The inference at node i
reduces to the ordinary Bayesian estimation with |Ii| obser-
vations from the neighborhood. Indeed, the information about
the estimates of θ does not diffuse throughout the network.

For completeness we remark that setting aij,t = cij,t =
1[i=j] leads to the non-cooperative ordinary Bayesian infer-
ence from the local observations only.

E. Numerical comparison of strategies

In order to compare the diffusion strategies numerically, we
assume estimation of a common normal mean by a simple
network of 6 nodes depicted in Figure 1 (left). The nodes
observed samples from N (10, σ2

i ) whose standard deviations
σi are depicted in Figure 1 (right). Six possible scenarios
were compared: centralized, where all the data were processed
by a single node, adapt-then-combine (ATC), combine-then-
adapt (CTA), adaptation-only (A), combination-only (C) and a
strategy where the nodes did not cooperate at all (No coop.).
The simulations started from flat normal prior distributions
N (0, 1000) and the posterior means and variances were aver-
aged over the network. The combination weights were static
and uniform, aij = |Ii|−1. The resulting posterior estimates
of means µ̂, and variances of these estimates represented by
µ̂ ± 3 standard deviations are depicted in Figure 2 for time
instants t = 1 (top) and t = 3 (bottom). The results were
averaged over 100 experiment runs.

The results are in accordance with the analyses conducted
in the previous sections. The difference between ATC and
CTA vanishes with the increasing number of incorporated
observations and their performances become close to the
performance of the centralized strategy. The combination step
assures gradual diffusion of information in the network, which
is particularly demonstrated by the combination-only scenario
(C). In the adaptation-only (A) strategy, the information (in
the observations) does not diffuse further than 1 hop. Hence,
although the convergence is faster than in the non-cooperation
strategy, it is slower than in other strategies.
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Fig. 1. Network topology (left) and standard deviations of nodes observations
(right).
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Fig. 2. Posterior point estimates of means averaged over the network after
1 (top figure) and 3 (bottom figure) time steps. The intervals around µ̂ show
averaged variances in terms of ± 3 standard deviations.

V. DETERMINATION OF COMBINER WEIGHTS

There are two different sets of weights in the proposed
algorithm: the adaptation weights cij,t and the combination
weights aij,t, both taking values in the interval [0, 1], but the
latter obeying an additional requirement of summing to unity.

A. Adaptation weights cij,t
The meaning of cij,t in this paper is rather conceptual, as

the Bayesian update generally assumes cij,t = 1. Still, there
may occur reasons for observation penalization (cij,t < 1),
e.g., if an observation is far from the credible region of
the predictive distribution. Such outlying observations may
degrade the estimation. Thus, moderation of their impact by
lower weights or complete rejection with cij,t = 0 may be
necessary. This broad stand-alone theory is, however, beyond
the scope of this paper; the reader is referred to relevant
literature, e.g., [53], [54].

B. Combination weights aij,t
Our approach to the determination of the combiner weights

aij,t is consistent with the rest of the paper in that it is
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model-oriented. It exploits the idea that the node i prefers the
neighbor in Ii whose estimates are more likely to be the best
fit for the observations. This means, that if we arranged the
weights aij,t into a vector ai,t, it has a categorical distribution
parameterized by a probability vector qi,t of the same length
as ai,t. The probability mass function and expected values are

pi(ai,t|qi,t) =
∏

j∈Ii

q
aij,t
ij,t , and E [aij,t|qi,t] = qij,t, (18)

respectively. Hence the prediction of aij,t relies on the knowl-
edge of qij,t. Its Bayesian estimation is analytically tractable
with the conjugate Dirichlet prior distribution with the hyper-
parameters ψij,t−1 arranged into a vector ψi,t−1 aggregating
the knowledge about qi,t, and the probability density and
expectations according to

πi(qi,t|ψi,t−1) =
1

B(ψi,t−1)

∏

j∈Ii

q
ψij,t−1−1
ij,t , (19)

E[qij,t|ψi,t−1] =
ψij,t−1∑
j∈Ii ψij,t−1

, (20)

where B(·) is the multivariate beta function. Conceptually,
if aij,t were observable, the Bayesian update of the prior
distribution (19) by observations from (18) would be

πi(qi,t|ψi,t) ∝
∏

j∈Ii

q
aij,t
ij

∏

j∈Ii

q
ψij,t−1−1
ij

=
∏

j∈Ii

q
aij,t+ψij,t−1−1
ij . (21)

In reality, it is not observable which node from Ii has the best
knowledge of θ, but it is still possible to measure how well the
nodes fit the observations using the predictive performance,

Aij,t =

∫
πj(θ|ζj,t−1)

∏

k∈Ii

fk(yk,t|zk,t, θ)dθ. (22)

The quasi-Bayesian approach (similar to [55]) then advocates
the use of the measure Aij,t in place of aij,t in (21). The ex-
pectations of aij,t then follow from (18) and (20), respectively.

