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Abstract. Ultimate Game serves for extensive studies of various aspects
of human decision making. The current paper contribute to them by
designing proposer optimising its policy using Markov-decision-process
(MDP) framework combined with recursive Bayesian learning of respon-
der’s model. Its foreseen use: i) standardises experimental conditions for
studying rationality and emotion-influenced decision making of human
responders; ii) replaces the classical game-theoretical design of the play-
ers’ policies by an adaptive MDP, which is more realistic with respect
to the knowledge available to individual players and decreases player’s
deliberation effort; iii) reveals the need for approximate learning and
dynamic programming inevitable for coping with the curse of dimen-
sionality; iv) demonstrates the influence of the fairness attitude of the
proposer on the game course; v) prepares the test case for inspecting
exploration-exploitation dichotomy.
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1 Introduction

Since ancient times people trade with each other. Modern man cannot imagine
life without exchange of goods, services, information etc. It is something like the
cornerstone of our civilization. This human activity divides people to proposers
of some merit and responders who either accept or refuse it. Both of them can
often bargain but a price tag in the store represents a sort of ultimatum: if we
buy the product we agree with the seller’s price without any direct negotiation.
This motivates investigations of human behaviour connected with the bargaining
and trading. They concern economical, game-theoretical, social, cultural and
emotional aspects and they often use standardised “laboratory” variants of the
discussed interaction. Ultimatum Game (UG) is a prominent test case [18].

UG considers a fixed number of rounds of the two-player game. A fixed
amount of money is split in each round. The proposer offers a part of this amount
and the responder either accepts the offer and money are split accordingly or re-
fuses it and both get nothing. Seemingly, the game should have a definite course:
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2 F. Hůla et al

the proposer offers the smallest possible positive amount and the responder ac-
cepts it. No such behaviour is observed in reality as people judge the game not
only according to monetary profit. Typically, they try to earn at least as their
opponent, they care about self-fairness [8,20] influenced by culture, sex, etc. [5].
An important influence of emotions are also studied [7].

While an appropriate model of self-fairness leads to surprisingly accurate
predictions of responders’ behaviours [9], to get a statistically significant quan-
tification of emotional influences has been found quite hard. The hypothesis that
an actively optimising proposer could make this influence more pronounced has
led to the design of the standardised active proposer described here. Theory of
Markov decision processes (MDP) [17] was selected as the basis of such a design.
This choice avoiding the standard game-theoretical formulation [22] is motivated
by the inherent trap of the dimensionality curse [3] of the Bayesian games [10].

The use of MDP supposes knowledge of responder’s model, which is in re-
alistic scenarios unknown and, moreover, it is very individual in the targeted
emotion-oriented studies. This calls for a combination of MDP with a perma-
nent learning of this model, i.e. for adaptive MDP. The inherent small amount
of available data singles out recursive Bayesian learning in the closed decision
loop as the (only) appropriate methodology [16]. Even then, approximations of
recursive learning like [11] and dynamic programming [21] are needed. This text
makes just the preparatory steps towards the complete solution. It recalls MDP,
the dynamic programming as the optimisation tool and the recursive Bayesian
learning, Section 2. UG is formulated in MDP terms for various types of pro-
posers, Section 3. A numerical illustration is in Section 4. Section 5 adds remarks.

2 Mathematical Background

This section is based on [3,9,16,17]. It introduces the adopted notions, recalls
the used mathematical tools, and makes the paper relatively self-containing.

2.1 General Formulation and Solution of Markov Decision Process

The considered system consists of decision maker (DM), and responder. They
interact in discrete time (decision epochs) t ∈ T = {1, 2, . . . , |t|}, |t| < ∞. DM
chooses a discrete-valued action (an irreversible decision) at ∈ A = {1, 2, . . . , |a|},
|a| < ∞, in each epoch t ∈ T. Consequently, the closed decision loop transits
from a discrete-valued state st−1 ∈ S = {1, 2, . . . , |s|}, |s| < ∞ to the state
st ∈ S. The use of regression pair ψt = (at, st−1) ∈ Ψ = (A,S), t ∈ T, simplifies
the presentation. With it, the random transition is described by transition prob-

abilities1
(

p(st|ψt)
)

t∈T
∈ P =

{

p(st|ψt) ≥ 0
∣

∣

∣

∑

st∈S
p(st|ψt) = 1, ∀ψt ∈ Ψ

}

.

