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Scalable Harmonization of Complex Networks
With Local Adaptive Controllers

Miroslav Kárný and Randa Herzallah

Abstract—Computational and communication complexities call
for distributed, robust, and adaptive control. This paper proposes
a promising way of bottom-up design of distributed control in
which simple controllers are responsible for individual nodes. The
overall behavior of the network can be achieved by interconnect-
ing such controlled loops in cascade control for example and by
enabling the individual nodes to share information about data
with their neighbors without aiming at unattainable global solu-
tion. The problem is addressed by employing a fully probabilistic
design, which can cope with inherent uncertainties, that can be
implemented adaptively and which provide a systematic rich way
to information sharing. This paper elaborates the overall solu-
tion, applies it to linear-Gaussian case, and provides simulation
results.

Index Terms—Adaptive control, Adaptive estimation, Bayes
methods, Complex networks, Decentralized control, Feedback,
Feedforward systems, Recursive estimation.

I. INTRODUCTION

COMPLEX dynamical systems formed by large ensembles
of nodes interacting with a limited number of neigh-

boring nodes are essential in nature, technology, and human
societies. Controlling the dynamics of such a network is an
important research, which is specifically considered here. The
complexity and high dimensionality of a network often deny
the opportunity of controlling the targeted enormous number
of nodes in a centralized manner. Even a recent viable and
effective approach of controlling a small fraction of the net-
work nodes, known as pinning control [1], [2], has its inherent
limits. Typically, the network need not be controllable with
a technically feasible amount of centrally controlled nodes.
Thus, it is worthwhile to inspect distributed adaptive control.
The distributed solution admits to cope with the computa-
tional and communication complexities in large-scale systems,
when the noise, uncertainties, and slow variations are respected
by using probabilistic machinery. Width and variations of
topology of complex networks make bottom-up design nat-
ural and the only fully scalable way. In this design method,
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simple controllers focus on individual nodes either completely
independently or within various architectures such as cascade
control. The desirable simplicity of controllers at individual
nodes makes such architecture vulnerable to improper overall
behavior. Access to cheap computational and communication
resources now allows the individual nodes to harmonize their
acting by sharing information with their neighbors without
aiming for unattainable global solutions.

The harmonization can be supported by a message passing.
It is one of new decentralized methods for managing sys-
tems with large ensembles of interconnected nodes [3] where
information is retrieved and disseminated in a consistent prob-
abilistic fashion. The approach has emerged independently in
a number of fields, including communications theory [4], arti-
ficial intelligence [5], and statistical physics [6]. However, the
techniques and their potential generalizations have not yet been
adequately introduced into the control community.

This paper develops a broadly applicable decentralized
probabilistic adaptive control with an active passing of data-
based as well as probabilistic “messages” that are exploitable
without the need to increase complexity of the knowledge
sharing nodes. It formulates the control of the large-scale
networks as a collection of smaller control problems, one
for each connected node (subnetwork) in the system. The
node-control problems are treated independently. Controllers
can act asynchronously and autonomously and can be imple-
mented individually. Knowledge sharing runs in the same
mode. This brings additional advantages: 1) nodes may follow
individual aims and the network will (hopefully) stabilizes at
an acceptable compromise; 2) design costs, which strongly
limit top down decomposition of large-scale problems into
distributed solutions [7], [8], are low and do not limit scal-
ability; 3) designed controllers are randomized and naturally
explorative; and 4) hierarchical solutions, possibly in pinning
control style, can be simply created via set point control of
(selected) nodes.

This paper primarily proposes an adaptive controller appli-
cable to each node. It controls a few outputs by its inputs while
treating other available measurements as external variables.
It recursively estimates parameters of a simple model while
coping with inevitable approximation errors via stabilized for-
getting [9], [10]. It exploits this model for control design via
fully probabilistic design (FPD) of controllers [11]–[13]. In
FPD, the optimal randomized controller is the minimizer of
the Kullback–Leibler divergence (KLD) [14] of the probabil-
ity density (pd) describing closed-loop dynamics to its ideal
counterpart. Its relevance is due to its ability: 1) to cope with
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stochastic nature of the controlled nodes; 2) to also adapt the
ideal pd, expressing control aims; and 3) to use its unified
probabilistic language for designing an efficient and well-
grounded message-passing scheme, which does not force the
knowledge sharing nodes to increase their complexity.

Section II formulates and solves the proposed adaptive con-
trol design for a single control node, which uses observed
external variables. Its flexibility and computational simplic-
ity form the main message brought. Section III deals with a
network of such nodes and equips them with a simple way
of sharing knowledge contained in predictors they deal with.
It opens a novel use of a recent methodology developed for
knowledge elicitation [15]. Section IV applies the general
methodology to linear-Gaussian case and Section V illustrates
it by simulations. Section VI provides concluding remarks.

II. ADAPTIVE CONTROL OF SINGLE NODE

WITH EXTERNAL VARIABLES

A collection of control nodes is considered. Each node
selects a sequence of real multivariate inputs1 ut ∈ ut,
t ∈ t = {1, . . . , |t|}, with the aim to influence real multivariate
outputs yt ∈ yt, t ∈ t. The outputs are also influenced by mul-
tivariate observed external variables xt−1 ∈ xt−1. The relations
of these random variables are modeled by a Markov-type pd,2

by the system model

M(yt, xt|ut, . . . , u1, yt−1, . . . , y0, xt−1, . . . , x0)

= M(yt|ut,wt−1)M(xt|xt−1)

wt−1 = [yt−1, xt−1], t ∈ t, w0 given. (1)

The first factor M(yt|ut,wt−1) in (1) expresses the assumed
Markovian dependence. The chosen form of the second factor
M(xt|xt−1) in (1) expresses the assumption (only approxi-
mately valid) that xt are external variables with their inherent
dynamics uninfluenced by the inputs ut and outputs yt.

The discussed node optimizes the system inputs by using
FPD of decision strategies. FPD expresses the control objec-
tives via pds (subscripted by I), which can be interpreted as
factors of an ideal (desired) closed-loop model

CI(yt, ut, xt|ut−1, . . . , u1, yt−1, . . . , y0, xt−1, . . . , x0)

= MI(yt|wt−1)SI(ut|wt−1)M(xt|xt−1), t ∈ t. (2)

In (2), the factor M(xt|xt−1) describing the desired behavior of
the external variable xt equals to the corresponding counterpart
in (1). This respects the “externality” of xt and allows it to
evolve uncontrollably.

