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Abstract

Granger causality, based on a vector autoregressive model, is one of the most popular

methods for uncovering the temporal dependencies between time series. The application

of Granger causality to detect inference among a large number of variables (such as

genes) requires a variable selection procedure. To address the lack of informative data,

so-called regularization procedures are applied. In this chapter, we review current

literature on Granger causality with Lasso regularization techniques for ill-posed

problems (i.e., problems with multiple solutions). We discuss regularization procedures

for inverse and ill-posed problems and present our recent approaches. These approaches

are evaluated in a case study on gene regulatory networks reconstruction.
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Granger Causality for Ill-Posed Problems: Ideas, Methods, and Application in Life

Sciences

Introduction

Causality describes the relation between a cause and its effect (its consequence).

One can say that the inverse problems, where one would like to discover unobservable

features of a cause from the observable features of an effect [24], can be seen as

causality problems. When several elements or phenomena are considered and the causal

relationships among them are questioned, we talk about the so-called causality network.

A causality network can be seen as a directed graph with nodes, which correspond to

the variables {xj, j = 1, . . . , p} and directed edges, which represent the causal

influences between variables. The variables represent entities or objects, for example,

genes. We write xi ← xj if the variable xj has a causal influence on the variable xi.

Causality Problems in Life Sciences

Causality networks arise in various scientific contexts. For example, in cell biology,

one considers causality networks which involve sets of active genes of a cell. An active

gene produces a protein. In biological experiments it has been observed that the

amount of the protein, which is produced by a given gene, may depend on or may be

causally influenced by the amount of proteins produced by other genes. In this way,

causal relations between genes and corresponding causality network arise. These

causality networks are also called gene regulatory networks. In cell biology, these

networks are used in the research of causes of genetic diseases.

In neuroscience, causality networks are widely used to express the temporal

interactions between various regions of the brain. Knowledge of these interactions can

help to understand the human cognition or neurological diseases [54, 64, 51].

In practice, the first importan information that can be observed about a network

is the temporal evolution (time series) of the involved variables {xj
t , t = 1, . . . , T},

where t is the index of time and j is the index of the concrete variable in the network.

How can this information be used for inferring causal relations between variables?
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The statistical approach to deriving causal relations between a target variable y

and potential predictor variables {xj, j = 1, . . . , p} using the known temporal evolution

of their values {yt, x
j
t , t = 1, . . . , T, j = 1, . . . , p} consists of specifying a model of the

relations between y and {xj, j = 1, . . . , p}. As a first step, one can consider a linear

model for variable yt:

yt ≈
p
∑

j=1

βjxj
t , t = 1, . . . , T.

The coefficients {βj, j = 1, . . . , p}, which can be estimated using the least-squares

method, serve as indicators of causal relations. For instance, in statistics [82] by fixing

the value of a threshold parameter βtr > 0, one says that there is a causal relationship

y ← xj if |βj| > βtr.

The goal of this chapter is to overview existing approaches for the reconstruction

of the causal relations and to present novel techniques, originating from regularization

theory, that allow for a more accurate and robust reconstruction of causality networks.

Outline of the Chapter

In the Section titled ”Granger Causality and Multivariate Granger Causality”, we

continue our discussion of causality in general terms and introduce the notion of

Granger Causality and Multivariate Granger Causality. We also discuss some methods

for the reconstruction of causalities in gene regulatory networks. Consequently, we

present the concept of gene regulatory networks and some recent approaches for their

reconstruction. Since we consider causality problems as a special case of inverse

problems, in the Section ”Regularization of Ill-Posed Inverse Problems”, we introduce

the state of the art in the regularization theory for treating inverse ill-posed problems.

We will mainly focus on approaches for treating problems with incomplete,

high-dimensional, and noisy data, because of their high relevance to real-life

applications. The Section ”Multivariate Granger Causality” describes the state of the

art for its analysis. Further, we discuss quality measures, which are used in numerical

experiments for checking the performance of the methods. Finally, we discuss novel

regularization techniques for the reconstruction of causal relationships and present
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results of numerical experiments on gene regulatory network reconstruction using the

classical approaches such as Lasso and our novel methods.

Notation

First, we introduce some standard notation that will be used in this paper. The

entries of a matrix X are denoted by lower case letters and the corresponding indices,

i.e., Xi,j = xi,j. We define the Frobenius norm of a matrix X as

‖X‖F :=





∑

i,j

|xi,j|
2





1
2

,

where xi,j is the entry (i, j) of the matrix X. It is also convenient to introduce the ℓn
p

vector norms

‖x‖ℓn
p

:= ‖x‖p :=

(

n
∑

i=1

|xi|
p

)1/p

, 0 < p <∞,

and ‖x‖0 := #{i : xi 6= 0} as usual. This notation will be used in Section ”Multivariate

Granger Causality Approaches using ℓ1 and ℓ2 Penalties”. More specific notations will

be defined in the paper, where they turn out to be useful.

Granger Causality and Multivariate Granger Causality

In 1969, the econometrist Clive Granger introduced a method to quantify

temporal-causal relations among time series measurements [28], which gained great

success across many scientific domains and in a variety of applications. In 2003,

Granger was for his achievements awarded with the Nobel Prize in Economics. He

introduced Wiener’s concept of causality into the analysis of time series [80] and the

notion of the "computationally measurable" causality. His method is usually referred to

as Granger Causality. Granger causality is based on the statistical predictability of one

time series using knowledge from one or more other time series. The basic idea of the

method is straightforward.

Consider two simultaneously measured signals x and y, and examine two

predictions of the values of y: the first one uses only the past values of the signal y, and

the second one uses the past values of the both signals y and x. If the second prediction
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is significantly better than the first one, then we call x to be causal to y [80]. Note that

the contemporaneous effects are not considered. The standard test developed by

Granger is based on linear regression models and leads to the two well-known alternative

test statistics, the Granger-Sargent and the Granger-Wald (discussed in detail below)

tests [2]. The probabilistic nature of Granger Causality leads to uncertainty concerning

the relationship of cause and effect, which are fundamentally deterministic. The

efficient applicability of the original Granger causality is impaired by several crucial

problems of discovering latent confounding effect, missing counterfactual reasoning and

capturing instantaneous and non-linear causal relationships [72], [56], [45]. Nevertheless,

due to its simplicity and scalability, Granger causality remains a popular method for

uncovering temporal dependencies and for detecting interactions between time series.

Rather than referring to Granger causality as a causal analysis tool, we will define

it in our paper as a temporal dependence discovery method. Being aware of the above

mentioned criticism, we will use the terms "G-causality", "G-causal" or "Granger

Causality" in terms of temporal dependency or inference.