After the transition, the DM receives a real-valued reward r(st, ψt) ∈ R =
{

r(st, ψt)
∣

∣

∣
st ∈ S, ψt ∈ Ψ, t ∈ T

}

. The DM cannot use the state st for choosing

the action at ∈ A and thus it can at most maximise aggregate expected reward

1 All functions with time-dependent arguments generally depend on time.
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∑

t∈T

E[r(st, ψt)] =
∑

t∈T

∑

st∈S,ψt∈Ψ

r(st, ψt)p(st, ψt) (1)

=
∑

t∈T

∑

st∈S,at∈A

st−1∈S

r(st, ψt)p(st|ψt)p(at|st−1)p(st−1).

The last equality in (1) follows from the chain rule [17]. It expresses the proba-
bility p(st, ψt) as the product of the given transition probability p(st|ψt) ∈ P, of

the optional decision rules (p(at|st−1))t∈T ∈ Π =
{

p(at|st−1)
∣

∣

∣
st−1 ∈ S, at ∈ A

}

forming the decision policy and of the state probability p(st) ∈ PS, where

PS =
{

p(st)
∣

∣

∣
p(st) =

∑

ψt∈Ψ

p(st|ψt)pt(at|st−1)pt(st−1), st ∈ S, t ∈ T
}

. (2)

The state probability p(st) is influenced by the “policy prefix”
(

p(aτ |sτ−1)
)

τ≤t

and the probability p(s0) of the initial state s0 ∈ S. Often, p(s0) = δ(s0, s̃0) with
Kronecker δ equal to 1 for equal arguments and 0 otherwise. It concentrates p(s0)
on a given s̃0 ∈ S.

Thus, the optimising DM maximises the aggregate expected reward (1) over
decision policies Π. For known R, P and s̃0, DM takes as the optimal policy

(popt(at|st−1))t∈T
∈ Arg max

(p(at|st−1))t∈T
∈Π

∑

t∈T

E[r(st, ψt)]. (3)

Definition 1 (Optimal MDP). The given 7-tuple {T,A,S,PS,P,R,Π} to-
gether with the maximisation (3) is referred as Markov decision process (MDP).

Theorem 1 (Dynamic Programming, proof e.g. in [17]). The policy
(popt(at|st−1))t∈T

∈ Π maximising the aggregate expected reward (3) consists of
the deterministic decision rules popt(at|st−1) = δ(at, a

⋆
t (st−1)), where

a⋆t (st−1) ∈ Argmax
a∈A

E[r(st, a, st−1) + ϕt(st)|a, st−1] with value function

ϕt(st) =
∑

st+1∈S

[r(st+1, a
⋆
t+1(st), st) + ϕt+1(st+1)]p(st+1|a

⋆
t+1(st), st).

The backward recursion starts with ϕ|t|(s|t|) = 0, ∀s|t| ∈ S.

2.2 Bayesian Learning of Transition Probabilities

The unrealistic assumption that the transition probabilities from the set P are
given, see Definition 1, is removed via Bayesian recursive learning [16] recalled
here. It relates the state st ∈ S to the action at ∈ A and observed states
sτ ∈ S, τ < t, by transition probability parameterised by its unknown values Θ

p(st|at, . . . , a1, st−1, . . . , s0, Θ) = p(st|ψt, Θ) =
∏

s∈S

∏

ψ∈Ψ

Θ
δ(s,st)δ(ψ,ψt)
s|ψ , where

Θ ∈ Θ =
{

Θs|ψ ≥ 0
∣

∣

∣
s ∈ S, ψ ∈ Ψ,

∑

s∈S

Θs|ψ = 1, ∀ψ ∈ Ψ
}

. (4)
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It provides the transition probabilities as predictors