With the given ideal closed-loop model (2), FPD selects
the optimal strategy SO from the set S of randomized
strategies, formed by sequences of randomized control laws3

1A set of values of a variable z is denoted z. It is specified when needed.
2Pd is a Radon–Nikodým derivative [16] with respect to a dominating

measure—either Lebesgue or counting one—denoted as d•. Different func-
tions denoted by the same letter are distinguished by identifiers of their
arguments and possibly by an additional decoration, often being the set of
arguments to which it concerns.

3Individual admissible control laws are described by pds S(ut|wt−1) having
their supports on admissible sets of inputs ut and conditioned by the available
knowledge. For the system model (1) and the ideal closed loop model (2),
the knowledge of wt−1 suffices.

S = {S(ut|wt−1), t ∈ t}, as follows:

SO = arg min
S∈S

D(CS||CI
)
. (3)

There, KLD D [14]

D(H||G) =
∫

z
H(z) ln

(
H(z)/G(z)

)
dz

measures proximity of pds H, G. In (3), FPD compares the
closed-loop model

CS = CS
(
y|t|, . . . , y1, u|t|, . . . , u1, x|t|, . . . , x1|w0

)

=
∏

t∈t

M(yt|ut,wt−1)S(ut|wt−1)M(xt|xt−1)

with the ideal closed-loop model (over whole-time span)

CI = CI
(
y|t|, . . . , y1, u|t|, . . . , u1, x|t|, . . . , x1|w0

)

=
∏

t∈t

MI(yt|xt−1)SI(ut|wt−1)M(xt|xt−1).

FPD is taken as a ready methodology in this paper. Its
details and axiomatic background are left aside. It suffices
to recall that it densely extends the set of control prob-
lems that can be formulated and solved within Bayesian
framework [13]. Note that a closely related and indepen-
dently developed technique [17], [18] is referred to as
KL control.

A. FPD With Observed External Variables

The next proposition specializes the general solution [12]
of the optimization (3) to the control design with observed
external variables.

Proposition 1 (FPD With Observed External Variables):
The optimal strategy in the FPD sense (3), for the system
model (1) and the ideal closed loop model (2), consists of the
optimal control laws SO(ut|wt−1), wt−1 = (yt−1, xt−1), t ∈ t

SO(ut|wt−1) = SI(ut|wt−1) exp
[−ω(ut,wt−1)

]
∫

ut

SI(ut|wt−1) exp
[−ω(ut,wt−1)

]
dut

︸ ︷︷ ︸
γ (wt−1)

ω(ut,wt−1) =
∫

yt

M(yt|ut,wt−1)

× ln

(
M(yt|ut,wt−1)

MI(yt|wt−1)γ̄ (yt, xt−1)

)
dyt ≥ 0

ln(γ̄ (yt, xt−1)) =
∫

xt

M(xt|xt−1) ln(γ (yt, xt)) dxt,

with γ̄ (·), γ (·) ≤ 1. (4)

The evaluations run in backward manner with γ (y|t|, x|t|) = 1.
Proof: Let us assume that we already optimized over control

laws for time moments starting after time t ∈ t up to the
horizon |t|. The achieved minimum is assumed to be of the
form − ln(γ (yt, xt)) = − ln(γ (wt)) ≥ 0. For time |t|, this form
is valid with γ (w|t|) = 1. We perform an inductive step for
a time t ≤ |t| by optimizing over the control law S(ut|wt−1).
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The part of the partially minimized KLD influenced by this
control law has the form

R(wt−1) =
∫

yt

∫

ut

∫

xt

M(yt|ut,wt−1)S(ut|wt−1)M(xt|xt−1)

× ln

(
M(yt|ut,wt−1)S(ut|wt−1)

MI(yt|wt−1)SI(ut|wt−1)γ (yt, xt)

)
dytdutdxt.

The form of the ideal closed-loop model (2), definitions of
symbols in (4), Fubini theorem on multiple integration and
normalization of pds imply the next optimized part of KLD

R(wt−1) = − ln(γ (wt−1))

+
∫

ut

S(ut|wt−1) ln

(
S(ut|wt−1)

SO(ut|wt−1)

)
dut.

The last term is conditional KLD, which is minimized for
equal arguments and it is zero when the equality is achieved.
This demonstrates the optimality of SO and describes the
backward evolution of the function γ (wt−1). For the induc-
tively assumed γ (yt, xt) = γ (wt) ≤ 1, the function
γ̄ (yt, xt−1) ≤ 1 and thus the function ω(ut,wt−1) ≥ 0. Thus,
γ (wt−1) ≤ 1. This completes the inductive step.

Remarks 1 (On Proposition 1):
1) The function − ln(γ (yt, xt)) = − ln(γ (wt)) corresponds

with the value function in dynamic programming [19].
2) It is important to see the role of the model

M(xt|xt−1) describing external variables. It just maps
ln(γ (yt, xt)) = ln(γ (wt)) on ln(γ̄ (yt, xt−1)) by aver-
aging. This makes the design computationally unde-
manding even for high-dimensional external variables
(see Section IV).

B. Bayesian Estimation in Exponential Family

FPD relies on availability of the system model (1). In
the considered adaptive context, it is obtained via recursive
Bayesian estimation [20] of a parametric model. The perma-
nent estimation allows us to rely on simple models describing
the modeled system locally. This motivates the use of system
models from exponential family (EF) [21]. This is essentially
the only family admitting a finite dimensional sufficient statis-
tic [22] and consequently the permanent nonapproximated
estimation. It is recalled here.

The model relating a predicted multivariate real variable
δt ∈ δt, δt ∈ {yt, xt} to a multivariate explanatory variable
ψt ∈ {(ut,wt−1), xt−1} parameterized by a finite-dimensional
� ∈ � belongs to EF if it is described by a pd of
the form

M(δt|�,ψt) = exp〈A(�t),B(�)〉, �t = [δt, ψt] (5)

where data �t enters the multivariate function A, dimension
of which makes the scalar product 〈A,B〉 with the multivariate
function B(�) well defined.