Granger Causality

Granger causality, GC thereafter, characterizes the extent to which a process xt

influences another process yt, and builds upon the notion of incremental predictability.

It is said that the process xt Granger causes another process yt if future values of yt can

be better predicted using the past values of xt and yt rather then only past values of yt.

The standard test of Granger Causality is based on a linear regression model

yt = a0 +
L
∑

l=1

b1lyt−l +
L
∑

l=1

b2lxt−l + ξt (1)

where ξt are uncorrelated random variables with zero mean and variance σ2, L is the

time lag, which denotes the maximum number of the considered past values of a

variable, and t = L+ 1, . . . , N. The null hypothesis that xt does not Granger cause yt is

supported when b2l = 0 for l = 1, . . . , L, reducing (1) to

yt = a0 +
L
∑

l=1

b1lyt−l + ξ′
t. (2)
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This model leads to the two well-known test statistics, the Granger- Sargent (GS) and

the Granger-Wald (GW) test. The Granger-Sargent test is defined as

GS = N
(R2 −R1)/L
R1/(N − 2L)

, (3)

where R1 is the residual sum of squares in Equation (1) and R2 is the residual sum of

squares in Equation (2). The GS test statistic has an F-distribution with L and N − 2L

degrees of freedom. The Granger-Wald test is defined as

GW = N
σ̂2

ξ′

t
− σ̂2

ξt

σ̂2
ξt

(4)

where σ̂2
ξ′

t
is the estimate of the variance of ξ′

t from model (2) and σ̂2
ξt

is the estimate of

the variance of ξt from model (1). The GW statistic follows the χ2
L distribution under

the null hypothesis of no causality.

Multivariate Granger Causality

The bivariate Granger Causality can straightforwardly be extended to

p-dimensional multivariate time series represented by xt ∈ R
p×1.

Based on the intuition that the cause should precede its effect (ie. following

Hume’s definition of causality), in multivariate Granger causality one states that a

(vector) variable xi can be potentially G-caused by the past versions of the involved

variables {xj, j = 1, . . . , p}. Then, in the spirit of the statistical approach described

above and using a (multivariate) vector auto-regressive model (VAR) for the G-causal

relations among p (scalar) variables xj
t , we consider the following approximation

problem for the scalar values:

xi
t ≈

p
∑

j=1

L
∑

l=1

βj
l x

j
t−l, t = L+ 1, . . . , T, (5)

where L is the maximal time lag. The approximation problem (5) can be specified using

the least-squares approach:

T
∑

t=L+1



xi
t −

p
∑

j=1

L
∑

l=1

βj
l x

j
t−l





2

→ min
βj

l

.

Then, the coefficients {βj
l } can be determined from a system of linear equations. In the

following sections, we denote the coefficient matrix by Aest = (β1, β2, . . . , βp), where the
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coefficients are obtained by an approximation method. Performing a statistical

significance test on the value of coefficients, one identifies the Granger causes of the

target series. As in the statistical approach, one can now fix the value of the threshold

parameter (i.e. of the substantive cut-off) βtr > 0 and say that

xj Granger causes xi, denoted by xi ← xj if
L
∑

l=1

|βj
l | > βtr. (6)

It is well-known from the literature (see, e.g., [46]) that an application of Granger

causality on gene regulatory networks with a large p may not lead to satisfactory

results. This poor performance is reflected in the non-uniqueness of the solution of the

the corresponding minimization problem and the potentially large number of

reconstructed spurious relations. Actually, in practice one would expect to have only a

few causal relations for a given gene, which means that the vector
(

βj
l

)

is sparse. In this

case, the statistical significant tests are inefficient, while they lead to higher chance of

spurious correlations. Moreover, the high dimensionality of biological data leads to

further challenges. To address this issue, various variable selection procedures can be

applied. Most of them are extensions of ’classical’ variable selection procedures such as

Lasso [75], LARS [23], and elastic nets [90].

Lasso (least absolute shrinkage and selection operator) is an alternative

regularised version of least squares, which, in addition to the minimization of the

residual sum of squares, imposes an ℓ1 norm on the coefficients {βj
l }. Due to the nature

of ℓ1 norm, Lasso shrinks the regression coefficients towards 0 and returns some

coefficients which are exactly 0, implementing variable selection in this way. In the

following, we will refer to Lasso-Granger as to an algorithm for learning the temporal

dependency among multiple time-series based on variable selection using Lasso.

LARS (least angle regression) is a less greedy version of traditional forward

selection method. A simple modification of the LARS algorithm is computationally less

intensive compared to Lasso. The efficiency of the LARS algorithm makes it widely

used in variable selection problems.

However, for highly correlated variables, Lasso tends to select only one variable

instead of the whole group. To overcome this challenge, the elastic net method, which
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combines ℓ2 and ℓ1 penalties on the coefficients was proposed. The convex function

induced by the ℓ2 penalty helps elastic net to achieve a grouping effect where strongly

correlated predictors tend to be in or out of the model together. Elastic net often

outperformed Lasso in terms of prediction error for correlated data.

In the following sections we continue our discussion on existing variable selection

procedures with an emphasis on methods for discovering causal relations in gene

regulatory networks.

Gene Regulatory Networks

Biomolecular interactions in a cell, called transcriptional regulation, show a

complex non-linear dynamics. Models of transcriptional regulation are commonly

depicted in form of networks, where directed connections between nodes represent

regulatory interactions. The goal of these models is to infer on (or to reconstruct) the

structure of gene regulatory networks from experimental data. Biological samples are

usually profiled using the so-called gene expression microarrays, which correspond to

the vector measurements and provide quantitative information to assess molecular

control mechanisms. An experiment as sample, y, is a result of a single microarray

experiment corresponding to a single column in the matrix of gene expressions,

y = (x1
j , . . . , x

n
j )′ where n is the number of genes in the data set. A gene expression

profile from microarrays has typically 5000 to 100000 variables (genes) and just

15− 100 measurements.

The detection of causality in a gene regulatory network from gene expression

measurements, is a challenging problem, being solved by various computational

methods with various success.

The most popular methods to model interactions in gene regulatory networks

from experimental data are so-called Dynamic Bayesian networks (see, for example,

[83]]. The application of ordinary differential equations is also popular in biological

modeling (see, for example, [17] or [11] and [88]). These methods are reliable for

modeling the local kinetics among a small number of genes; however, for larger gene
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regulatory networks are these approaches computationally intensive.