Remark 1. The probabilistically consistent evaluation of the
predictive distribution (22) via the chain rule and marginal-
ization may be both analytically intractable and computa-
tionally demanding. In this case, it is possible to resort to
a simple plug-in principle, using the posterior point estimate
of θ directly in the observations-generating model. Naturally,
this (asymptotically equivalent) procedure ignores uncertainty
about θ and may significantly influence results under small
sample sizes [56].

Remark 2. One interpretation of the combiner weights is
that they are probabilities of correctly explaining the observed
data by the neighbors’ posterior distributions. This provides
a way towards communication savings in a sense somewhat
similar to [24], which in one extreme is achieved by removal
of links [57]. At time t, node i samples a subset of nodes from
Ii (of a fixed or random size) with probabilities determined
by the Dirichlet distribution. Marginalization then provides
the combiner weights. This procedure is probabilistically well
founded and does not require additional communication steps.

Algorithm 1 BAYESIAN ATC DIFFUSION ESTIMATION

The nodes i = 1, . . . , I are initialized with the prior densities
πi(θ|·). The Dirichlet prior hyperparameters ψi,0 for combi-
nation weights are set. For t = 1, 2, . . . and each node i do:
Adaptation phase:

1) Get observations yj,t and zj,t of neighbors j ∈ Ii.
2) Update the Dirichlet prior hyperparameters ψi,t, Equa-

tion (21) using the predictive density (22).
3) Update the prior distribution of θ, Equation (5), under

conjugacy (6).
Combination phase:

1) Calculate the point estimates E[aij |·], Equation (18).
2) Get the posterior densities πj(θ|·) of neighbors j ∈ Ii.
3) Combine the posterior densities according to Proposition

1, under conjugacy Equation (8).

VI. EXAMPLE 1: RECURSIVE LINEAR REGRESSION

This example demonstrates the diffusion estimation of nor-
mal linear regression models with unknown noise variance.
First, the Bayesian estimation is derived in terms of sufficient
statistics and relevant hyperparameters. Part of these deriva-
tions can be found, e.g., in [58]. Then, the adaptation and
combination phases are a straightforward application of the
principles from Section III. The example also demonstrates
the bijective mapping between the “standard” hyperparameters
and their conjugate counterparts. A reader familiar with the
inference under more complicated conjugate prior distributions
may also notice one more quality: rewriting the densities and
the subsequent inference in terms of ξ and ν is algebraically
easier than deriving the posterior distributions under standard
parameters.

Assume the linear regression model

yt = βᵀzt + εt,

where t = 1, 2, . . . is a discrete time index, yt is a real scalar
observation, zt ∈ Rp is a regression vector, and β ∈ Rp

is a vector of unknown constant regression coefficients. The
i.i.d. univariate normal noise variables εt have zero mean and
an unknown constant variance σ2. The probability density of
yt|zt, β, σ2 is thus normal, and with a slight abuse of notation
(see paragraph below Definition 1),

f(yt|zt, β, σ2) =
(σ2)−

1
2√

2π
exp

{
− 1

2σ2
(yt − βᵀzt)

2

}

=
(σ2)−

1
2√

2π
exp

{
Tr

(
− 1

2σ2

[
1
−β

] [
1
−β

]ᵀ

︸ ︷︷ ︸
η

[
yt
zt

] [
yt
zt

]ᵀ

︸ ︷︷ ︸
T (yt,zt)

)}
.

