
Estimation of Discretized Motion of Pedestrians
by the Decision-Making Model
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Abstract The contribution gives a micro-structural insight into the pedestrian deci-
sion process during an egress situation. A method how to extract the decisions of
pedestrians from the trajectories recorded during the experiments is introduced. The
underlying Markov decision process is estimated using the finite mixture approx-
imation. Furthermore, the results of this estimation can be used as an input to the
optimization of a Markov decision process for one ‘clever’ agent. This agent opti-
mizes his strategy of motion with respect to different reward functions, minimizing
the time spent in the room or minimizing the amount of inhaled CO.

1 Introduction

This study can be used as an auxiliary calibration tool for microscopic models
of pedestrian flow with spatially discretized motion of agents, as e.g. floor-field
model [4] or optimal-steps model [7]. The results can be applied in the naviga-
tion robotic systems [8]. The introduced method builds upon the floor-field model.
Thanks to the restriction to the discretized motion of pedestrian we are able to ex-
press the local decisions of pedestrian in the terms of Markov decision process [5].

For the analysis of the real data, we use the experimental data from a passing-
through experiment [1]. In this experiment, pedestrians were instructed to pass
through a simple room equipped by one entrance with controlled inflow and one
exit of the width 60 cm. Since we are mainly interested in the pedestrian interaction,
we used the data from the rear camera covering the space of 2.5 m in front of the
exit and short part of the corridor behind the exit.

Throughout the article, we use the notation related to Markov decision processes
(MDP) adopted from the book [5]. The main task of the contribution is to express
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the basic entries of the MDP theory in the scope of pedestrian flow dynamics. This
is necessary to use the optimization technique described in [5, Chapter 4].

2 Basic Concept

Let us describe the MDP in general. The considered decision process (DP) is char-
acterized by a sequence (s1,a1,s2,a2, . . . ,sT−1,aT−1,sT ) of states st ∈ S and per-
formed actions at ∈ A. Here T plays the role of a finite time horizon used for the
optimization. At time t an agent, who is making the decision, observes the system
to be in state st and based on this observation performs an action at with conditional
probability pt(at | st). The system reacts to the action stochastically and the state
changes to st+1 with conditional probability pt(st+1 | st ,at). This probability can be
understood as the agent’s image of the environment behaviour. The Markov prop-
erty is hidden in the fact that both, the decision part pt(at | st) and the environmental
model pt(st+1 | st ,at), depend only on the situation at time t. Then the probability
of a sequence (s1,a1,s2,a2, . . . ,sT−1,aT−1,sT ) is given as

Pr(s1,a1,s2,a2, . . . ,sT−1,aT−1,sT ) = p(s1)
T−1

∏
t=1

pt(at | st)pt(st+1 | st ,at) (1)

This concept can be easily applied to the floor-field model [4] (For more details
about the model we refer the reader to the book [6]). The floor-field model is a
particle hopping model defined on a rectangular lattice L representing the discretized
layout of the simulated facility. Particles are hopping between cells stochastically
according to the hopping probabilities, which are influenced by the static floor field
S. Usually S(y) = dist(y,E) refers to the distance of the cell y to the exit E in defined
metric dist. Let the state of the system at time t be denoted by τt ∈ {0,1}L, where
τ(x) = 1 refers to an occupied cell and τ(x) = 0 to an empty cell. Let further nt =

∑x τt(x) be the number of agents in the lattice at time t.
In each algorithm step t → t + 1, every agent i ∈ {1, . . . ,nt} chooses his future

position yi,t given he is sitting in xi,t with probability

p(yi,t | xi,t ,τt) ∝ exp{−S(yi,t)}1{dist(xi,t ,yi,t )≤1} (2)

according to floor-field model. The model of the environment is then a consequence
of the choices of future positions of all agents, i.e., the dynamics is driven by the
environment model

p(τt+1 | τt ,yi,t , i ∈ {0, . . . ,nt}) = F(p(yi,t | xi,t ,τt), i ∈ {0, . . . ,nt}) , (3)

where F is a function that reflects conflicting situation where two agents choose the
same target cell1.