Bayesian estimation evolves the posterior pd P(�|Kt),
which is the pd of the unknown parameter � conditioned
on knowledge Kt. The evolving knowledge Kt compresses
prior knowledge K0 and data observed up to the time t,
Kt = (�t,Kt−1), t ∈ t. The parameter � ∈ � is unknown

to the considered controllers, that is

S(ut|�,Kt−1) = S(ut|Kt−1)

⇔ P(�|Kt−1) = P(�|Kt−1, ut)

= P(�|Kt−1, ψt). (6)

Under these natural conditions of control [20], the evolution
of the posterior pd is driven by the Bayes rule written for EF

P(�|Kt) = exp
〈
V̄t,B(�)

〉
P(�|K0)

J̄
(
V̄t
)

= exp
〈
V̄t−1 + A(�t),B(�)

〉
P(�|K0)

J̄
(
V̄t−1 + A(�t)

)

J̄(V̄) =
∫

�

exp
〈
V̄,B(�)

〉
P(�|K0) d�. (7)

V̄t = V̄t−1 + A(�t) is the sufficient statistic4 of the fixed and
finite dimension of A. The recursion starts with V̄0 = 0. The
evaluation needs a prior pd P(�|K0) quantifying prior knowl-
edge K0 about �. Without a substantial decrease in flexibility,
the conjugate prior pd P(�|K0) ∝ exp〈V0,B(�)〉 [23] is con-
sidered further on. It has the form mimic to the likelihood of
EF and simplifies (7) to the form

P(�|Kt) = P(�|Vt) = exp〈Vt,B(�)〉
J(Vt)

, Vt = V̄t + V0

Vt = Vt−1 + A(�t), V0 chosen a priori

J(V) =
∫

�

exp〈V,B(�)〉d�. (8)

This estimation exactly provides the model of δt as the
predictor, i.e., the pd

F(δt|Kt−1, ψt) = F(δt|Vt−1, ψt) = J(Vt−1 + A(�t))

J(Vt−1)
. (9)

This form exploits the natural conditions of control (6).
For the parametric system model in EF, the predictor (9) can

formally be used in Proposition 1 as the system model. It leads
to dual control problem [24] or, in the more recent vocabu-
lary, the problem of approximate dynamic programming [25].
We avoid its complexity by adopting certainty-equivalence
approximation of the predictive pd (9), i.e., by taking

F(δt|Vt−1, ψt) ≈ M
(
δt|�̂t−1, ψt

)
. (10)

There, �̂t−1 is a point estimate of � ∈ � selected according
to the pd P(�|Vt−1), say, its expected value or its maximizer.

The used system model is intentionally simple to keep
computational demands low. Thus, it is inevitably approxi-
mate. Kárný [9] has shown that stabilized forgetting [10] is
the proper tool for preventing a permanent accumulation of
approximation errors. Within EF, it modifies the updating of
the value of the sufficient statistic Vt to

Vt = φt(Vt−1 + A(�t))+ (1 − φt)Vt−1 = Vt−1 + φtA(�t).

(11)

4Recall, sufficient statistic comprises all knowledge on � brought by data.
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The forgetting factor φt ∈ [0, 1] entering (11) is in [9]
selected heuristically. An asymptotic analysis of the corre-
sponding weighted Bayes rules [26] leads to the following,
better motivated, choice used further on:

φt = J(Vt−1 + A(�t))
2

J(Vt−1 + 2A(�t))
(12)

which coincides with the recommendation in [26] when tak-
ing the predictive pd in measured data—after using them in
updating—as the predictor ideally fitting them. A detailed jus-
tification of (12) is out of scope of this paper. Importantly,
the forgetting factor (12) is always in the range [0, 1]. It
approaches 1 if the posterior pd P(�|Kt−1) is concentrated
and the observation δt is close to its point prediction.

C. Parametric System Model and Ideal Closed-Loop Model

The recalled estimation is applied to the system model
parameterized by multivariate parameters (�,�x) ∈ (�,�x)

M(yt, xt|�,�x, ut,wt−1)

= M(yt|�, ut,wt−1)M(xt|�x, xt−1). (13)

The independent parametrization respects the external nature
of xt.

The call for simplicity of parameter estimation makes us to
assume that both factors of the system model (13) are in EF.
The first one is

M(yt|�, ut,wt−1) = exp〈A(�t),B(�)〉
ψt = [ut,wt−1], �t = [yt, ψt]

and its conjugate posterior pd P(�|Kt) = P(�|Vt) is deter-
mined by the sufficient statistic Vt = Vt−1 +A(�t), V0 chosen
a priori. The second one modeling the external variables in EF

M(xt|�x, xt−1) = exp
〈
Ax(�t;x),Bx(�x)

〉

ψt;x = xt−1, �t;x = [xt, xt−1]

deals with its choice of functions Ax, Bx, data �t;x = [xt, xt−1]
and unknown parameter �x described by the conjugate pos-
terior pd P(�x|Kt) = P(�x|Vt;x) with the sufficient statistic
Vt;x = Vt−1;x + Ax(�t;x), V0;x chosen a priori.

Remarks 2 (On Estimation and Preferences):
1) The parameter estimation concerning a multivariate pre-

dicted variable, say, y′
t = [yt;1, . . . , yt;	y ], ′ is transpo-

sition, can be reduced to parallel estimation of single
variate parametric models: the chain rule for pds implies

M(yt|�, ut,wt−1)

=
	y∏

i=1

M
(
yt;i|�i, yt;i+1, . . . , yt;	y , ut,wt−1

)
. (14)

The factors in the right-hand side of (14) predict scalars
and have to deal with collection of explanatory variables
ut,wt−1 extended by yt;i+1, . . . , yt;	y . The parameters �i

are constituents of �. Their choice allows us to intro-
duce a structural prior knowledge about independence
of some predicted entries. This is especially important
for external variables. Their rough model often neglects

mutual dependencies of the current and delayed entries
of xt;i, xt;j, xt−1;i, xt−1;j, j �= i and assumes

M(xt|�x, xt−1) =
	x∏

i=1

M(xt;i|�xi, xt−1;i). (15)

The simplification (15) reduces estimation computa-
tional load and it is at least partially compensated by
adaptivity (recursive learning with forgetting) and by the
knowledge sharing discussed in Section III-B.

2) The errors caused by certainty-equivalence approxima-
tion of the predictor (10) are also counteracted by
adaptivity.

3) The lack of active exploration connected with the
certainty-equivalence approximation is a hard and open
problem [27]. Its systematic treatment goes beyond the
scope of this paper. We conjecture that the randomized
nature of the FPD-optimal control laws, Proposition 1,
diminishes the lack of an intentional exploration.

4) The difficult and important choice of the ideal pd, falling
into the general problem of preference elicitation [28],
is treated here marginally. For the elaborated classical
aim of pushing the output yt to an externally supplied
set-point yt;s, which is embedded into xt, the following
system-model-dependent choice is meaningful:

CI(yt, ut|wt−1) = MI(yt|wt−1)SI(ut|wt−1).