Several other methods for modeling interactions among genes have been recently

proposed and applied to gene expression data, such as Structural Equation Models,

Probabilistic Boolean Networks and Fuzzy Controls (see, for example, [17, 73], just to

mention a few). These methods are mainly applied to small genetic networks to study

the dynamics of adjacent genes, and will not be discussed in this paper.

Taking into account the increasing interest of biologists in investigating

interactions among large number of genes together with the scalability and simplicity of

Granger Causality methods, we focus in this Chapter on these methods together with

various ℓ1 and ℓ2 penalties.

Regularization of Ill-Posed Inverse Problems

The problem of the reconstruction of a gene regulatory network belongs to the

class of inverse problems with high-dimensional dataset and sparse number of

measurements. Recently, this problem attracted increasing attention from various

scientific communities in inverse problems, machine learning, and approximation theory.

A general inverse problem (see, e.g., [24, 34, 62, 36, 48]) can be seen as an

operator equation

y = Aβ, (7)

where y represents the data obtained in observational experiments, in other words the

effect, β is the solution to be reconstructed, the cause, and the operator A represents

the model between the cause and its effect. The approximation problem (5) can be seen

as a problem of form (7).

In practice, one has take into account that the data y in (7) are noisy. Ideally, one

assumes that there is a hidden cause β† with corresponding ideal data y† such that

y† = Aβ†. The data y deviate from y†, and the norm δ := ‖y† − y‖ is referred to as

noise. Typically, the sources of the noise are imperfect measurements and modeling

errors.

Inverse problems are often ill-posed, which means that equation (7) using the
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noisy data y, may have no solution, or the solution of (7) may be arbitrarily far away

from the expected cause β†. So-called Regularization Methods are proposed to deal with

the ill-posedness of inverse problems.

A well-known class of regularization methods is the so-called Tikhonov-type

regularization (see, e.g., [76, 77, 79]), where the solution of (7) is constructed as the

minimizer β(λ) of the following functional:

‖y− Aβ‖2 + λ ρ(β)→ min
β
. (8)

In (8), λ is the so-called regularization parameter, and ρ(·) is a functional that is often

similar to a norm functional. The methods (11), (12), (13) which are discussed below

have form (8).

The appropriate choice of the regularization parameter λ is very important for the

successful application of regularization methods. The goal is to choose λ such that the

reconstruction error ‖β† − β(λ)‖ is minimal. This choice has to be made without

knowledge of β†. From a theoretical viewpoint [10], the choice of λ has to be coupled to

the noise level δ and to the data y.

In the theoretical analysis of choice rules, one tries to obtain an estimate for the

reconstruction error ‖β† − β(λ)‖ that converges to zero as the noise level tends to zero.

Also, the rate of convergence of ‖β† −β(λ)‖ is of interest, and one tries to design choice

rules such that the convergence rate of the error is optimal over a class of solutions β†.

In this respect, the so-called balancing principle [52, 57, 42] is highly important.

Although knowledge of the noise level is important from the theoretical point of

view, in practice it is either unknown, or it is challenging to estimate its value reliably.

This is the case, for example, for inverse problem (5). In this case, one uses heuristic

choice rules. In this paper, we use the so-called quasi-optimality criterion, which we

present in Section ”Granger Causality with Multi-Penalty Regularization”. This choice

rule has a close connection to the above-mentioned balancing principle, providing a

certain reliability in its results.

In the context of causality detection, the concept of consistency of the

reconstruction methods, which is discussed in the next section, seems to be similar to
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the concept of the above mentioned convergence of regularization methods. However,

clear links between these two concepts seem to be missing, and consideration of these

links is an interesting subject for future research.

Multivariate Granger Causality Approaches using ℓ1 and ℓ2 Penalties

In [44] and [70] statistical properties of the Lasso-Granger methods were reviewed.

Prior to these papers, Arnold et al. [4] and Fujita at al. [27] discussed the consistency

of the Lasso-Granger algorithm and proved that the learned temporal dependencies will

converge to the ground truth exponentially fast, if the time series data are generated

from linear Gaussian models.

Inspired by [44], the common objectives in the analysis of Lasso-Granger methods

are showing that the method is consistent in terms of three performance metrics:

1. Prediction consistency states that the estimation matrix Aest by Lasso-Granger

can be used to accurately predict the future values of the time series. Formally, an

estimation Aest
T obtained from a time series of length T is a consistent estimator if

1
T

T
∑

t=1

‖
L
∑

l=1

(Aest,l
T − atruel)x(t− l)‖2

2 → 0, for T →∞, (9)

where Atrue is the true coefficient matrix.

2. Parameter estimation consistency states that the estimated coefficients should

be close to the true coefficients:

‖Aest,l
T − Atrue,l‖F → 0, T →∞, for l = 1, . . . , L. (10)

3. Support recovery states that the non-zero pattern of the estimate Aest
T matches

the non-zero pattern of the true coefficient matrix with a high probability as T →∞.

The consistency of the Lasso Granger method in terms of the first two

performance metrics under some additional assumptions on the matrix Atrue has been

shown in a recent paper [70]. We refer to [70] for further discussion on consistency of

the method and the corresponding error estimates. Unfortunately, no consistency for

support recovery and asymptotic normality are ensured for the Lasso-Granger method.
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These results, however were derived for special modifications of Lasso, such as adaptive

Lasso [70], [89].

The multivariate Granger causality methods that apply Lasso to the problem of

reconstruction of gene regulatory networks were first proposed by Arnold et al. [4]. This

method and its variations belong to Graphical Lasso Granger (GLG) methods. The

model of the Graphical Lasso Granger method has the form

T
∑

t=L+1



xi
t −

p
∑

j=1

L
∑

l=1

βj
l x

j
t−l





2

+ λ‖β‖1 → min
βj

l

. (11)

where λ > 0 and L denotes the lag of the time series.

The solution of (11) for each variable {xi, i = 1, . . . , p} with the causality rule (6)

defines an estimator of the causality network between the variables {xi}. Although

method (11) enjoys great computational advantages and excellent performance, it is a

well-known fact that the Lasso has a tendency to over-select the variables, i.e.

reconstruct spurious causation.