1 Without the conflicting situations the function is just a product of the entries.
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3 Estimating pt(at | st)

This section focuses on the probability probabilistic decision pt(at | st) from the
data recorded during evacuation experiment [1].

Let us assume that the pedestrians act similarly to the floor-field particles, i.e., all
pedestrians are following the same decision strategy, which does not change in time
and space. Furthermore, we assume that pedestrians react only on their immediate
neighbourhood reflecting the direction towards the exit, but not their absolute posi-
tion. Therefore, the state st in MDP can be associated with the state of the immediate
neighbourhood. Contrary to the floor-field model we consider the neighbourhood to
be oriented with respect to the direction towards the exit. The actions are associated
with direction angle a pedestrian can choose, see Figure 1.
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Markov Decision Process (MDP) in Pedestrian Model

st
p(at|st)−−−−→ at

p(st+1|s,tat)−−−−−−→ st+1

• st ∈ S = current state
• at ∈ A = performed action
• st+1 ∈ S = future state

• p(st+1 | st, at) =
environment model

• p(a | s) = decision process

P (s1, a1, s2, a2, . . . , sT−1, aT−1, sT ) = p(s1)
T−1∏

t=1
p(at | st)p(st+1 | st, at)
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Exit

τt
p(x→y)−−−−→ yi

P (τt+1|yi , i∈I)−−−−−−−−→ τt+1

• τt ∈ {0, 1}L=current state
• yi = chosen cell by i
• τt+1 = future state

• P (τt+1 | yi , i ∈ I) = motion
of agents

• p(x→ y) = target cell choice

p(x→ y) ∝ exp{−kSS(y)}

Estimating p(at | st)
• The direction is understood with respect to the location of the exit.
• A = {⊗,←,↖,↙, ↑, ↓,↗,↘}
• Data extracted from evacuation experiment [1]
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2 Model of the Decision-Making

Let us consider a simple egress (or evacuation) situation. A room is occupied by certain number of
pedestrians, which are at certain time instructed to evacuate the room through one available escape exit,
which is visible to all pedestrians. There may be obstacles in the room, which are to be avoided, e.g. a
column, table.

Based on the observation of conducted experiments and personal experience the motion of pedestrians
can be described by following simple rules:

� The main intention is to walk towards the exit in the most straightforward direction.

� Deviations from the straight direction are mainly initiated by the inability to walk straight. This
is caused by another pedestrian, wall, or obstacle.

� The interaction between pedestrians is more complex then the interaction between a pedestrian and
a wall or an obstacle. The decision, whether to deviate from the straight direction, is influenced by
the previous motion of obstructing pedestrian as well.

� Information recognized by the pedestrian during the decision process is the state of his neighbour-
hood, i.e., the occupation of close area, movement of surrounding pedestrians, distance to the wall,
obstacle, etc.

From these observations a simple model of the decision process can be abstracted. Let us assume that
the motion of a pedestrian consists of steps forward or sideways, i.e., a pedestrian makes either one step
(of variable size) forward or one step to the right or to the left. The direction forward, left, or right is
not absolute, but relative to the forward direction towards the exit – see figure 1.

EXIT EXIT

Figure 1: Pedestrians are supposed to move in either forward direction towards the exit or in sideways
direction to the left or to the right.

The influence of the neighbourhood state on the decision process is inspired by the concept of cellular
models of pedestrian flow [7]. The neighbourhoodN is represented by a rectangular lattice, which consists
of |N | cells. A cell is said to be occupied by a pedestrian if the pedestrian’s centre of mass falls into the
cell. The position and orientation of the lattice are again not absolute, but relative with respect to the
direction towards the exit. Therefore, the lattice does not discretize the motion, it serves to the decision
process only. An example of such neighbourhood lattice of 25 cells is depicted in Figure 2 together with
the indexation used in further text.