The goal is to estimate θ = {β, σ2} sequentially from
the incoming observations. A convenient prior distribution,
which is conjugate to the model, is the normal inverse-gamma
distribution

β, σ2 ∼ N iG(mt−1, Vt−1, at−1, bt−1)

= N (mt−1, σ
2Vt−1)× G(at−1, bt−1),
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with scalar positive hyperparameters at−1 and bt−1, a mean
vector mt−1 ∈ Rp and a scaling matrix V −1

t−1 of appropriate
dimensions. One can show that after a little algebra its density
has the form

π(β, σ2|·) =
bat−1(σ2)−(at−1+1+ p

2 )

√
2π|Vt−1| 12 Γ(at−1)

exp

{
− 1

2σ2

[
bt−1+

+ Tr

([
1
−β

]ᵀ [
1
−β

] [
mᵀ
t−1

I

]
V −1
t−1

[
mᵀ
t−1

I

]ᵀ)]}
.

The density reveals that the prior conjugate hyperparameters
are given by

ξt−1 =

[
mᵀ
t−1V

−1
t−1mt−1 + 2bt−1 mᵀ

t−1V
−1
t−1

V −1
t−1mt−1 V −1

t−1

]

=

[
ξ

[11]
t−1 ξ

[12]
t−1

ξ
[21]
t−1 ξ

[22]
t−1

]
,

(the latter block-matrix form will be used below) and

νt−1 = 2at−1.

From the Bayesian update (3), which is based on conjugate
priors and models of the exponential family, we can easily
derive the update of the original hyperparameters. We have

Vt =
(
V −1
t−1 + ztz

ᵀ
t

)−1
= Vt−1 −

Vt−1ztz
ᵀ
t Vt−1

1 + zᵀt Vt−1zt
=
(
ξ

[22]
t

)−1

,

mt = Vt(V
−1
t−1mt−1 + ytzt) =

(
ξ

[22]
t

)−1

ξ
[21]
t ,

at = at−1 +
1

2
=

1

2
(νt−1 + 1) =

1

2
νt, (23)

bt = bt−1 +
1

2

(
−mᵀ

t V
−1
t mt +mᵀ

t−1V
−1
t−1mt−1 + y2

t

)

=
1

2

[
ξ

[11]
t − ξ[12]

t

(
ξ

[22]
t

)−1 (
ξ

[12]
t

)ᵀ]
,

where the second equality for Vt follows from the Sherman-
Morrison rank-one update formula. It is worth remarking that
this is the point where the determination of the posterior
hyperparameters Vt,mt, and bt from ξt is particularly easy.

It is immediately obvious that the marginal posterior distri-
bution of σ2 is iG(at, bt) with mean and variance given by

E[σ2|·] =
bt

at − 1
, and var(σ2|·) =

b2t
(at − 1)2(at − 2)

.

Furthermore, it can be shown that the marginal posterior
distribution of β is the generalized multivariate Student’s t
distribution with 2at degrees of freedom, location mt, and
scale matrix bt

at
Vt [58]. Finally, the predictive distribution

given z′,

f(y′|y0:t, z0:t, z
′) =

∫
f(y′|z′, β, σ2)π(β, σ|y0:t, z0:t)dβdσ2

is the generalized multivariate Student’s t distribution

y′|y0:t, z0:t, z
′ ∼ t2at

(
mᵀ
t z
′,
bt
at

(1 + (z′)ᵀVtz
′)

)
.

A. Diffusion estimation

a) Adaptation phase: The diffusion adaptation phase –
Equation (6) – in terms of the sufficient statistics T (yj,t, zj,t)
and hyperparameters ξi,t−1 and νi,t−1 is a straightforward
application of Equation (6),

ξi,t = ξi,t−1 +
∑

j∈Ii

cij,tT (yj,t, zj,t),

νi,t = νi,t−1 +
∑

j∈Ii

cij,t.

The original posterior hyperparameters Vi,t,mi,t, ai,t and bi,t
can be derived from ξi,t as in (23).

b) Combination phase: The diffusion combination is a
direct application of Proposition 1. Likewise, as in the diffu-
sion adaptation, the original hyperparameters can be derived
from the resulting ξ̃i,t and ν̃i,t.

Remark 3. The rank-one update of Vi,t can be easily imple-
mented sequentially. First, assign Vi,t ← Vi,t−1. Then, for all
j ∈ Ii, do

Vi,t ← Vi,t −
cij,tVi,tzj,tz

ᵀ
j,tVi,t

1 + cij,tz
ᵀ
j,tVi,tzj,t

.