In many situations, natural groupings exist between variables, and variables

belonging to the same group should be either selected or eliminated as a group. Yuan

and Lin [84] proposed an extension of Lasso, the so-called Group Lasso, to address this

issue. This approach was used in Lozano et al. [46] to develop a novel methodology,

termed Graphical Group Lasso Granger (GgrLG), which overcomes the limitations

mentioned above for detection of causal relations. In particular, given J groups of

variables which partition the set of predictors, the so-called group Lasso estimate

β̂group(λ) [84] is defined as the minimizer of

T
∑

t=L+1



xi
t −

p
∑

j=1

L
∑

l=1

βj
l x

j
t−l





2

+ λ
J
∑

j=1

‖βGj
‖2, (12)

where βGj
= {βk : k ∈ Gj}, λ > 0 is a regularization parameter. This form of the

functional presupposes that the groups are of equal length, which is a quite natural

assumption in this case since they correspond to the number of sampling points realized

in regression. It is worthwhile to mention that the use of the ℓ2−norm as a penalty

norm enforces the coefficients βGj
within a given group to be similar in amplitude (as
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opposed to using the ℓ1 norm). A limitation of the group Lasso is that it requires a

priori information of group structures, which is often unavailable. Moreover, the

procedures of minimizing (12) are nonlinear and require the solution of O(pL) equations

on each iteration step. This can be computationally intensive for large numbers of genes.

Extending upon these results, Zeng and Xie in [85] proposed two new methods to

select variables in correlated data, the so-called gLars and gRidge. These methods

conduct grouping and selecting at the same time and therefore work well when prior

information of group structures is not available. Simulations and real examples show

that the proposed methods often outperform the existing variable selection methods,

including least angle regression (LARS) and elastic net, in terms of both reducing

prediction error and preserving sparsity of representation. Another method based on

group Lasso penalty with a linear autoregressive model was proposed and applied to

gene regulatory networks by Kojima et al. [41].

Analysis of Granger causality between two groups of time series was also applied

in brain functional connectivity analysis, where the functional connection between two

regions of brain is investigated by analyzing multiple time series representing each

region. Using the concept of canonical correlation [71], canonical Granger causality is

proposed to be calculated between two time series representing the groups of times

series, which are linear combinations of the time series in each group [6].

Rajapakse and Mundra in [60] experimentally tested the stability of multivariate

vector autoregressive methods (MVAR) with ridge, lasso, and elastic net penalties by

simulation on synthetic data and on gene expression data sets gathered over the Hela

cell cycle. The stability of these MVAR methods with Lasso and with elastic net were

comparable, and their accuracies were much higher than the MVAR with the ridge

function.

Other methods to infer causal relationships, the so-called Adaptive Thresholding

Lasso Granger (AtrLG) [67] and Graphical Truncating Lasso Granger (GtrLG) [65],

were proposed by Shojaie and Michailidis and their consistency was proven in [66]. Let

x be the n× p matrix of observations and let xt denote the matrix corresponding to the
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t− th time point, and xj
t be its j − th column. The truncating lasso estimate of the

graphical Granger model is found by solving the following estimation problem for

i = 1, . . . , p

argmin
βt∈Rp

1
n
‖xi

T −
p
∑

j=1

L
∑

l=1

xj
T −lβ

j
l ‖

2
2 + λ

L
∑

l=1

ψt
p
∑

j=1

|βj
l |w

l
j (13)

ψ1 = 1, ψl = M I{‖a(l−1)‖0<p2β/(T −l)}, l ≥ 2,

where M is a large constant, β is the allowed false negative rate, determined by the

user, and al−1 = (β1
l−1, . . . , β

p
l−1) is a vector of coefficients, estimated at (l − 1). In

practice is selected M = g expn for g a large positive number. Selection of β can be

based on the cost of false negatives in the specific problem at hand, as well as the

sample size; as sample size increases, smaller values of β can be considered. A practical

strategy for selecting β is to first find the lasso (or adaptive lasso) estimate and select β

so that the desired false negative rate is achieved.

The truncating effect of the proposed penalty (imposed by ψl) is motivated by the

rationale that the number of effects (edges) in the graphical model decreases as the time

lag increases. Consequently, if there are fewer than p2β
T −l

edges in the (l − 1) estimate, all

the later estimates are forced to zero. Hence, the Truncating Lasso penalty provides an

estimate of the order of the underlying VAR model. In addition, by applying this

penalty, the number of covariates in the model is reduced as the coefficients for effects

of genes on to each other after the estimated time lags are forced to zero. Shojaie and

Michailidis showed in [65] that the resulting estimate is consistent for variable selection

(i.e. the correct edges are estimated with increasing probability, as the sample size

increases) in the high dimensional sparse setting. With high probability, the signs of the

effects are consistently estimated and the order of the underlying VAR model is

correctly estimated.

Similar to GtrLG, AtrLG method attempts to simultaneously estimate the order

of the VAR model and the structure of the network. While the truncating Lasso

estimate is based on the assumption that the effects of genes on to each other decay

over time, the adaptively thresholded Lasso estimator relies on a less stringent
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structural assumption that sets a lower bound on the number of edges in the adjacency

matrix of the graphical Granger model at each time point. The relaxation of the decay

assumption allows the new estimator to correctly estimate the order of the time series

in a broader class of models. The GtrLG may fail in situations where the decay

assumption is violated. The method has two more drawbacks. First, the order of the

VAR model d is often unknown and is, therefore, set to T − 1, resulting in p(T − 1)

covariates in the weighted Lasso estimation problem. Moreover, the weighted Lasso

estimate may potentially include edges from different time points of variable xj to any

given variable xi, i 6= j. We also refer the reader to the recent work of Shojaie, where

reconstruction of gene regulatory networks by regularization techniques was addressed,

for more detailed analysis of the above presented methods and their extensions [68].

As another application of a Lasso-Granger method, Bahadori and Liu in [8] used

the copula approach and proposed a semi-parametric algorithm (Granger

Non-paranormal (G-NPN)) for dependency analysis of time series with non-Gaussian

marginal distributions, called Copula Granger method. Modelling of the dependency

relations requires p time series O(p2) parameters, which can lead to high dimensionality

and inconsistency of the non-parametric methods. The goal of the copula approach is to

separate the marginal properties of the data from their dependency structure. The

marginal distribution of the data can efficiently be estimated using non-parametric

techniques with exponential convergence rate. The ℓ1 regularization technique could be

used to estimate the dependency structure in high dimensional settings.

The learning G-NPN model involves three steps:

(i) Find the empirical marginal distribution for each time series F̂i.

(ii) Map the observations into the copula space as f̂i(xi
t) = µ̂i + σ̂iΦ−1(F̂i(xi

t)) where

µ̂i and σ̂i are the mean and standard deviation of the original time series. Φ−1 is the

inverse cumulative distribution function of a standard normal.

(iii) Find the Granger Causality among f̂i(xi
t).

In practice, the Winsorized estimator of the distribution function is used, to avoid the

large numbers Φ−1(0+) and Φ−1(1−), [8]:
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F̃j =







































δn, if F̂ (xj) < δn

F̂ (xj) if δn ≤ F̂ (xj) < 1− δn

(1− δn) if F̂ (xj) > 1− δn.