The introduced decision-making model supposes that pedestrians can make four different decisions
∆t :

1. staying in their current position (•),

2. walking one step forward in the exit direction (←),

3. walking sideways to the right (↑),

4. walking sideways to the left (↓).
Such decision-making model is inspired by the stepping discretization principle [9].

To meat the notation introduced in Section 1.2, we write ∆t ∈ ∆ = {•,←, ↑, ↓}, where the elements
of the set ∆ = {1, 2, 3, 4} are changed to {•,←, ↑, ↓} for readability reasons only.

4

2 Model of the Decision-Making

Let us consider a simple egress (or evacuation) situation. A room is occupied by certain number of
pedestrians, which are at certain time instructed to evacuate the room through one available escape exit,
which is visible to all pedestrians. There may be obstacles in the room, which are to be avoided, e.g. a
column, table.

Based on the observation of conducted experiments and personal experience the motion of pedestrians
can be described by following simple rules:

� The main intention is to walk towards the exit in the most straightforward direction.

� Deviations from the straight direction are mainly initiated by the inability to walk straight. This
is caused by another pedestrian, wall, or obstacle.

� The interaction between pedestrians is more complex then the interaction between a pedestrian and
a wall or an obstacle. The decision, whether to deviate from the straight direction, is influenced by
the previous motion of obstructing pedestrian as well.

� Information recognized by the pedestrian during the decision process is the state of his neighbour-
hood, i.e., the occupation of close area, movement of surrounding pedestrians, distance to the wall,
obstacle, etc.

From these observations a simple model of the decision process can be abstracted. Let us assume that
the motion of a pedestrian consists of steps forward or sideways, i.e., a pedestrian makes either one step
(of variable size) forward or one step to the right or to the left. The direction forward, left, or right is
not absolute, but relative to the forward direction towards the exit – see figure 1.

EXIT EXIT

Figure 1: Pedestrians are supposed to move in either forward direction towards the exit or in sideways
direction to the left or to the right.

The influence of the neighbourhood state on the decision process is inspired by the concept of cellular
models of pedestrian flow [7]. The neighbourhoodN is represented by a rectangular lattice, which consists
of |N | cells. A cell is said to be occupied by a pedestrian if the pedestrian’s centre of mass falls into the
cell. The position and orientation of the lattice are again not absolute, but relative with respect to the
direction towards the exit. Therefore, the lattice does not discretize the motion, it serves to the decision
process only. An example of such neighbourhood lattice of 25 cells is depicted in Figure 2 together with
the indexation used in further text.

The introduced decision-making model supposes that pedestrians can make four different decisions
∆t :

1. staying in their current position (•),

2. walking one step forward in the exit direction (←),

3. walking sideways to the right (↑),

4. walking sideways to the left (↓).
Such decision-making model is inspired by the stepping discretization principle [9].

To meat the notation introduced in Section 1.2, we write ∆t ∈ ∆ = {•,←, ↑, ↓}, where the elements
of the set ∆ = {1, 2, 3, 4} are changed to {•,←, ↑, ↓} for readability reasons only.

4

• Relative occupation of pedestrians neighbourhood with respect to the location of the exit
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Approximation by finite mixtures
• Approximating p(at | st) by mixture model

p(at | st) ≈ p(at | Θ, ψt) =
∑

y∈N(xt)
αyΘ(at|ψt(y))

• N(x) = neighbourhood of cell x.
• ψt(y) ∈ {0, 1} = state of the cell y.
• ψt ∈ {0, 1}N(xt) = state of N(xt).