This equation, together with the update formula for mi,t

coincide with the diffusion RLS (diffRLS) adaptation step of
Cattivelli and Sayed [12]. There are two crucial differences
between diffRLS and the proposed algorithm. First, diffRLS
imposes the cumbersome requirement of known noise vari-
ances. If this knowledge is available, the prior reduces to the
normal distribution and the adaptation steps fully coincide.
The second difference lies in the combination phase. diffRLS
combines only the point estimates, and leaves their covari-
ances intact, which indeed saves communication resources,
but may potentially degrade the estimation. The proposed
algorithm combines whole posterior distributions consistently
within the framework of probability and information theory.

VII. EXAMPLE 2: GLMS & LOGISTIC REGRESSION

This example demonstrates approximate estimation of gen-
eralized linear models (GLMs) in diffusion networks. The
class of GLMs comprises several popular models including the
linear regression, logistic, probit, and multinomial regression
models. Below, we consider only scalar GLMs for simplicity,
and focus on the logistic regression model.

Remark 4. We remark that [33] recently proposed a dif-
fusion stochastic optimization algorithm allowing estimation
of certain GLMs too. The algorithm stems from the non-
Bayesian paradigm, assumes unknown data distribution and
non-smoothly regularized expectations of the loss function in
the role of a risk function.

Scalar GLMs are given by

E [yt|zt, θ] = g−1(θᵀzt),

where yt is a scalar observation, zt ∈ Rn an observable
regressor, θ ∈ Rn is a vector of unknown regression coef-
ficients, and g(·) is a link function, whose argument θᵀzt is
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called the linear predictor (hence the name generalized linear
models). The observations are i.i.d. and have an exponential
family distribution. For example, the linear regression model
arises if g is the identity function and yt follows the normal
distribution. The logistic regression model is characterized by
dichotomous yt ∈ {0, 1} such that

yt ∼ Bernoulli(pt),

where the parameter pt ∈ [0, 1] is the probability of yt = 1.
The probability mass function of yt can be written as

f(yt|pt) = f(yt|zt, θ) = pytt (1− pt)1−yt . (24)

The logit link function defined on pt is related to the linear
predictor θᵀzt as follows:

g(pt) = logit(pt) = log

(
pt

1− pt

)
= θᵀzt,

and thus,

E[yt|zt, θ] = pt = logit−1(θᵀzt) =
1

1 + exp(−θᵀzt)
. (25)

Direct Bayesian estimation of GLMs is often analytically
intractable due to the lack of conjugate priors, but it is pos-
sible to resort to approximations by normal distributions. The
posterior distribution is approximated by a normal distribution
centered at the posterior mode and with the covariance equal to
minus the inverse of the second derivative of the log posterior
density at this mode. The accuracy is reasonable even under
small-sample cases, as long as the approximated posterior is
smooth and unimodal, or multimodal with a dominant mode
[59]. More specifically,

π(θ|yt, zt, ζt−1) ∝ f(yt|zt, θ)︸ ︷︷ ︸
Eq.(24)

π(θ|ζt−1)︸ ︷︷ ︸
N (θ̂t−1,Σt−1)

is approximated by π̂(θ|yt, zt, ζt−1) in two steps. First, the
mode θ̂t is found, e.g., using Newton’s iterative method. This
step, thus, coincides with the maximum a posteriori (MAP)
estimation. Second, the posterior covariance is calculated,

−
[
∂2 log π (θ|yt, zt, ζt−1)

∂θ∂θᵀ

]−1

θ=θ̂t

=
[
Σ−1
t−1 + ŷt (1− ŷt) ztzᵀt

]−1
,

where ŷt = E[yt|zt, θ]. The resulting approximating normal
posterior density

π̂(θ|yt, zt, ζt−1) ≈ N
(
θ̂t,
[
Σ−1
t−1 + ŷt (1− ŷt) ztzᵀt

]−1
)

(26)
is asymptotically approaching the true posterior density ac-
cording to the Bayesian central limit theorem [48], [49].

The problem of tractability affects also the predictive dis-
tribution

f(y′|z′, ζt) =

∫
f(y′|z′, ζt, θ)π(θ|ζt)dθ.

Again, there are methods for its approximation, mostly varia-
tions of the Laplace’s method [59]–[61]. The most basic one
yields [60]

f(y′|z′, ζt) ≈ (2π)
n
2

(
det[Σ−1

t + y′(1− y′)z′(z′)ᵀ]
)− 1

2

× f(y′|z′, θ)π̂(θ|ζt),
where θ = θ̂t is used.
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Fig. 3. The network layout used in the logistic regression experiments.