p(st|ψt, . . . , ψ1) =

∫

Θ

p(st|ψt, Θ)p(Θ|st−1, ψt−1, . . . , ψ1)dΘ, (5)

where the posterior probability density p(Θ|st−1, ψt−1, . . . , ψ1) has the support
Θ and is given by the observed condition st−1, ψt−1, . . . , ψ1. Bayes’ rule [4,16]
evolves it

p(Θ|st, ψt, . . . , ψ1) =
p(st|ψt, Θ)p(Θ|st−1, ψt−1, . . . , ψ1)

p(st|at, ψt−1, . . . , ψ1)
. (6)

An optional prior probability density p(Θ) = p(Θ|ψ1, ψ0) initiates (6).
Importantly, the learning (5), (6) is valid for any policy for which the param-

eter Θ ∈ Θ is unknown, i.e. which meets natural conditions of control [16]

p(at|ψt−1, . . . , ψ1, Θ) = p(at|ψt−1, . . . , ψ1). (7)

The learning is correct in loops closed by any (say human) policy meeting (7).
The product forms of the model (4) and of Bayes’ rule (6) imply Dirichlet’s

form of the posterior probability density, [12], which uses Euler’s gamma Γ [1],

p(Θ|ψt, . . . , ψ1) = p(Θ|Vt) =,
∏

ψ∈Ψ

Γ

(

∑

s̃∈S

Vt;s̃|ψ

)

∏

s∈S
Θ
Vt;s|ψ−1

s|ψ

Γ(Vt;s|ψ)
, where

Vt;s|ψ = Vt−1;s|ψ + δ(s, st)δ(ψ, ψt), form occurence array , s ∈ S, ψ ∈ Ψ. (8)

The initial occurrence array V0 = (V0;s|ψ > 0)s∈S,ψ∈Ψ describes the used con-
jugated (Dirichlet form preserving) prior probability density p(Θ). The gained
predictive probability resembles the frequentist estimate Θ̂ ∈ Θ of Θ ∈ Θ

p(st = s|ψt = ψ, Vt−1) =
Vt−1;s|ψ

∑

s̃∈S
Vt−1;s̃|ψ

= Θ̂t−1;s|ψ, s ∈ S, ψ ∈ Ψ. (9)

3 Ultimatum Game as Adaptive MDP

According to UG rules, |t| (tens) rounds are played. Possible actions at ∈ A of
the proposer P (DM supported here) in the round t ∈ T are the offered splits
of q = |a| + 1 (often monetary) units. The responder R generates the observed
response ot ∈ O = {1, 2} = {reject the offer, accept the offer}. The profits of the
proposer Zt;P and responder Zt;R accumulated after tth round are

Zt;P =

t
∑

τ=1

(q − aτ )(oτ − 1) ∈ Zt;P , Zt;R =

t
∑

τ=1

aτ (oτ − 1) ∈ Zt;R. (10)

The profits (10) determine the observable (non-minimal) state st of the game

st = (Zt;P , Zt;R) ∈ S = (Zt;P ,Zt;R), t ∈ T. (11)
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It has a finite amount of values and starts with zero profits s0 = (0, 0).
Altogether, UG rules directly specify sets of epochs T, actions A, and state

probabilities PS, cf. (2), in the 7-tuple delimiting MDP, see Definition 1. The
peculiarities of the use of adaptive MDP by the proposer thus reduce to those
connected with transition probabilities P, rewards R and with the curse of di-
mensionality connected with the policy space Π. They are discussed below.

3.1 Transition Probabilities

Bayesian learning, Section 2.2, formally provides the needed transition probabil-
ities in P under acceptable assumption that the responder does not vary them
abruptly during the game course. The lack of learning data, consequence of
the dimensionality curse [3], is, however, serious obstacle. Indeed, the sufficient
statistics Vt (8) has |o| × |Ψ| = |o| × |a| × |s| entries. In a typical case |o| = 2,
|a| = 9 and reduced |s| = 10, it needs 180 values to be populated by data, which
requires unrealistic hundreds’ game rounds. The ways out are as follows.