• Θ(a | ψ(y)) = marginal part of the decision.
• αy = coefficient of influence of y,

convex combination
∑

y αy = 1

Estimated values of ψ(y) for chosen directions y and actions a.
y ↘ ↓ ↙ ← ↖ ↑ ↗
α̂ 0.0002 0.0002 0.0749 0.9212 0.0014 0.0002 0.0019
a ◦ • ◦ • ◦ • ◦ • ◦ • ◦ • ◦ •
⊗ 0.10 0.12 0.11 0.12 0.03 0.97 0.76 0.94 0.05 0.52 0.12 0.11 0.07 0.69
↘ 0.07 0.11 0.08 0.10 0.01 0.00 0.00 0.00 0.03 0.05 0.08 0.11 0.03 0.03
↓ 0.08 0.11 0.08 0.11 0.02 0.00 0.00 0.00 0.03 0.05 0.08 0.11 0.04 0.03
↙ 0.09 0.11 0.09 0.11 0.27 0.00 0.01 0.01 0.04 0.08 0.10 0.11 0.06 0.04
← 0.43 0.22 0.39 0.23 0.63 0.01 0.22 0.06 0.73 0.12 0.35 0.24 0.68 0.10
↖ 0.08 0.12 0.09 0.11 0.02 0.01 0.01 0.01 0.05 0.06 0.10 0.11 0.06 0.04
↑ 0.08 0.11 0.08 0.11 0.02 0.00 0.00 0.00 0.04 0.06 0.09 0.11 0.04 0.04
↗ 0.07 0.11 0.08 0.10 0.01 0.00 0.00 0.00 0.03 0.05 0.08 0.11 0.03 0.03
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Optimizing p(at | st)

• One ‘clever’ agent among Floor-Field particles.
• p(st+1 | st, at) is given by motion of other agents.
• Let p(at | st) be optimized to maximize reward R

• Minimal time spent in the room.
• Minimal amount of CO inhaled.

• Searching for optimal strategy (d1, d2, . . . , dT−1)

dt(st) = q , q(at) = p(at | st)
• State st = (xt, zt)
• xt = position of ‘clever’ agent on the grid.
• zt = set of positions of all other agents .
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Dynamics
• Set of actions

at ∈ {1, 2, . . . , 9}
• ‘Clever’ agent makes decision = chooses at.
• All Floor-Field particles move.
• ‘Clever’ agent tries to move in direction at.

Construction of p(xt+1, zt+1 | xt, zt, at)
• Decomposition

p(xt+1, zt+1 | xt, zt, at) = p(zt+1 | xt, zt)p(xt+1 | xt, at, zt+1)

• p(xt+1 | xt, at, zt+1) is deterministic.
• p(zt+1 | xt, zt) is given by motion of other agents.
• Zt+1 = set of all possible new states zt+1
• Transition probabilities

p(zt+1 | xt, zt) ∝ exp{−U(zt+1)} , U(zt+1) =
|zt+1|∑

j=1
dist(zt+1(j),Exit)

Reward function
• Cummulation of local rewards

R =
∑

t

rt(st, at) , rt(st, at) =
∑

st+1

p(st+1 | st, at)rt(st+1, st, at)

• Minimal time

rt(st+1, st, at) =
{

0 x = Exit ,
−1 x 6= Exit .

• Minimal CO inhaled

rt(st+1, st, at) =





0 xt = Exit ,
−1/2 at = 1 ,
−1 at 6= 1 , xt+1 /∈ zt+1 ,

−2 at 6= 1 , xt+1 ∈ zt+1 .

Conclusions and Future Plans
• The finite mixture approximation p(at | Θ, ψt) can be used to build p(zt+1 | x, z).
• Different Reward function leads to different behaviour in crowd.
• The optimal strategy can be found as the mixture of minimal-time and

minimal-CO-inhaled strategies.
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Fig. 1 Transformation of trajectory record to actions. Trajectories are extracted from the video
records (left, taken from [1]), transformed to motion within sectors (midle) with respect to the
direction towards exit, and interpreted as motion in the lattice (right).