A. Diffusion estimation

a) Adaptation phase: The diffusion adaptation phase is
based on Equation (5) and the above-described approximation
of the true posterior density by a normal density (26). The
logarithm of the true density has the form

log πi(θ|ζi,t) = log πi(θ|ζi,t−1)

+
∑

j∈Ii

log cij,t

[(
1

1 + e−θ
ᵀzj,t

)yj,t(
1− 1

1 + e−θ
ᵀzj,t

)1−yj,t
]
.

Plugging its maximum, i.e., the mode θ̂i,t, into its negative
inverse differential yields the covariance of the approximating
normal density (26),

Σi,t =


Σ−1

i,t−1 +
∑

j∈Ii

cij,tŷj,t (1− ŷj,t) zj,tzᵀj,t



−1

,

where ŷj,t = [1 + exp(−θ̂ᵀi,tzj,t)]−1 is the point prediction
calculated at node i using the neighbors’ regressors, c.f. (25).

b) Combination phase: The combination phase is a
straightforward application of Proposition 1, specifically
Lemma 3.

B. Numerical Example

The numerical examples demonstrate the performance of
four methods: the ATC method, the adaptation-only method
(denoted A), the combination-only method (denoted C), and
the noncooperative scenario (denoted NOCOOP), where the
network nodes do not collaborate at all. The network, depicted
in Figure 3, consisted of 10 nodes. The regression vectors
zi,t ∈ R4 had a ’1’ as a first entry (an offset term) and random
samples from U(−1, 1) for the remaining entries. The elements
of θ ∈ R4 were independently sampled from U(−2, 2).

The initial normal prior distribution identical for all the net-
work nodes had a zero mean vector and a diagonal covariance
matrix 100I4×4. The weights cij,t were determined adaptively.
However, we stress that the homogeneous conditions allow
for taking advantage of uniform weights that remove the
computation of likelihoods while yielding practically identical
results. The results were averaged over 200 experiment runs.

Figure 4 depicts the evolution of MSD averaged over the
network. It is not surprising that the collaboration improves the
estimation quality, particularly if the posterior distributions are
shared (as discussed in Section IV-D).
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Fig. 4. Evolution of the decimal logarithm of MSD averaged over the network.

C. Example: skin–non-skin classification

The second example considers the skin–non-skin dataset of
Bhatt and Dhall [62]. It consists of 245,057 samples of which
50,859 are skin samples and 194,198 are non-skin samples.
The dataset was collected by randomly sampling RGB values
from face images of various age groups (young, middle, and
old), race groups (white, black, and Asian), and gender. The
samples were obtained from the FERET and PAL databases.
Each data item consisted of four variables – B, G, R and the
class label.

Our goal was to estimate the logistic model parameters
where the regression vectors were zi,t = [1, Bi,t, Gi,t, Ri,t]

ᵀ

(the first term standing for the offset) and the dependent
variable yi,t denotes the class (0 is skin, 1 is non-skin).
The data were randomly shuffled before processing and were
introduced sequentially. The normal prior for θ was the same
as in the previous example.

The network of 10 nodes was the same as in the previous
example. Each node sequentially acquired 10,000 observa-
tions. Two scenarios were compared — the combination-
only mode with uniform weights (C) and the noncooperative
mode (NOCOOP). This allowed for fair determination of the
predictive ability of the methods based on their prediction of
skin class membership E[yi,t|zi,t, θ]. The decision cutoff value
was 0.5.

A popular categorical classifier assessment measure is the
Brier score [63], expressing the predictor performance as
follows:

Bi =
1

T

T∑

t=1

(yi,t − E[yi,t|zi,t, θ])2.

The Brier score is equivalent to MSE. Its average calculated
over the network is depicted in Figure 5. Apparently, collab-
oration led to very fast stabilization of predictions. This is
also confirmed by the sensitivity (true positive rate), specificity
(true negative rate), accuracy and the diagnostic odds ratio
(prevalence-independent accuracy, DOR) at t = 1, 500 and
t = 10, 000, Table II. A centralized strategy — merging of
posterior distributions in a fusion center — led to virtually
the same performance, with a negligibly lower diagnostic odds
ratio (78.520) caused by a few additional misclassifications.
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Fig. 5. Network Brier score of the combination-only and non-collaborative
modes.
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Fig. 6. Evolution of estimates with ±3 standard deviation bands (node 0,
first 50 time steps).