The Winsorized estimator is the transformation of statistics by limiting extreme values

in the statistical data with the goal of reducing the effect of possibly spurious outliers,

see for example [30]. Bahadori and Liu in [8] proved that the convergence rate for

Copula Granger method is the same as the one for Lasso.

The Copula Granger method was tested with respect to the Granger method and

the Lasso Granger method on synthetic and experimental data (Twitter applications)

with the best precision for Copula Granger Lasso method [8]. We compared the Copula

Granger method to the Lasso-Granger in [31] on the network of nineteen genes with

better results for the Copula Granger method.

In our recent paper [58] we focused on an important tuning possibility of the

Lasso, namely an appropriate choice of the threshold parameter βtr and introduced the

so called Graphical Lasso Granger method (GLG) with two-level-thresholding. This

method is equipped with an appropriate thresholding strategy and an appropriate

regularization parameter choice rule.

In [33], we compared our method to other Lasso Granger methods for gene

regulatory network reconstruction, namely to the Lasso Granger method from Arnold et

al., [4], Graphical Truncating Lasso from Shojaie and Michailidis, to the Copula

Granger method from Bahadori and Liu [8], and to a method not using Lasso, i.e. a

modification of a Bayesian network method from Äijö and Lähdesmäki [1]. As in [65]

and [46], we used the gene expression data for the set of selected genes from the data

basis of genes active in human cancer (HeLa), analyzed by Whitfield et al. in [81]. Our

method was superior in this comparison. Details are discusses below in Section ”Novel

Regularization Techniques”.

Despite the computational benefit and simplicity of the linear regression, model

(5) could be too simple to appropriately match the underlying dynamics of the
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phenomena and may sometimes lead to misspecifications. A more realistic situation

would be to assume that the target function depends nonlinearly on relevant variables.

This situation is much less studied and in the vast majority of the literature is restricted

to the so called additive model, where the target function is assumed to be the sum

f(x) =
p
∑

j=1

fj(xj) (14)

of nonlinear univariate functions fj in some Reproducing Kernel Hilbert Spaces

(RKHS) Hj such that fj ≡ 0 for j /∈ {νi}
l
i=1. For the sake of brevity, we omit the

discussion on Reproducing Kernel Hilbert Spaces, and refer the reader to the seminal

paper [5] on a comprehensive theory of RKHS.

Several authors, e.g., [7], [50], just to mention a few, observed that detection of

relevant variables in the model (14) can be performed using multi-parameter

regularization with special regularization terms: partial derivatives, different

regularization spaces, etc. However, the application of the proposed multi-parameter

methods on the real-life problems can be a non-trivial task due to several important

reasons. First of all, the authors do not address the issue of selecting regularization

parameters, which is a challenging and tedious task when there are more than two or

three parameters. Second, the above mentioned approached can be computationally

demanding and is, therefore, are not always suitable for problems with higher

dimensions.

In the context of regularization theory, the multi-parameter regularization has

been broadly studied as a mechanism to achieve the theoretically optimal rate of

reconstruction without an a priori knowledge of relevant information on the solution.

We refer the interested reader to recent papers on multi-parameter and multi-penalty

regularization [47], [53], [26]. Taking our inspiration from these recent works and the

above-mentioned findings in learning theory community, we propose in the Subsection

”Granger Causality with Multi-Penalty Regularization” a novel multipenalty

regularization approach for detecting relevant variables from a priori given

high-dimensional data under the assumption that the input-output relation is described

by a nonlinear function depending on few variables. Different than the above mentioned
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work on detection of relevant variables, the method we propose is simple and fast to

implement, i.e., there is no need for any sophisticated parameter choice rules.

Applied Quality Measures

Let a causality network among n elements be given by a directed graph with the

nodes given by these elements. A graphical method is a method that reconstructs the

causality network with the variables {xj} by means of a directed graph. Graphical

metohds are frequently used in biology, see for example [38], [86].

Intuitively, the quality of a graphical method can be evaluated by the ability of

the method to reconstruct the known causality network. It can be tested by various

ways, for example by using the adjacency matrix. An adjacency matrix

A = {ai,j | {i, j} ⊂ {1, . . . , p} } for the causality network has the following elements:

ai,j = 1 if xi ← xj; ai,j = 0 otherwise.

Assume that there is a true adjacency matrix Atrue of the true causality network,

and its estimator Aest, which is produced by a graphical method. The elements of the

adjacency matrix Aest can be classified as follows.

• If aest
i,j = 1 and atrue

i,j = 1, then aest
i,j is called true positive. The number of all true

positives of matrix Aest will be denoted as TP.

• If aest
i,j = 0 and atrue

i,j = 0, then aest
i,j is called true negative. The number of all

true negatives of matrix Aest will be denoted as TN.

• If aest
i,j = 1 and atrue

i,j = 0, then aest
i,j is called false positive. The number of all

false positives of matrix Aest will be denoted as FP.

• If aest
i,j = 0 and atrue

i,j = 1, then aest
i,j is called false negative. The number of all

false negative of matrix Aest will be denoted as FN.

The following quality measures of the estimator Aest will be considered:

• Precision (also called positive predictive value) of Aest:

P =
TP

TP + FP
, 0 ≤ P ≤ 1. (15)
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• Recall (also called sensitivity) of Aest:

R =
TP

TP + FN
, 0 ≤ R ≤ 1. (16)

Since it is possible to have a high precision and low recall, and vice versa, one considers

also an average between these two measures.

The so called F1-score is defined as the harmonic mean of precision and recall:

1
F1

=
1/P + 1/R

2
. (17)

The computational complexity of Lasso Granger methods (i.e. including the above

mentioned one) is O(nd2p2), where n is the number of observations (i.e. the length of

the time series), p is number of genes, and d is the order of the corresponding VAR

model. The computational complexity of Graphical Truncated Lasso is O(nd̂2p2), where

d̂ is the estimate of the order d of VAR model (i.e. the effective number of time lags in

VAR, noted L elsewhere) from the truncated Lasso penalty [65].

Novel Regularization Techniques with a Case Study of Gene Regulatory

Networks Reconstruction

Optimal Graphical Lasso Granger Estimator

Assume that the true causality network with the variables {xj} is given by the

adjacency matrix Atrue. Assume further that the observation data {xj
t} are given. The

best reconstruction of Atrue that can be achieved by the so-called optimal Graphical

Lasso Granger estimator and we proposed in [58]. For brevity, the abbreviation GLG

method will be used for a Graphical Lasso Granger method.