The experimental data for trajectory analyses have been provided by our col-
league Marek Bukáček (Czech Technical University). The data are in the form of
paths records

(
xi(t), t ∈ [t in

i , tout
i ]
)
, where t in

i and tout
i is the time of the first and

the last appearance of the pedestrian i on the screen respectively. xi(t) is the po-
sition of the pedestrian on the screen at time t. To match the discrete nature of
the decision-making process, the motion of pedestrians has been discretized in
time with the discretization step ∆ t = 1 s. The vector of motion at time t is then
∆xi(t) = xi(t +∆ t)−xi(t) and the direction of motion ϑi(t) is an angle given by

cosϑi(t) =
[E−xi(t)] ·∆xi(t)
‖E−xi(t)‖ · ‖∆xi(t)‖

(4)

This angle is then associated to the action a ∈ A according to the Table 1. The
set of actions is A = {⊗,←,↖,↙,↑,↓,→}, e.g., an angle ϑi(t) = 20◦ corresponds
to the forward motion←, while ϑi(t) = 30◦ corresponds to the left-forward motion
↙. Every motion performed with velocity vi(t) = ‖∆xi(t)‖/∆ t less then 0.5 m/s has
been considered as standing (⊗).

In Figure 2 the frequency of chosen direction with respect to the direction angle is
plotted. Two main clusters for forward stepping and standing can be distinguished,
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Table 1 Action set in detail. Direction angle towards the exit is 0. Colours refer to Figure 1.

Action: ⊗ ← ↖ ↙ ↑ ↓ →

Angle: /0
(
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the latter dominates. The data are aggregated over all pedestrians and all records for
each. From this graph we can conclude that the majority of pedestrians preferred
standing in line and moving forward centimetre by centimetre rather then trying to
push through the crowd or overrunning it.
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Fig. 2 The frequency of occurrence of the motion length in given direction angle. The graphs
are oriented similarly to the snapshot from the experiment in Figure 1. Left: without the filter on
standing. Middle: after filtering out the motion with velocity less then 0.5 m/s. Right: Gaussian-
kernel estimation of the distribution of chosen direction.

For the estimation of the decision process we associate the state st in the decision-
process p(at | st) with the occupancy of the immediate neighbourhood. By the
neighbourhood N(x) of a position x we understand a circle around x with the ra-
dius 0.75 m (maximal step size) divided into 6 sectors {←,↖,↙,↑,↓,→} defined
in previous section. The state si,t for the decision p(ai,t | si,t) of the agent i is then a
vector from {0,1}6, where si,t(y) = 0 for empty sector y and si,t(y) = 1 for occupied
sector. Here y∈ {←,↖,↙,↑,↓,→}. The sector is considered occupied if it contains
at least one position vector of another agent or if it is covered by a wall by at least
40 %. Since the data are aggregated over all pedestrians, the index i will be further
omitted.

Most natural way how to estimate the decision process p(at | st) is to compare
the frequency of chosen directions (actions) given the occupancy of the neighbour-
hood. However, this method fails in the case of the trajectory data from consid-
ered experiment, since most of the combinations (at ,st) appear very rarely. For this
reason we applied the approximation of the decision by finite mixture model with
forgetting [3]. The idea consists in approximation of the complex decision process
p(at | st) by the convex combination of marginal decision processes Θ(at |st(y)),
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i.e.,
p(at | st)≈ p(at |Θ ,st) = ∑

y∈N(xt )

αyΘ(at |st(y)) , (5)

where αy is the coefficient of influence of the state of y to the decision; ∑y αy = 1.
For more details see [2].

The resulting values of the mixture model are given in Table 2. The following
phenomena can be observed analysing the values in the table. The occupancy of a
neighbouring sector almost always contributes with the highest value to the decision
“to stand” (⊗). However, a free neighbouring sector does not always tend to imply
motion, see the forward sector (←). The most diverse influence of the empty and
occupied states show the “slightly right” (↖) and “slightly left” (↙) sectors. The
explanation for this may be a zipper-like effect of agents passing through a narrow
exit and corridor.