The maximum likelihood estimate of θ obtained from
10,000 samples was θ̂ = [4.611, 0.031,−0.014,−0.034]ᵀ.
The estimates of all the elements were statistically significant.
Figure 6 shows that under collaboration the Bayesian estimates
very quickly converged to these values.

VIII. EXAMPLE 3: KALMAN FILTERING

This example considers estimation of state-space models by
Kalman filtering. The diffusion Kalman filter is derived for the
linear case, but it is natural that the extended and other types
of Kalman filters follow the same principles. In the sequel,
the filtering is cast in terms of the conjugate hyperparameter
ξ so that its diffusion variant is easily obtained. For the sake
of completeness, the update of the original hyperparameters is
shown as well.

Let us assume a state-space model of the form

xt|xt−1, zt ∼ N (Atxt−1 +Btzt, Qt) , (27)
yt|xt ∼ N (Htxt, Rt) , (28)

where yt ∈ Rk is an observation at time t = 1, 2, . . ., xt ∈ Rn

is a state vector, zt ∈ Rn is an observable input variable,
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TABLE II
SENSITIVITY (TRUE POSITIVE RATE), SPECIFICITY (TRUE NEGATIVE

RATE), ACCURACY, AND DIAGNOSTIC ODDS RATIO (DOR) AT t = 1, 500
AND t = 10, 000 FOR THE COMBINATION-ONLY (C) AND

NONCOLLABORATIVE (NOCOOP) MODES.

Measure t = 1, 500 t = 10, 000
C NOCOOP C NOCOOP

Sensitivity 0.829 0.689 0.823 0.775
Specificity 0.944 0.875 0.945 0.935
Accuracy 0.920 0.837 0.919 0.902

DOR 81.723 15.508 78.891 49.547

At, Bt and Ht are matrices of compatible dimensions, and
Qt ∈ Rn×n and Rt ∈ Rk×k are state and observation
covariance matrices.

The Bayesian sequential inference of the state vector xt
from past observations is based on a Gaussian prior probability
density function π(xt|y0:t−1, z0:t−1) whose mean and covari-
ance matrix are denoted by x−t and P−t . After incorporating
yt and zt, we obtain the filtering distribution π(xt|y0:t, z0:t),
which is also Gaussian and with mean and covariance x+

t and
P+
t , respectively. The Kalman filtering proceeds in two steps:

a) Prediction: the predicted value of xt from xt−1 is ob-
tained using the state evolution model (27) and the Chapman-
Kolmogorov equation,

π(xt|y0:t−1, z0:t)=

∫
π(xt|xt−1, zt)π(xt−1|y0:t−1, z0:t−1)dxt−1.

The properties of normal distributions ensure that the predicted
prior probability density function π(xt|y0:t−1, z0:t) is again a
normal distribution N (x−t , P

−
t ) with hyperparameters

x−t = Atx
+
t−1 +Btzt, and P−t = AtP

+
t−1A

ᵀ
t +Qt.

In diffusion networks, the prediction step is run locally without
any collaboration.

b) Update: The Bayes’ theorem (1) serves for updating
the prior of xt with the information about xt in the observed
yt and zt,

π(xt|y0:t, z0:t) =
π(xt|y0:t−1, z0:t)f(yt|xt)∫
π(xt|y0:t−1, z0:t)f(yt|xt)dxt

. (29)

As before, we rewrite the observation model (28) in the
exponential family form,

f(yt|xt) ∝ exp

{
−1

2
(yt −Htxt)

ᵀR−1
t (yt −Htxt)

}

= exp

{
Tr

(
−1

2

[
−1
xt

] [
−1
xt

]ᵀ

︸ ︷︷ ︸
η

[
yᵀt
Hᵀ
t

]
R−1
t

[
yᵀt
Hᵀ
t

]ᵀ

︸ ︷︷ ︸
T (yt)

)}
.

The conjugate normal distribution in the corresponding com-
patible form is given by

π(xt|y0:t−1, z0:t) ∝ exp

{
−1

2
(xt − x−t )ᵀ(P−t )−1(xt − x−t )

}

= exp

{
Tr

(
−1

2

[
−1
xt

][
−1
xt

]ᵀ

︸ ︷︷ ︸
η

[
(x−t )ᵀ
I

]
(P −t )−1

[
(x−t )ᵀ
I

]ᵀ

︸ ︷︷ ︸
ξt

)}
,

where I is a unit matrix of appropriate size.