There MI(yt|wt−1) = M
(
yt|ut;s,wt−1

)

ut;s ∈ Arg max
ut∈ut

M
(
yt;s|ut,wt−1

)
(16)

and SI(ut|wt−1) is a flat pd concentrating its mass
on the set ut of desired inputs. This makes the ideal
closed-loop model potentially reachable. The use of
the recursively estimated system model in (16) then
also adapts the ideal closed-loop model. For related
discussions, see [29], [30].

III. UNLIMITED NETWORK OF CONTROL NODES

A. Considered Network of Controllers

The control node described in Section II in fact acts within
a network of interacting nodes of the same type. They may
differ in explanatory variables and thus in character and dimen-
sions of unknown parameters and possibly even in functions
A, B, Ax, and Bx defining specific members of EF.

The targeted size of the network and disparity of local aims
prevent a global joint optimization. Individual nodes share part
of the data with a limited (small) number of their neighbors.
Without a message passing, each node selects the input ut and
tries to influence the output yt that it is responsible for. The
other observed data, including inputs and outputs optimized
locally by neighbors, is modeled and treated by the specific
node as external variables in xt.

If the mutual influence of locally optimized nodes is weak
enough, it may happen that the whole network will behave
well. Generally, however, incompletely compatible aims and
nonharmonized dynamics cause emergent behaviors, which are
very far from the desired ones (up to instability).
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Question arises, whether it is possible to allow neighbors
to systematically share additional information, which harmo-
nizes their acting but does not force individual nodes to go
beyond the model they handle. In other words, the sharing
of additional information does not force nodes to go toward
the infeasible global model and global optimization of the net-
work. This constraint reduces the harmonization to information
sharing, which improves description of unknown parameters
entering parametric models. This direction is elaborated here.

The sharing of information between nodes is asynchronous
and distributed over the network within various overlapping
groups of neighbors. This practically makes the sharing fully
scalable with respect to the network size. At the same time,
it allows us to consider information sharing merely for a pair
of nodes indexed by ρ ∈ {α, β}. Each node has its elements
used for constructing and using adaptive controllers. Recall
that they consist of optional inputs ut;ρ ∈ ut;ρ , optimized out-
puts yt;ρ ∈ yt;ρ , the related set points yt;sρ ∈ yt;ρ , external
variables xt;ρ ∈ xt;ρ , the parametric system models in EF

M
(
yt;ρ |�ρ, ut;ρ,wt−1;ρ

)
M
(
xt;ρ |�xρ, xt−1;ρ

)

and, importantly, the conjugate pds describing the unknown
parameters, for nodes ρ ∈ {α, β}

P(�ρ |Kt;ρ) = P(�ρ |Vt;ρ) P(�xρ |Kt;ρ) = P(�xρ |Vt;xρ).

Neighbors, by their definition, share a nonvoid part δt of
data vectors �t;ρ,�t;xρ and each node has disposal models of
their future occurrences, i.e., pds

F(δt|Kt−1;ρ) = F(δt|Kt−1;ρ, ψt;ρ). (17)

Indeed, these pds are the output predictors if outputs are part
of δt, or they are the designed randomized control laws (prop-
erty of FPD) if inputs are part of δt, or they are predictors of
external variables included in δt.

The nodes are assumed to be uninformed about system
models or control laws used by their neighbors as the extent
of possible options is too broad even when dealing with EF
only. Thus, they cannot directly share information about their
parameters. Thus, the predictors of common data δt (17) offer
the only affordable way for improving neighbors’ models
without increasing their complexity.

B. Sharing of Knowledge Brought by Predictors

Question arises how to extract the information contained in a
probabilistic data model for correcting description of unknown
parameters. Exactly, this question was answered in the con-
text of knowledge elicitation and led to the definite proposal
summarized in Proposition 2. The derivation of the sharing
formula (18) is simple but it needs machinery, which goes
beyond the scope of this paper. It is presented in [31]. Let
us note that it was proposed by the first author of [15] and
successfully applied in [32]. Loosely, it follows from an appli-
cation of minimum cross-entropy principle [33], [34] and its
generalization [35] allowing nonlinear constraints on pds to
be optimized according to this principle.

Proposition 2 (How Data Pd Modifies Pd of Parameter):
Let us consider a fixed knowledge, K, determining the pd

M(δ|�,ψ) of a finite-dimensional data δ ∈ δ, conditioned
on a finite-dimensional parameter � ∈ � and explanatory
variables in ψ ∈ ψ . Let the pd of the parameter � under
the knowledge K be P(�|K) = P(�|K, ψ), see (6). Let
F(δ) = F(δ|external knowledge) be an externally supplied
pd describing data δ. Then, the description of unknown
parameter respecting this information is the pd

P(�|F,K) = P(�|K) exp
[
μ
∫
δ F(δ) ln(M(δ|�,ψ))dδ]

∫
� P(�|K) exp

[
μ
∫
δ F(δ) ln(M(δ|�,ψ))dδ]d�

(18)

where the optional scalar μ > 0 informally expresses amount
of informative data items used for creating the pd F(δ).

Specialization of (18) to EF is straightforward and appeal-
ing.

Proposition 3 (How Data Pd Modifies Pd of Parameter
in EF): Let us consider the parametric model in EF,
M(δ|�,ψ) = exp〈A(�),B(�)〉, and the conjugate pd

P(�|K) = P(�|V) = exp〈V,B(�)〉/J(V)
J(V) =

∫

�

exp〈V,B(�)〉 d�.

Then, the pd P(�|F,K) = P(�|F,V) (18) is also conjugate

P(�|F,V) = P(�|V̄) = exp
〈
V̄,B(�)

〉

J(V̄)

V̄ = V + μĀ(ψ) with Ā(ψ) =
∫

δ

A(δ, ψ)F(δ) dδ

J(V̄) =
∫

�

exp
〈
V̄,B(�)

〉
d�. (19)

Remarks 3 (On Knowledge Sharing):
1) The proposed sharing of knowledge is directly applica-

ble to any node pair at any time moment.
2) The operation (19) behaves similarly as updating by

observed data but takes into account its uncertainty
assigned by the pd F(δ). The processed information
is corrupted by errors caused by approximate nature
of shared predictors F(δ). Thus, the use of stabilized
forgetting (11) with the optimized factor (12), after its
application is a must.