Let βi(λ) denote the solution of the minimization problem (11) in the

GLG-method, and β
j
i (λ) = (βj

1,i, . . . , β
j
L,i). Then, the Graphical Lasso Granger

estimator AGLG(λ, βtr) of the adjacency matrix Atrue is defined as follows:

AGLG
i,j (λ, βtr) = 1 if ‖βj

i (λ)‖1 > βtr;

AGLG
i,j (λ, βtr) = 0 otherwise.
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Let AGLG
i,∗ (λ, βtr) denote the i-th row of the Graphical Lasso Granger estimator.

For the given regularization parameter λ, let βi
tr(λ) be the threshold parameter that

minimizes the number of false entries in the row AGLG
i,∗ (λ, βtr), i.e. the threshold

parameter that solves the following minimization problem:

‖Atrue
i,∗ − A

GLG
i,∗ (λ, βtr)‖1 → min

βtr

. (18)

Then, we consider the minimization of the number of false entries with respect to

the regularization parameter λ, i.e. let λopt,i solve

‖Atrue
i,∗ − A

GLG
i,∗ (λ, βi

tr(λ))‖1 → min
λ
. (19)

In this way, we obtain, what we call, the optimal Graphical Lasso Granger estimator

AGLG,opt of the true adjacency matrix Atrue:

AGLG,opt
i,j = AGLG

i,j ( λopt,i, β
i
tr(λopt,i) ).

Note that the optimal Graphical Lasso Granger estimator minimizes the following

quality measure, which we call Fs-measure:

Fs =
1
p2
‖Atrue − Aest‖1, 0 ≤ Fs ≤ 1. (20)

Fs-measure represents the number of false elements in the estimator Aest that is scaled

with the total number of elements in Aest.

In practice, the minimization problems (18) and (19) can be approximated by the

corresponding minimization problems over finite sets of parameters βtr, λ. If we

consider a set with Ntr values for βtr, and a set with Nλ values for λ, then, in order to

determine AGLG,opt, one needs to use Ntr ·Nλ Lasso Granger solvers. The computational

complexity of one Lasso Granger solver was discussed in the previous section.

In the networks created by nature, the true causal relations among selected genes

are often unknown. One can use the detected relations from available genetic databases,

for example from frequently updated gene and protein interactions data base Biogrid

[15]. The Biogrid tool "Genemania" is a graphical databasis of detected interactions

among genes by experimenting in genetic laboratories all over the world. The biological
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experiments are expensive, and, therefore, the knowledge of a reliable computational

method is of high importance.

To approach the problem of how close one can get to AGLG,opt without the

knowledge of Atrue, let us first focus on the choice of the threshold parameter βtr.

Thresholding strategy

The purpose of the threshold parameter βtr is to differentiate the relations xi ← xj

with small values of ‖βj
i (λ)‖1 as the non-causal ones. When can we say that ‖βj

i (λ)‖1 is

small? We propose considering the following guiding indicators of smallness:

βi
min(λ) = min{ ‖βj

i (λ)‖1, j = 1, . . . , p | ‖βj
i (λ)‖1 6= 0 },

βi
max(λ) = max{ ‖βj

i (λ)‖1, j = 1, . . . , p }.
(21)

In particular, we propose considering the threshold parameter of the following form:

βi
tr,α(λ) = βi

min(λ) + α( βi
max(λ)− βi

min(λ) ). (22)

It should be noted that βi
min(λ) and βi

max(λ) determine the interval of possible

values for βtr, namely βtr ∈ [βi
min(λ)− ε1, β

i
max(λ)], where ε1 > 0 is a small constant.

Thus, with α ∈ [−ε2, 1], where ε2 > 0 is another small constant, βi
tr,α covers the entire

range of possible values for βtr. The choice α = 1/2 is the default. Also, it is worth

noting that the choice of the threshold (22) is independent of the scaling of the data.

The optimal GLG-estimator with the threshold parameter βi
tr,1/2 can be defined as

follows. Let λtr,1/2
opt,i solve the minimization problem:

‖Atrue
i,∗ − A

GLG
i,∗ (λ, βi

tr,1/2(λ))‖1 → min
λ
.

Then, the corresponding optimal GLG-estimator is

AGLG,opt
tr,1/2 (i, j) = AGLG

i,j ( λtr,1/2
opt,i , β

i
tr,1/2(λ

tr,1/2
opt,i ) ).

The choice of the threshold parameter βi
tr,1/2 rises the following issue. A gene

receives always a causal relations, unless the solution of (11) βi(λ) is zero. But how

strong are these causal relationships compared to each other? The norm ‖βj
i (λ)‖1 can

be seen as an indicator of the strength of the causal relationship xi ← xj.
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Let us now construct a matrix AGLG,opt;β
tr,1/2 , similar to the adjacency matrix

AGLG,opt
tr,1/2 , in which the norm ‖βj

i (λ)‖1 is used instead of the value 1. i.e.

AGLG,opt;β
tr,1/2 (i, j) =‖βj

i (λ
tr,1/2
opt,i )‖1 if ‖βj

i (λ
tr,1/2
opt,i )‖1 > βi

tr,1/2,

AGLG,opt;β
tr,1/2 (i, j) =0 otherwise.

The false causal relations of the estimator AGLG,opt
tr,1/2 showed up in the experiments on a

gene regulatory network in [58] to be actually weak. This observation suggested to use a

second thresholding that is done on the network, at the level of the adjacency matrix.

Thresholding on the network level is similar to thresholding on the gene level.

Specifically, let us define the guide indicators of smallness on the network level in a way

similar (21):

Amin = min
i,j=1,...,p

{ AGLG,opt;β
tr,1/2 (i, j) 6= 0 },

Amax = max
i,j=1,...,p

{ AGLG,opt;β
tr,1/2 (i, j) }.

And, similar (22), define the threshold on the network level as follows:

Atr,α = Amin + α( Amax − Amin ). (23)

We propose terming the described combination of two thresholdings on the gene

and network levels two-level-thresholding. The adjacency matrix obtained by this

thresholding strategy is the following:

AGLG,opt
tr,1/2;α1

(i, j) =1 if AGLG,opt;β
tr,1/2 (i, j) > Atr,α,

AGLG,opt
tr,1/2;α1

(i, j) =0 otherwise.

It turned out that with α = 1/4, in (23) the optimal GLG-estimator for the gene

regulatory network in [58] can be fully recovered.