The Bayesian update (29) then reduces to the update of the
hyperparameters according to Equation (3),

ξt = ξt−1 + T (yt)

=

[
(x−t )ᵀ(P −t )−1x−t+ yᵀt R

−1
t yt, (x−t )ᵀ(P −t )−1+ yᵀt R

−1
t Ht

(P −t )−1(x−t )ᵀ+Hᵀ
t R
−1
t yt, (P −t )−1+Hᵀ

t R
−1
t Ht.

]

Now, it is easy to derive the diffusion estimator.

A. Diffusion estimation

a) Adaptation phase: A direct application of Equation
(6) shows that

ξi,t = ξi,t−1 +
∑

j∈Ii

cij

[
yj,t
Hj,t

]
R−1
j,t

[
yj,t
Hj,t

]ᵀ
, (30)

νi,t = νi,t−1 + 1,

from which it easily follows that

P+
i,t =


(P−i,t)

−1 +


∑

j∈Ii

cijH
ᵀ
j,tR

−1
j,tHj,t





−1

,

x+
i,t = x−i,t + P+

i,t


∑

j∈Ii

cijH
ᵀ
j,tR

−1
j,t

(
yj,t −Hj,tx

−
i,t

)

 .

b) Combination phase: Proposition 1 applied to ξj,t from
Equation (30) is straightforward. Since the posterior densities
are normal, it is already known from Lemma 3 that the original
hyperparameters — the mean and covariance matrix — take
the form

P̃+
i,t =


∑

j∈Ii

aij,t
(
P+
j,t

)−1



−1

,

x̃+
i,t = P̃+

i,t


∑

j∈Ii

aij,t
(
P+
j,t

)−1
x+
j,t


 .

Remark 5. The original diffusion Kalman filter (diffKF) is due
to Cattivelli and Sayed [31]. Both algorithms have the same
adaptation phase but different combination phase, as diffKF
combines only local state estimates and leaves the associated
covariances intact. Hu, Xie and Zhang [32] extend diffKF by a
covariance intersection-based merging, yielding an algorithm
equivalent to the one proposed in this paper. Therefore, a
numerical example is omitted here. Instead, Figure 7 illustrates
the risk associated with the negligence of the (co)variance
properties.

IX. EXAMPLE 4: INHOMOGENEOUS POISSON PROCESS

This example demonstrates the diffusion estimation of a
slowly varying parameter with a scheduled combination phase.
Its purpose is twofold. The first is to demonstrate that the
application of certain Bayesian techniques is straightforward
and does not require separate development. A simple expo-
nential forgetting procedure (scaling of the prior distribution)
illustrates this. The second purpose is to shed some light on
further research possibilities.
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Fig. 7. A simple example of combination methods. 2 nodes share their distri-
butionsN (−5, 1) andN (0, 100) (e.g. a freshly connected node), respectively
(solid lines), the combination weights are uniform. The proposed combination
procedure yields in both nodes N (−4.95, 1.98) (dashed line), while the
combination of point estimates only (as in diffKF) leads to N (−2.5, 1) and
N (−2.5, 100) (dotted lines).

The Poisson process, also known as shot noise process, finds
applications in many disciplines including astronomy, physics,
image processing, and telecommunications. It characterizes
stochastically independent events like the number of particles
colliding with a detector, the number of phone calls, Internet
traffic and many other phenomena that occur in a given
interval [64]. It is a memoryless discrete random process
with independent increments, describing the number y(ta,tb]

of events that occur between two time instances ta and tb,

y(ta,tb] ∼ Po (θt (tb − ta)) , tb ≥ ta,
where the probability mass function of y(ta,tb] has the form

f(y(ta,tb]|θt) =
[θt(tb − ta)]

y(ta,tb]

y(ta,tb]!
e−θt(tb−ta), y(ta,tb] ∈ N0.

The parameter θt is real and positive and represents the process
intensity. If the intensity is time-varying, the process is called
inhomogeneous. In the sequel, we will consider sampling of
y(ta,tb] in regular time intervals of unit length, i.e., tb = ta+1,
and denote the observations (number of occurrences) between
two consecutive time instants by yt.

Under process homogeneity, a convenient conjugate prior
distribution is the gamma distribution G(ξt−1, νt−1) with
scalar hyperparameters ξt−1, νt−1 > 0 and density

π(θ|y0:t−1) =
ν
ξt−1

t−1

Γ(ξt−1)
θξt−1−1e−νt−1θ.