3) Processing of the predictive pd corresponds to informa-
tion updated by single data item, which hints to choosing
μ = 1. The choice can be varied when the informa-
tion about the number of processed data since the last
predictor sharing is available. Any finite choice μ ≥ 1
is acceptable as the subsequent forgetting tailors it.

C. Message Passing Within the Supported Networks

The presented concept of control nodes inter-
acting with their neighbors is extremely flexible:
1) topologically—neighbors are simply those nodes, which
share some external variables; the contemporary information
technology makes spatial relations of secondary importance;
2) in acting—each node acts almost as being alone using
its measurement and its input-selection time schedules; and
3) design—individual nodes can be designed and implemented
at various time moments.
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These features follow from the fact that a node α deals with:
1) ut;α , system input, which is chosen solely by the node

α—this is the only strict network-induced constraint,
which has to be respected;

2) yt;α , system output, which is optimized by the node α,
typically solely, but possibly by other nodes β, γ, . . .
Conflicts may arise in the latter case and it is useful to
avoid it again by respecting potential neighbors in the
network;

3) xt;α , external variables, consisting of the node-dependent
selection of the following variables.

a) xt;αs, external variables originating in the system
with which node α interacts.

b) δt;ρ , which is a part of inputs of ut;ρ generated by
neighboring nodes ρ = β, γ, . . . , or a part of the
outputs yt;ρ optimized by them or a part of external
variables xt;ρ predicted by them. This signal can
be complemented by a predictor Fρ(δt;ρ |Kt−1;ρ),
which is exploited according to Proposition 2.
Whenever δt;ρ is modeled by the node α within EF
Mα(δt;ρ |�α,ψt;α) = exp〈Aα(δt;ρ, ψt;α),Bα(�α)〉
learnt within conjugate family, it suf-
fices to pass the predictive moment
Āα(ψt;α) ≡ ∫

δt;ρ Aα(δt;ρ, ψt;α)Fρ(δt;ρ) dδt;ρ ,

see Proposition 3. Here, the abundant use of
indices α, ρ stresses the node-related origin of
treated entities.

IV. APPLICATION TO LINEAR-GAUSSIAN CASE

In this section, the general methodology is applied to lin-
ear Gaussian system model and Gaussian ideal pd. This
case is: 1) the FPD counterpart of the widely used classical
linear-quadratic control design (including its model predictive
version [36]), which forms the firm basis in solving more
complex problems by relying on linearization and 2) solvable
without additional approximations.

Hereafter, domains yt, ut, and xt coincide with multivariate
real spaces but this fact is not stressed by notation. For clarity,
yt, ut, and xt are treated as column vectors, i.e., wt = [y′

t, x′
t]

′.

A. FPD With Observed External Variables

The assumed system model (1) has the next first factor5

M(yt|ut,wt−1) = Nyt

(
Awt−1 + But,RR

′)

A = [
Ay,Ax

]
while with ||z||2 = z′z

Ny
(
ŷ,RR

′) = |2πRR
′|−0.5 exp

[
−0.5

∥∥
∥R−1(y − ŷ

)∥∥
∥

2
]

(20)

where the matrices A, B, and the regular square-root R of
covariance matrix are appropriately sized.

The second factor in (1), modeling external variables xt, is

M(xt|xt−1) = Nxt

(
Cxt−1,RxR

′
x
)
. (21)

5The set subscript at matrices indicates the vector variable by which the
(sub)matrix is multiplied.

It is given by the matrix C, and the square-root Rx of
covariance matrix. The factors of the ideal pd (2) are

MI(yt|ut,wt−1) = MI(yt|wt−1) = Nyt

(
AIwt−1 + BIut,RR

′)

SI(ut|wt−1) = Nut

(
DIwt−1,RIuR

′
Iu

)
with |RIu| �= 0

AI = [
AIy,AIx

]
, DI = [

DIy,DIx
]
. (22)

Remarks 4 (On Involved Matrices):
1) The involved matrices are known in the design phase due

to the use of the certainty-equivalence approximation.
2) The matrices in the discussed pds are assumed to

meet an algebraic condition guaranteeing existence and
uniqueness of the optimal control laws, see Lemma 1.

3) AIwt−1 defines the expected value of an externally gen-
erated set point yt;s of yt. The set point yt;s does not
depend on ut, wt−1 and it is included into the vector
xt of external variables. Its expectation, however, may
depend on wt−1, especially, when the construction (16)
of this ideal factor is used.

4) The use of RR
′ from the system model (20) as the ideal

covariance follows from the recommended choice (16).
The matrices DI and |RIu| �= 0 are chosen so that inputs
pushing the output to its set point yt;s ∈ yt maintain a
high probability within a desired subset of ut.

Application of Proposition 1 to linear-Gaussian case uses:
Lemma 1 (Operations on Quadratic Form):
1) Expected Quadratic Form: Let δ̂ = E[δ] be expectation

of a vector δ ∈ δ and WW
′ its covariance. Then, expec-

tation of the quadratic form ||Uδ + v||2, determined by
a given matrix U and a vector v, has the form

E
[||Uδ + v||2] = ||Uδ̂ + v||2 + tr[UWW

′
U

′]

where tr[•] is matrix trace.
2) Square-Root-Based Completion of Quadratic Form: Let

us consider the sum of quadratic forms of 	u, 	y, and
	x vectors u ∈ u, y ∈ y, and x ∈ x, weighted
by given weighing matrices Fu, Fy, Fx, Gu, Gy, Gx,
Hu, Hy, and Hx of appropriate dimensions. Let squares
in u ∈ u and y ∈ y be completed. Then, there is an
orthogonal matrix T guaranteeing the identity

||Fuu + Fyy + Fxx||2 + ||Guu + Gyy + Gxx||2
+ ||Huu + Hyy + Hxx||2

= ||Luu + Lyy + Lxx||2 + ||Eyy + Exx||2

TZ = T

⎡

⎣
Fu Fy Fx
Gu Gy Gx
Hu Hy Hx

⎤

⎦ =
⎡

⎣
Lu Ly Lx
0 Ey Ex
0 0 Ux

⎤

⎦

(23)

where Lu is square (	u, 	u) upper triangular matrix and
Ey is square (	y, 	y) matrix. Such T exists if the initial
	u + 	y columns of the matrix Z have full rank.