An automatic realization of the GLG-method

For an automatic realization of the GLG-method, i.e. when the true adjacency

matrix Atrue is not known, one needs in addition to a thresholding strategy, a choice
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rule for the regularization parameter λ in (11). For such a choice, we proposed in [58]

using the so called quasi-optimality criterion [78, 14, 40]. In this criterion, one considers

a set of regularization parameters

λk = λ0q
k, q < 1, k = 0, 1, . . . , nλ, (24)

and for each λk the corresponding solution of (11) βi(λk) is computed. Then, the index

of the regularization parameter is selected as follows:

ki
qo = argmin

k
{ ‖βi(λk+1)− βi(λk)‖1 }. (25)

Let us note that the motivation for the choice of the set of possible regularization

parameters as (24), and for the choice of the regularization parameter as (25) is

discussed in [57].

In the exprerimental part of this paper we compare the GLG-method with an

appropriate thresholding to other discussed methods on the network of nineteen genes

given by gene expressions from biological experiments of Whitfield et al [81].

Granger Causality with Multi-Penalty Regularization

The natural groupings between the values xt
j of variables xj can be introduced

into multivariate regression by considering, instead of (5) the following form

xt
ν ≈

p
∑

j=1

fj

(

L
∑

l=1

βl
jx

t−l
j

)

, t = L+ 1, L+ 2, . . . , T, (26)

where fj are univariate functions in some Reproducing Kernel Hilbert Spaces Hj. Then,

a conclusion that gene xk causes the gene xν can be drawn by determining that variable

xk is a relevant variable of a function of the form (14).

In this section, we present a novel method for variable selection in (14) using the

multi-penalty regularization. To our best knowledge, this is the first work in the field,

which describes an application of multi-penalty regularization for inferring causal

relations in gene regulatory networks.

An estimator of the target function (14) can be constructed as the sum
p
∑

j=1
fλ

j (xj)

of the minimizers of the functional

Tλ(f1, f2, . . . , fp; ZN) =
1
N

N
∑

i=1



yi −
p
∑

j=1

fj(xi
j)





2

+
p
∑

j=1

λj‖fj‖
2
Hj
, (27)
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where λ = (λ1, λ2, . . . , λp) is a vector of the regularization parameters, and

ZN = { (xi
1, x

i
2, . . . , x

i
p, y

i) }N
i=1 denotes a dataset of observed values yi, i = 1, 2, . . . , N ,

of a variable of interest y paired with simultaneously observed values xi
ν , ν = 1, 2, . . . , p,

of the variables x1, x2, . . . , xp that possibly interact with y.

On first sight, it may be seen that the results of the minimization of the functional

(27) do not systematic lead to sparsity as in the previously addressed approaches. The

sparse structure can be reconstructed following the next three steps.

The first step consists of constructing the minimizers fj = f
λj

j (xj) of the

functionals Tλj
(fj;ZN) defined by (27) with p = 1, λ1 = λj, xi

1 = xi
j, H1 = Hj,

j = 1, 2, . . .. Using classical results from approximation theory [39, 69], such

minimization is reduced to solving systems of N linear equations. Then the minimizers

f
λj

j (xj) are used to rank the variables xj according to the values of the discrepancies

D(fλj

j (xj); ZN) =

(

1
N

N
∑

i=1

(

yi − f
λj

j (xi
j)
)2
)1/2

, j = 1, 2, . . . ,

as follows: the smaller the value of D(fλj

j (xj);ZN), the higher the rank of xj. This step

can be seen as an attempt to interpret the data ZN by using only a univariate function,

and the variable with the highest rank is considered as the first relevant variable xν1 .

The next step consists of testing the hypothesis that a variable with the second

highest rank, say xµ, is also relevant. For such a test, we compute the minimizers fλν1
ν1 ,

fλµ
µ of the functional

Tλ(fν1 , fµ; ZN) =
1
N

N
∑

i=1

(

yi − fν1(xi
ν1

)− fµ(xi
µ)
)2

+ λν1‖fν1‖
2
Hν1

+ λµ‖fµ‖
2
Hµ
. (28)

Our idea is based on the observation [53] that in multi-penalty regularization with a

component-wise penalization, such as (28), one requires small as well as large values of

the regularization parameters λν1 , λµ, i.e., both λν1 and λµ << 1, and λµ > 1

respectively. Therefore, in the proposed approach, variable xµ is considered relevant if

for {λν1 , λµ} ⊂ (0, 1), the values of the discrepancy

D(fλν1
ν1
, fλµ

µ ; ZN) =

(

1
N

N
∑

i=1

(

yi − fλν1
ν1

(xi
ν1

)− fλµ

µ (xi
µ)
)2
)1/2

(29)
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are essentially smaller than the ones for λν1 ∈ (0, 1), λµ > 1. If it is not the case, the

above hypothesis is rejected, and we test in the same way the variable with the third

highest rank and so on.

When the variable xµ was accepted as the second relevant variable, i.e., xν2 = xµ,

we proceed with testing whether the variable with the third highest rank, say xν , can be

taken as the third relevant variable, i.e., whether xν3 = xν . Thus, we compute the

minimizers fλν1
ν1 , fλν2

ν2 , fλν
ν of the functional

Tλ(fν1 , fν2 , fν ; ZN) =
1
N

N
∑

i=1

(

yi − fν1(xi
ν1

)− fν2(xi
ν2

)− fν(xi
ν)
)2

+

λν1‖fν1‖
2
Hν1

+ λν2‖fν2‖
2
Hν2

+ λν‖fν‖
2
Hν
,

(30)

where, with a little abuse of notation, we use the same symbols fν1 , fλν1
ν1 as in (28),(29).

Then, as above, variable xν is considered relevant if for {λν1 , λν2 , λν} ⊂ (0, 1), the values

of the discrepancy

D(fλν1
ν1
, fλν2

ν2
, fλν

ν ; ZN) =

(

1
N

N
∑

i=1

(

yi − fλν1
ν1

(xi
ν1

)− fλν2
ν2

(xi
ν2

)− fλν

ν (xi
ν)
)2
)1/2

(31)

are essentially smaller than the corresponding values of (31) for {λν1 , λν2} ⊂ (0, 1),

λν > 1. (In our experiments, the small parameter was chosen from the interval

[0.00001, 0.3] and the large one from [1, B] where B is some large constant, say B = 10.)

Otherwise, the variable with the next highest rank is tested in the same way.

If the discrepancy (31) exhibits the above mentioned property, then for testing the

variable with the next highest rank in accordance with the proposed approach, we need

to add to (30) one more penalty term corresponding to that variable, so that the

functional Tλ(f1, f2, . . . , fp;ZN) of the form (27) containing the whole set of penalties

may appear only at the end of the testing procedure.