The table also implies, that the occupancy of right and left sectors (↑,↓) does not
play a significant role in agent’s decision as it does not restrain him from moving
in desired (forward) direction. Finally, although in principle, the occupancy of the
back sector (→) should not affect the agent’s decision in his desire to go straight,
this sector is mostly occupied if the agent is in a high-density situation (eg. a jam)
and therefore it’s occupancy reflects the agent’s (in)ability to move at all.

Table 2 Influence of regressors y to decision a for two states of sector occupancy (◦ symbolizes
empty sector, • occupied). α̂ is the weight of the regressor.

y ← ↖ ↙ ↑ ↓ →
α̂ 0.9212 0.0749 0.0014 0.0002 0.0002 0.0021
a ◦ • ◦ • ◦ • ◦ • ◦ • ◦ •
⊗ 0.76 0.94 0.03 0.97 0.05 0.52 0.11 0.12 0.12 0.11 0.07 0.69
← 0.22 0.06 0.63 0.01 0.73 0.12 0.39 0.23 0.35 0.24 0.68 0.10
↖ 0.01 0.01 0.02 0.01 0.05 0.06 0.09 0.11 0.10 0.11 0.06 0.04
↙ 0.01 0.01 0.27 0.00 0.04 0.08 0.09 0.11 0.10 0.11 0.06 0.04
↑ 0.00 0.00 0.02 0.00 0.04 0.06 0.08 0.11 0.09 0.11 0.04 0.04
↓ 0.00 0.00 0.02 0.00 0.03 0.05 0.08 0.11 0.08 0.11 0.04 0.03
→ 0.00 0.00 0.02 0.00 0.06 0.10 0.15 0.20 0.16 0.22 0.06 0.06

4 Optimizing pt(at | st)

This chapter offers an alternative view on the application of MDP to pedestrian flow
modelling. Let the result of previous section be used as the behavioural frame of the
majority of pedestrians, which determines the environmental model pt(st+1 | st ,at)
described by equation (3). The aim of this section is to equip one of the pedestrian
agent by an optimal decision strategy how to move among the pedestrians following
the majority behaviour.
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Let us in the following, for simplicity, return back to the Floor-field basis of the
simulation. Consider that there is one “clever” particle among the ordinary undis-
tinguishable floor-field particles behaving according to (2) or (5). By the optimal
strategy of the clever particle we understand the sequence (d1,d2, . . . ,dT−1), where
dt(st) = q is the distribution on the set of actions A playing the role of the decision
process, i.e., p(at | st) = q(at). The strategy is optimized with respect to given re-
ward function R(s1,a1, . . . ,sT ), which can be used to model different preferences of
the clever particle.

Contrarily to Section 3 we consider in the following the position and the orien-
tation to be absolute, i.e., there are not preferred positions on the lattice regarding
the distance or orientation towards the lattice. The optimizing algorithm is supposed
to find the shortest path given the maximal reward R itself. The state of the system
is expressed by the position of the clever agent xt and by the set of positions of all
floor-field particles zt , where |zt |= nt −1 (compare to previous section, where only
the neighbouring pedestrians play role). Let the positions be numbered by natural
numbers as shown by an example in Figure 3.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25

26 27 28 29 30 31

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

12

3 4 5

6

789

Fig. 3 An example of the state of the lattice with one clever agent (red) and 4 floor-field particles
(gray). Left: the state is st = (xt ,zt), where xt = 18, zt = {8,14,17,22}. Right: the numbering of
directions corresponding to actions at ∈ {1, . . . ,9}.

The actions an agent can choose are related to the 8 neighbouring sites and a
possibility to stay in current position. Therefore the action set can be chosen as A =
{1,2, . . . ,9}, where the directions are numbered as depicted in Figure 3, i.e., at = 1
means to choose as next target site the current position xt = 18; at = 2 corresponds
to the target site xt ‘+’(−1,0) = 17, etc. Here we note that, similarly to the floor-
field, the chosen target site can be entered by a near floor-field particle. The choice
of the target site is therefore influenced by the probability that other particles can
change their positions.