It is straightforward to see that the posterior hyperparameters
obey Equations (3) with T (yt) = yt. The posterior mean and
variance are

E[θ|y0:t] =
ξt
νt

and var(θ|y0:t) =
ξt
ν2
t

.

Inhomogeneity of the Poisson process impairs the estimation
tractability. However, under mild variations of θt, a way of
circumventing the intractability is by way of using the concept
of forgetting. Forgetting amounts to flattening of the posterior
distribution before incorporating new observations. In order
to avoid distraction from the main subject of this paper, we

adopt only the most basic exponential forgetting [58]. The
forgetting factor λ is a positive real number, where 0 < λ ≤ 1,
and it is usually close to one. The factor is used to flatten
the prior distribution by exponentiating it, i.e., π̃(θ|y0:t−1)←
[π(θ|y0:t−1)]

λ.
It is easy to show that the predictive density has the form

f(y′t+s|ȳ0:t) =
sy
′
t+s

y′t+s!

νξtt

(νt + s)ξt+y
′
t+s

Γ(ξt + y′t+s)

Γ(ξt)
.

A. Diffusion estimation

a) Adaptation phase: The diffusion update (5) with
forgetting takes the form

πi(θt|ȳ0:t) ∝ [πi(θt|ȳ0:t−1)]
λ
∏

j∈Ii

[f(yj,t|θt)]cij ,

and in terms of the gamma hyperparameters,

ξi,t = λξi,t−1 +
∑

j∈Ii

cijyj,t, and νi,t = λνi,t−1 +
∑

j∈Ii

cij .

b) Combination phase: As usually, the combination
phase follows Proposition 1. Unlike in the previous examples,
ξ and ν are “standard” parameters of the gamma distribution,
and therefore, there is no reparameterization.

B. Numerical Example

This example demonstrates the estimation (tracking) of
slowly varying parameter θt by a network of 20 nodes de-
picted in Figure 8. The datasets of 500 observations were
randomly generated from the Poisson distribution with θt =
5+2 sin(500π/t). The prior gamma distribution was initialized
with hyperparameters νi,0 = ξi,0 = 0.1, and the exponential
forgetting factor was set to λ = 0.96. The investigated
scenarios were ATC with adaptive combiners, adaptation-
only (A), combination-only with uniform combiners (C),
noncooperative scenario (NOCOOP), and a combination-only
scenario with uniform combiners and a scheduled combination
phase activated at every 5th time step (C5). The last scheme
suggests one possible way towards communication savings.
The resulting MSD evolutions that are depicted in Figure 9
were averaged over 200 experiments. The ATC strategy, again,
exhibited the best performance, and it was closely followed by
the combination-only scenario.

The trade-off between the estimation performance and the
communication costs can be very easily tuned by the sched-
uled combination phase. The figure also displays the ‘wavy’
character of the MSD caused by the impact of outdated infor-
mation that is being gradually forgotten. A typical evolution of
estimates of ATC and NOCOOP of a randomly chosen node
is shown in Figure 10, where the impact of past data is clearly
visible on the much smoother ATC estimates.

X. CONCLUSION AND FURTHER REMARKS

In this paper we proposed a Bayesian approach to sequential
diffusion estimation. The main objective was to present an
abstract methodology that is straightforwardly applicable to
inference of parameters of a wide class of popular models.
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Fig. 8. Poisson process estimation: Network layout.
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Fig. 9. Evolution of the decimal logarithm of MSD averaged over the network.
The character of the curves is caused by the delayed influence of forgetting,
c.f. Fig. 10. Still the variations are within a well acceptable interval.

The methodology was demonstrated on four examples. The
recursive linear regression and the diffusion Kalman filter
already have their counterparts in the state-of-art literature
(though our approach to regression does not necessarily as-
sume known noise variances). The diffusion logistic regression
and the diffusion tracking of (inhomogeneous) Poisson process
intensity are new.

Probably the most important aspect of the adopted Bayesian
viewpoint is its straightforward application. For instance, the
last example illustrates tracking of slowly varying parame-
ter using a forgetting technique. Similarly, it is possible to
approximate unimodal posterior distributions obtained from
a sequential Monte Carlo filter by an exponential family
distribution, combine them according to Proposition 1, and
resample from the result. The framework is also applicable
to sequential mixtures estimation whose basics were proposed
[36]. All this suggests that the proposed framework opens up
many possible directions for research.

The source codes can be found at http://diffest.utia.cas.cz.
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