Proof: It suffices to state:
Ad 1: It can be verified by direct evaluations.
Ad 2: This square-root completion of squares in u and

y was used for control purposes since the 1980s [37]. It
exploits invariance of quadratic norms to rotations made by
an orthogonal matrix T, (T′ = T

−1). Elementary rotations or
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QR algorithm [38] are examples of making the efficient matrix
(block) triangularization represented by (23).

Proposition 4 (Linear-Gaussian FPD With External
Variables): Let us define (	y, 	w) matrix [E|t|;y,E|t|;x] = 0
and perform the following iterations for τ = |t|, |t| − 1, . . . , t
consisting of triangularizations of Zτ :
⎡

⎣
R

−1(B − BI) R
−1
(
Ay − AIy

)
R

−1(Ax − AIx)

R
−1
Iu R

−1
Iu

(−DIy
)

R
−1
Iu (−DIx)

Eτ ;yB Eτ ;yAy Eτ ;yAx + Eτ ;xC

⎤

⎦ (24)

by an orthogonal transformation Tτ giving

TτZτ =
⎡

⎣
Lτ ;u Lτ ;y Lτ ;x
0 Eτ−1;y Eτ−1;x
0 0 Uτ−1;x

⎤

⎦. (25)

Then, the optimal strategy in the FPD sense (3), for the sys-
tem model (20), (21) and the ideal pd (22) given by known
matrices involved, is determined by the optimal control laws
SO(ut|wt−1) = SO(ut|yt−1, xt−1), t ∈ t

SO(ut|yt−1, xt−1)

= Nut

(
−L

−1
t;u
(
Lt;yyt−1 + Lt;xxt−1

)
, L

−1
t;u
(
L

−1
t;u
)′)

. (26)

Proof: By induction for τ = |t|, . . . , t, we shall show that

−2 ln(γ (yτ , xτ )) = ∥∥Eτ ;yyτ + Eτ ;xxτ
∥∥2 + hτ

given by (	y, 	y) matrix Eτ ;y, (	y, 	x) matrix Eτ ;x, and a data-
independent offset hτ . The starting value ln(γ (y|t|, x|t|)) = 0
has this form for E|t|;y = 0, E|t|;x = 0, and h|t| = 0, see the
starting value in Proposition 1.

For τ ≤ |t|, the definition of the function ω(uτ ,
yt−1, xt−1) (4) and Lemma 1 imply the form of the exponent
of the optimal control law, which—after completion squares
in its exponent with respect to ut—defines γ (yt−1, xt−1)

−ω(uτ , yτ−1, xτ−1)+ ln(SI(uτ |yτ−1, xτ−1))

= 0.5

∥∥∥
∥∥∥
∥∥

R
−1(B − BI)︸ ︷︷ ︸

Fu

uτ + R
−1(

Ay − AIy
)

︸ ︷︷ ︸
Fy

yτ−1

+ R
−1(Ax − AIx)︸ ︷︷ ︸

Fx

xτ−1

∥
∥∥∥
∥∥∥

2

+ h

+ 0.5

∥∥∥
∥∥∥
∥∥

R
−1
Iu︸︷︷︸

Gu

uτ − R
−1
Iu DIy
︸ ︷︷ ︸

Gy

yτ−1 − R
−1
Iu DIx
︸ ︷︷ ︸

Gx

xτ−1

∥∥∥
∥∥∥
∥∥

2

+ 0.5

∥∥∥
∥∥∥
∥∥

Eτ ;yB︸ ︷︷ ︸
Hτ ;u

uτ + Eτ ;yAy︸ ︷︷ ︸
Hτ ;y

yτ−1 + (
Eτ ;yAx + Eτ ;xC

)

︸ ︷︷ ︸
Hτ ;x

xτ−1

∥∥∥
∥∥∥
∥∥

2

= 0.5
∥
∥Lτ ;uuτ + Lτ ;yyτ−1 + Lτ ;xxτ−1

∥
∥2

+ 0.5
∥∥Eτ−1;yyτ−1 + Eτ−1;xxτ−1

∥∥2

+ 0.5
∥∥Uτ−1;xxτ−1

∥∥2
.

This confirms the form of the optimal control law as well as
of the assumed form of γ (yτ , xτ ). Notice that factors given by

hτ and ||Uτ−1;xxτ−1||2 cancels in the definition of the optimal
control law and does not enter γ (yτ , xτ ).

Remarks 5 (On Numerics and Exploration):
1) From complexity view point, it is important to notice

that:
a) the triangularization runs on 	u + 	y columns and
(	y + 2 × 	u) rows of (	y + 2 × 	u) × (	u + 	w)

matrix;
b) inversions are only needed once and for small-sized

triangular matrices R
0.5, R

0.5
I , and Lt;u;

c) square-root form of the covariance of the opti-
mal control law (26) makes sampling from this pd
simple.

2) The recursions are equivalent to the Riccati equation
corresponding to linear systems with external variables
and quadratic criterion whose weights are inversions of
covariance matrices of the ideal pd (see [11]).

3) The resulting controller is randomized and specific
actions should be sampled from its pd: the control qual-
ity is slightly worse than using input equal to expected
value as it respects constraints on entropy of the con-
troller [13] but randomization makes the controller
explorative.

B. Parameter Estimation

In the following, we exploit the possibility to deal with
predicting the scalar variable δt, see (14). Its linear-Gaussian
model casts into the EF form as follows:

M(δt|�,ψt) = (2πr)−0.5 exp
[
−0.5r−1(δt − θ ′ψt

)2]

= exp

{
1 × (−0.5 ln(2πr))

+ tr

[
�t�

′
t

(
−0.5r−1

[−1
θ

][−1, θ ′]
)]}

(27)

where data vector �t = [δt, ψ
′
t ]

′ and the unknown parameter
� consists of the vector of coefficients θ and noise variance r.

Proposition 5 (Estimation for Linear-Gaussian Model):
The form (27) corresponds to (5) with A(�t) = (1, �t�

′
t )

B(�) =
(

−0.5 ln(2πr),−0.5r−1
[−1

θ

][−1, θ ′]
)

Vt = (νt,Vt), νt = νt−1 + 1

Vt = Vt−1 +�t�
′
t , ν0, V0 chosen a priori.