For the purposes of this contribution we have chosen a simple updating scheme
in which the clever agent moves after all other particles performed their actions.
Then the environmental model pt(st+1 | st ,at) = p(xt+1,zt+1 | xt ,zt ,at) decomposes
into a stochastic part p(zt+1 | xt ,zt) and a deterministic part p(xt+1 | xt ,at ,zt+1) as

p(xt+1,zt+1 | xt ,zt ,at) = p(zt+1 | xt ,zt)p(xt+1 | xt ,at ,zt+1) . (6)
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In our case, the transition probability (5) can be simplified to the form

p(zt+1 | xt ,zt) ∝ exp{−U(zt+1)} , U(zt+1) =
|zt+1|

∑
j=1

dist(zt+1( j),E) (7)

for all states zt+1 reachable from zt by the motion of floor-field particles by one site.
The introduced potential U supports the states in which particles are closer to the
exit and therefore suppresses the random motion away from the exit.

The above mentioned concept fits the finite time optimization of the MDP strate-
gies using the backward induction algorithm described in [5, Section 4.5]. The final
step is to define properly the reward function R. The reward function is defined as a
cumulation of local rewards rt(st ,at) and the final reward vT (sT ), i.e.,

R =
T−1

∑
t=1

rt(st ,at)+ vT (sT ) , rt(st ,at) = ∑
st+1

p(st+1 | st ,at)rt(st+1,st ,at) . (8)

The final reward is the same for all agents preferences taking into account the
distance to the exit multiplied by a factor of 2, i.e., vT (sT ) =−2dist(xT ,E). The lo-
cal reward then reflects the agent’s preferences. We introduce two main approaches:
minimizing the time spent in the room and minimizing the amount of inhaled carbon
monoxide (CO) related to the aim to minimize number of lost conflicts.

The reward function minimizing the time simply subtracts one reward unit for
each step an agent spends outside the exit, i.e.,

rt(st+1,st ,at) =

{
0 x = E ,

−1 x 6= E .
(9)

The reward function minimizing the amount of inhaled CO takes into account the
possibility that the agent can choose a site which becomes occupied by another
particle. Such choice can be interpreted as running to another pedestrian, which
causes a significant loss of energy with no improvement of the distance to the exit.
Such situation costs 2 reward units, while standing only one half. Therefore

rt(st+1,st ,at) =





0 xt = E ,

−1/2 at = 1 ,
−1 at 6= 1 , xt+1 /∈ zt+1 ,

−2 at 6= 1 , xt+1 ∈ zt+1 .

(10)

5 Conclusions and Future Plans

The main goal of this paper was to introduce a concept of Markov decision process
(MDP) to the pedestrian flow simulation. Two aspects have been studied by means
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of this concept: the estimation of pedestrian behaviour within crowded area and
the optimization of the decision with respect to given pedestrian preferences. Both
approaches are motivated by the cellular floor-field model used for simulation of
pedestrian evacuation.

The estimation of pedestrian behaviour have been analysed from experimental
trajectories. By means of the space discretization and finite mixture approximation
we have been able to extract the pedestrians decision in relation to the occupation
of his immediate neighbourhood. The analysis showed that the main influence to
the decision has the occupation of the area in the forward direction towards the exit.
Further, most of the decisions pedestrians performed was to move forward or stay
at the position. The over-running of the crowd was rather a rare event.

The results of the experiment analyses can be then used as the input to the op-
timization task of one ‘clever’ agent among usual floor-field particles. We have in-
troduced a technique of expressing the pedestrian evacuation model in terms of the
MDP. Furthermore, two different reward functions have been introduced to simulate
different preferences of the clever agent: to minimize the time spent in the room and
to minimize the amount of inhaled carbon oxygen, i.e. minimizing the number of
conflicts. In the future we plan to test the combination of those two strategies in or-
der to prove that optimal is the combination of the two above mentioned strategies.
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