For the sake of brevity, we omit the theoretical justification of the presented

approach here and refer the interested reader to our recent paper [32] for a detailed

mathematical description and theoretical justification. However, we note that the

theoretical results do not require any strict assumptions neither on the distribution of

the data points nor on the number of them.
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It is important to mention that the choice of the regularization parameter(s) is

not a tedious and tricky task for the proposed method, since we are not interested in

the exact reconstruction of the given value yi but in values of the discrepancies for small

and large values of the regularization parameters. Monte-Carlo-type simulations are

used to make such comparison. Namely, if xν1 , xν2 , . . . , xνl−1
have been already accepted

as relevant variables, then the values of D for the randomly chosen

(λν1 , λν2 , . . . , λνl
) ∈ (0, 1)l are compared to the ones for the randomly chosen

(λν1 , λν2 , . . . , λνl
) ∈ (0, 1)l−1 × [1, B], B > 1, and xνl

is accepted as relevant if these

values are essentially dominated by the ones for (λν1 , λν2 , . . . , λνl
) ∈ (0, 1)l−1 × [1, B].

The computational complexity of multi-penalty regularization is O(Np2), where N

is the number of given points and p is the number of variables.

Case Study of Gene Regulatory Network Reconstruction

We used the databasis of gene expression data from the biological experiments of

Whitfield et al. [81], as in our papers [31] and [33]. We selected nineteen genes which

are active in human cancer cell line, whose gene regulatory network was reconstructed

based on the biological experiments by Li et al. [43]. The causal structure for these

genes was adopted from [46] and is presented in Figure 1. We take this causal network

as a benchmark network for a comparison of the discussed methods. The nineteen

genes, which we consider, play a substantial role at the human cancer cell lines. They

have the following names: PCNA, NPAT, E2F1, CCNE1, CDC25A, CDKN1A, BRCA1,

CCNF, CCNA2, CDC20, STK15, BUB1B, CKS2, CDC25C, PLK1, CCNB1, CDC25B,

TYMS, DHFR. The gene expressions in the database from [81] for these genes were

given for 48 observations with one hour intervals.

The data values are illustrated is in Figure 2. The horizontal coordinate x

indicates the 48 time measuremens, the vertical coordinate y indicates the order of the

19 genes; The color of the pixel corresponds to the value determined by the color-scale

on the right hand side.

We used the following MATLAB codes: our code for GLG-method with an
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appropriate thresholding which we extended with graphical outputs using MATLAB

graphical software Graphviz4MATLAB Version 2.24. For experiments with Lasso

Granger method we used the MATLAB code from Bahadori [9] written for the bivariate

case, which we extended to the multivariate case. We extended this code also with the

graphical outputs using Graphviz4MATLAB. Similarly, we extended the MATLAB code

for Copula Granger method from [9]. These methods were compared to the method

using dynamic Bayesian networks and ordinary differential equations from [1] in [33].

The latter method showed frequent overfitting with respect to the number of false

positives and had high computationally costs. Here we compare the performance of the

Lasso Granger methods with the Granger method with multipenalty regularization. The

code for the multipenalty regularization method has been developed by us in MATLAB.

As quality (performance) measures we considered the number of true positive

outcomes denoted by TP and the classification accuracy

CA = (TP + TN)/(TP + TN + FP + FN).

The Lasso Granger method was tested in 4 variations:

• Lasso Granger with zero threshold (βtr = 0 in (6)) and optimized regularization

parameter λ in (11). We refer to this variation as LG.

• Lasso Granger with optimized regularization parameter and threshold, which is

referred to as LG1.

• Lasso Granger with optimized regularization parameter and threshold given by

formula (22) with α = 1/4, LG2.

• And finally, Lasso Granger with regularization parameter chosen by

quasi-optimality criterion and threshold given by formula (22) with α = 1/4, LG3. This

is an automatic realization of the Lasso Granger method without the knowledge of the

true adjacency matrix.

We call the Granger Causality method with Multi-Penalty Regularization MPR.

Let us note that in MPR, the coefficients
(

βl
j

)

in (26) have to be precomputed. For this

purpose, one can use any (regularization) method for solving the approximation

problem (5). In this case, of course, the results of MPR depend on the choice of this



GRANGER CAUSALITY FOR ILL-POSED PROBLEMS 29

method. In [32], we used the l2-regularized least squares method for obtaining the

coefficients
(

βl
j

)

. Here, we used the Lasso, which is the l1-regularized least squares

method. The regularization parameter in both regularization methods was chosen by

the quasi-optimality criterion.

The Copula Granger method (CG), all mentioned variations of the Lasso Granger

method, and the Granger Causality with Multi-Penalty Regularization required only a

few seconds run at a PC workstation with 64-bit processor. CA and TP quality

measures of the considered methods are summarized in Table 1. In Figure 3, we present

the considered gene regulatory network and its reconstructions with LG3 and MPR in

the circular layout.

One observes that although the CG gives the largest number of TPs among the

automatic realizations of graphical methods, i.e. CG, LG3, MPR, it gives the lowest

CA, while MPR gives the highest CA together with rather high TP. This makes MPR a

very promising method for the reconstruction of gene regulatory networks.

Conclusion

The results of the reconstruction of the gene regulatory network in the

experimental section emphasize the importance of the thresholding strategies for the

variable selection regularization methods, such as the Lasso. The newly developed MPR

technique [32] can be seen as an advanced thresholding, and our experimental results

show its superior behavior with respect to our method with thresholding strategy.

As we noted before, the MPR requires a method that computes the coefficients
(

βl
j

)

in (26). Currently, we tested the behavior of the MPR with l2- regularization

in [32], and here with l1-regularization, which is the Lasso. In our tests, the MPR gave

superior results. Also, the coupling between these Lasso-modifications and MPR is

interesting to realize. It would be also interesting to see the reconstruction of the gene

regulatory network in Figure 1 by means of the discussed modifications of Lasso:

truncating Lasso and adaptively thresholded Lasso.

The methods proposed in this paper are written in Matlab and are available upon
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request.
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CG LG LG1 LG2 LG3 MPR

CA 0.80 0.58 0.88 0.85 0.81 0.88

TP 58 38 63 51 42 53

Table 1

Quality measures for the considered methods. The number of the causal links in the

considered gene regulatory network from Figure 1 is 95. This number can be seen as the

maximal possible value for TP.
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Figure 1 . Causal structure from biological experiments for nineteen selected genes

(adopted from [46])
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Figure 2 . The horizontal coordinate x indicates the 48 time measurements, the vertical

coordinate y indicates 19 genes ordered; The color of the pixel corresponds to the value

determined by the color-scale on the right hand side.
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Figure 3 . The considered gene regulatory network (top left) and its reconstructions

with LG3 (top right) and MPR (bottom) in the circular layout.