The conjugate prior pd is Gauss-inverse-gamma pd. It is proper
iff V0 > 0 and ν0 > 0 when takes the next form, with 	θ equal
to the number of θ coefficients and t ≥ 0

P(θ, r|νt,Vt) = 1

r0.5(νt+	θ+2)J(νt,Vt)

× exp

{
−0.5r−1[−1, θ ′]

Vt

[−1
θ

]}

= 1

r0.5(νt+	θ−2)J(νt,Vt)

× exp

{
−0.5r−1

[(
θ − θ̂t

)′
W

−1
t

(
θ − θ̂t

)

+ νt r̂t

]}



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

V =
[

Vδ V
′
δψ

Vδψ Vψ

]
with scalar Vδ defines

θ̂ = V
−1
ψ Vδψ , W = V

−1
ψ

r̂ = Vδ − V
′
δψV

−1
ψ V

′
δψ

ν

J(νt,Vt) = r̂−0.5νt
t

∣∣Vt;ψ
∣∣−0.5

× �(0.5νt)(0.5νt)
−0.5νt(2π)0.5	ψ

�(z) =
∫ ∞

0
vz−1 exp(−v) dv < ∞ for z > 0

F(δ|ψ, νt,Vt) is student distribution with moments

E[δ|ψ, νt,Vt] = θ̂ ′
tψ, variance[δ|ψ, νt,Vt] = r̂t(1 + ζt)

ζt = ψ ′
Wψ. (28)

Remarks 6 (On Relation To Least Squares):
1) The equivalent expressions of the sufficient statistic ν,V

via ν, θ̂ ,W, and r̂ connect the discussed estimation with
recursive least squares [20]. The algorithm implemented
using factorized version of V makes it numerically
robust and simplifies evaluation of the normalization
factor J needed for selecting forgetting factor φt (12).

2) The form of the normalizing factor J can be found
in [20] too. There it is shown that the factorized version
of recursive estimation [20] makes the evaluation of r̂t

and |Vt;ψ | computationally cheap and, as said, robust.
3) The statistic values θ̂ and r̂ are maximum a posteriori

point estimates of θ and r. They serve for the
certainty-equivalence-based approximation of the system
model (10).

C. Sharing of Knowledge Brought by Predictors

Sharing of knowledge brought by predictors consists of a
simple specialization of Proposition (3) to linear-Gaussian case
with conjugate Gaussian-inverse-gamma posterior pd.

Proposition 6 (Proposition 3 for Linear-Gaussian Model):
Let us consider that node β uses the linear-Gaussian para-
metric model (27) and the conjugate Gaussian-inverse-gamma
pd (28) determined by statistics νβ and Vβ . Then, this pd
corrected by the predictor offered by node α with moments

δ̂α = Eα[δ], varianceα(δ) = r̂δα

is also conjugate Gaussian-inverse-gamma pd determined by

ν̄β = νβ + μ

V̄β = Vβ + μ

[
δ̂α
ψβ

][
δ̂α, ψβ

]
+ μ

[
r̂δα 0
0 0

]
. (29)

If the predictor results from learning of the linear-Gaussian
system model used by node α then the moments are

δ̂α = θ̂ ′
αψα = V

′
δψαV

−1
ψαψα

r̂δα = Vyα − V
′
δψαV

−1
ψαVδψα

να
(1 + ζα)

ζα = ψ ′
αV

−1
ψαψα

where the used symbols are defined in Proposition 5. If the
predictor coincides with the control law (26) (δα = uα) then

δ̂α = −L
−1
t−1;uαLt;wαwt−1;α, r̂−1

δα = L
′
t−1;uαLt−1;uα

where the coefficients and the covariance are the final values
obtained from iterations described by Proposition 4 and wt−1;α
contain data to be used for generating the predicted δα = uα .

Remarks 7 (On Proposition 6):
1) The verification of Proposition 6 is straightforward. The

attention is to be paid for distinguishing data processed
by the predictor α from those used in estimation by
node β.

2) The formula (29) is intuitively appealing as it replaces
the unavailable δ by its prediction made by the neigh-
bor α but at the same time it respects precision of this
prediction: if r̂δα is large then the corrected pd gets the
large r̂δβ . It can be interpreted as an addition of data
� ′ = [

√
r̂δα, 0] with the predicted variable unrelated to

explanatory variables.
3) The application of the stabilized forgetting can lead

to a complete suppression of the correction resulting
from the predictor when it does not improve prediction
quality.

V. ON EXPERIMENTS

The first part provides illustrative simulation results indi-
cating the use of the presented theory. The second one just
summarizes experience, we gained from extensive (for the
space sake unreported) simulation experiments.

A. Illustrative Example

This section describes simulation of interactions of a pair
interacting nodes controlling a linearized version of coupled
map lattice (CML) with periodic boundary conditions. CML is
disturbed by white zero mean Gaussian noise κt+1 with covari-
ance matrix 0.001I. Its un-controlled dynamics is described by
Xt+1 = ASXt + κt+1, where

AS = η

⎡

⎢
⎢⎢⎢⎢
⎣

1 − 2ε ε 0 . . . ε

ε 1 − 2ε ε . . . 0
0 ε 1 − 2ε . . . 0
...

...
...

. . .
...

ε 0 0 . . . 1 − 2ε

⎤

⎥
⎥⎥⎥⎥
⎦

(30)

is the 	X × 	X Jacobian matrix, ε is the coupling strength,
η = (∂f (z)/∂z) |z=z� , z� = 1−1/a is the homogeneous steady
state of the lattice, and f (z) is a logistic local map, a non-
linear function with parameter a that describes the nonlinear
dynamical behavior of CML

z j
t+1 = F

(
z j−1

t , z j
t , z j+1

t

)

= f
[
(1 − 2ε)z j

t + ε
(

z j−1
t + z j+1

t

)]
+ κ

j
t+1 (31)

where j = 1, 2, . . . , 	X label the lattice sites z j, and 	X is the
system size. For detailed description of the CML, the readers
are referred to [39], where CML has been used to illustrate
theoretical developments for probabilistic pinning control of
complex dynamical networks.

The reported pair of experiments compares the proposed
adaptive distributed probabilistic control with the global prob-
abilistic pinning control [39]. In these experiments, the lattice
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is initiated by X = X0 and the control aim is to keep Xt as
close as possible to the origin. The parameters of the CML
are taken to be a = 3.0, 	X = 4, and ε = 0.33, yielding

AS =

⎡

⎢⎢
⎣

−0.34 −0.33 0 −0.33
−0.33 −0.34 −0.33 0

0 −0.33 −0.34 −0.33
−0.33 0 −0.33 −0.34

⎤

⎥⎥
⎦. (32)

In the first experiment, the presented theory is applied. The
control of the 4-D lattice is treated as a pair of control tasks,
one for each node. Node α takes Xt+1;1 = yt+1;1α , Xt+1;2 =
yt+1;2α , and Xt+1;3 = xt+1;1α as an external variable. Hence,
the system model (1) of node α has factors (the simulated
system does not imply Cρ-entries)

Mα(yt|ut,wt−1) = Nyt

(
Aαwt−1 + Bαut,RR

′)

Aα =
[−0.34 −0.33 0

−0.33 −0.34 −0.33

]

Bα =
[

1
1

]

Mα(xt|xt−1) = Nxt

(
Cαxt−1,RxR

′
x
)

(33)

Cα = [
0 0 c3,3

]
.

Node β is responsible for Xt+1;3 = yt+1;1β and Xt+1;4 =
yt+1;2β . It identifies Xt+1;1 = xt+1;1β,Xt+1;2 = xt+1;2β , and
the first input Ut;1 = xt+1;3β , i.e., treats them as external
signals. Hence, model (1) of node β has two factors

Mβ(yt|ut,wt−1) = Nyt

(
Aβwt−1 + Bβut,RR

′)

Aβ =
[−0.34 −0.33 1 0 −0.33

−0.33 −0.34 1 −0.33 0

]

Bβ =
[

1
1

]

M(xt|xt−1) = Nxt

(
Cβxt−1,RxR

′
x
)

Cβ =
⎡

⎣
0 0 cu1,u1 cu1,1 cu1,2
0 0 c1,u1 c1,1 c1,2
0 0 c2,u1 c2,1 c2,2

⎤

⎦.

The entries of the matrices Aρ , Bρ , and Cρ , ρ ∈ {α, β},
are assumed to be unknown to controllers (except those zero
entries which are enforced by treating some signals as external
variables). They are (on line) recursively estimated using the
Bayesian technique recalled in Section IV-B.

The typical resulting trajectories are in Fig. 1, which con-
firm that in spite of the crude approximation adopted by the
distributed controllers the global behavior of the overall closed
loop is satisfactory as seen from the comparative experiment.

In a comparative experiment, one controller is designed
using the probabilistic pinning control methodology, where the
length four lattice is controlled using two control signals that
are placed next to each other at the sides of the lattice [39],
thus yielding the following controlled version of CML:

Xt+1 = ASXt + BSUt+1 + κt+1, where

AS is given by (32) and BS =
[

1 0 0 0
0 0 0 1

]′
(34)

and where κt+1 is a Gaussian noise with covariance
matrix 0.001I, and Ut+1 = [u1,t+1, u1,t+1]′ is the vector of

Fig. 1. Outputs (top) and inputs (bottom) of a nonchaotic CML with 	X = 4,
a = 3, and ε = 0.33 resulting from the distributed adaptive fully probabilistic
controller.

control inputs. The parameters of the lattice given in (34)
are assumed to be unknown and recursively estimated. The
typical resulting trajectories are in Fig. 2. The global solu-
tion even achieves a slightly worse quality than that of the
distributed solution. This can be intuitively expected as the
distributed probabilistic controllers estimate less parameters
than the global pinning controller. The difference diminishes
with the diminishing noise term, κt+1 in (30).

B. Simulation Experience

The experience listed below comes from experiments with:
1) stabilization of the CML (30) for various 	X, a, ε with var-
ious noise realizations and 2) another extensively simulated
high-dimensional linear system, referred to as Flock.

Matrices of Flock were chosen to imitate linear, stochasti-
cally disturbed movement of a flock controlled by acceleration
(deceleration) of individual agents among several tens of sim-
ulated ones. Each was described by a position and velocity.
The control objective, expressed by individual ideal model,
was to keep the same velocity as the right neighbor while
keeping a distance from it. The most right-hand side agent
aimed to follow externally supplied position. All agents, thus
dealt with 2-D output, scalar input, and 2-D external variables
(neighbor’s position and speed).

The observations we feel worth sharing are as follows.
1) The general solution mostly worked very satisfactorily.
2) Stability of whole network is not guaranteed but instabil-

ity was recorded quite rarely. The adaptive specification
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Fig. 2. Outputs (top) and inputs (bottom) of a nonchaotic CML with 	X = 4,
a = 3, and ε = 0.33 for adaptive controller based on the single model.

of penalties inherent to the proposed methodology [see
the discussion near (16)] seems to be responsible for it.

3) The data-dependent forgetting worked as expected: its
average values have exponentially approached unity and
individual values stay there even in long runs (several
thousands of simulation steps). This has contributed to
the (mostly) satisfactory behavior of the whole network.

4) Randomized nature of the constructed controller indeed
helped to move parameter estimates into meaningful
areas. This has allowed us to have extremely short
open-loop learning period (at most several tens was
sufficient).

5) Sharing of probabilistic information did help in the
achieved quality but, for the made simulations, the
improvements were more minor than we expected
(any reasonable statistical test would take them as
insignificant).

VI. CONCLUSION

Complexity of networks of interacting control nodes in
current society and technology, together with the quest
for improving their behavior, makes the addressed problem
extremely important. The systematic overall solution for an
important and widely met class of distributed control prob-
lems is the main contribution of the paper. It is achieved by:
1) the adopted use of observed signals as external variables;
2) the use of local adaptive controllers with built-in forgetting
mechanism; 3) strictly respecting limited evaluation abilities
of local controllers; 4) the novel use of exploiting external
data predictors for correcting parameter estimation; and 5) the

full exploitation of probabilistic machinery enhanced by the
adopted FPD of controllers.

The proposed solution is directly applicable to controlled
Markov chains (Markov Decision processes [40]). It is
expected to be feasible for the general cases of mixed discrete
and continuous data. The solution can be used as a building
block of hierarchical, possibly pinning, and set point control.

The missing analysis of stability, quality, and emergent
network behavior is the main gap to be filled in. Also,
an explanation of the weaker-than-expected contribution of
predictor-based knowledge sharing is to be inspected. The
optimistic hypothesis that the control was too much successful
even without it has to be tested.

In spite of open problems, the achieved state of development
and available experimental evidence make it worth of putting
a further effort into the control-design direction described in
this paper. The extreme application potential width is the deci-
sive reason for a further development of our solution. It suits
Industry 4.0 [41], which approaches the production processes
as the complex cyber-physical systems with control networks
organized in the way advocated this paper. Similarly, control
of town traffic via traffic lights [42], energy intelligent build-
ings [43], and naturally distributed markets are technically
ready for advantageous use of the presented concept.
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