Reduction of the State Space: The size of V is determined by the richness of
the state space S. The UG rules imply that the two-dimensional st (11) stays in
(st−1, st−1+[at, q−at]), i.e. many transitions are impossible. The above example,
respecting this fact, indicates the need for additional countermeasures.

Use of Population Based Priors : It is possible to obtain a reliable description
of responders’ population and convert it into the prior occurrence array V0;s|ψ =

v0;ψΘ̂0;s|ψ, s ∈ S, ψ ∈ Ψ (9). V0 is modified by at most |t| data records specific
for the individual responder in the individual game. Thus, the choice of the prior
weight v0;ψ > 0 is critical. Due to data sparsity, a few observations of a specific
s, ψ within tens of rounds are expected. Thus, v0;ψ ≤ |t| is recommendable.

Assuming ψ-independent prior weight v0 = v0;ψ, its hierarchical Bayesian
learning [4] becomes feasible. Hypotheses h : proper v0 = v0;h = a value in (0,1),
h ∈ H = {1, 2, . . . , |h|} with a small |h| are formulated. For each h, the predic-
tor (9), becomes h dependent p(st = s|ψt = ψ, Vt−1;h) via h-dependent array

V0;h = v0;hΘ̂. Then, Bayes’ rule is directly applicable. The h-independent pre-
dictor (transition probability) becomes mixture of predictors within respective
hypotheses with weights being their posterior probabilities, see [4,16].

This Bayesian averaging is of a direct relevance for the motivating studies
of influence of emotions on decision making. It suffices to collect descriptions of
sub-populations differing by observed or stimulated emotional states and com-
pare hypotheses about suitability of the transition probabilities learnt with prior
parameter probability densities reflecting these sub-populations.

Choice of the Model Structure: The above Bayesian treatment of the finite
amount of compound hypotheses can also serve for the desirable reduction of the
parametric-model structure. For instance, experimental evidence strongly indi-
cates, e.g. [9], that the proposer action decisively influences responder’s response.
Thus, the hypothesis that p(st|at, st−1) = p(st − st−1|at) can be and should be
compared to the general form of p(st|at, st−1). It fits to attempts to use more
parsimonious parametrisation like special mixtures in [11] are.
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3.2 Rewards

The reward r(st, ψt) ∈ R, used in the design of the optimal policy (3) reflects
attitude of the proposer to inter-relation of its profit and responder’s profit. The
sole action values play no role unless they are connected with DM’s deliberation
effort as in [19]. Then, rewards studied in [9] from responder’s view-point, are
worth considering.

Economic proposer : It is interested in its own profit only, paying no attention
to co-player. Its reward is r(st, ψt) = Zt;P − Zt−1;P . It is taken as economically
rational DM but almost nobody acts in the way optimal for this reward.

Self-interested proposer : It partially maximises its profit but also watches the
responder’s profit not to let the responder to win too much. Such attitude was
modelled by r(st, ψt) = wZt;P − (1−w)Zt;R, with the weight w ∈ [0, 1] control-
ling self-fairness level. This reward quite successfully models human responders
when the weight w is recursively personalised [14,9]. The weight is conjectured
to depend on the player’s personality and emotions. The preliminary results con-
firm this [2], but statistically convincing results are unavailable. The adaptive
proposer’s discussed here is expected to help in this respect.

Fair responder : It jointly maximises profits of both players by using r(st, ψt) =
wZt;P − (1−w)abs(Zt;P −Zt;R), with the weight w ∈ [0, 1] balancing own profit
with the difference of both profits. No human responder’s policy has indicated
adoption of such a reward [9]. But the performed experiments limited to greedy
(one-stage-ahead) optimisation and the adoption of proposer’s view point make
us to inspect this variant.

3.3 Policy

The last item to be commented is the set of policies Π within which (approxi-
mate) optimum is searched. The described adaptive design extremely increases
the extent of the state space as the sufficient statistics Vt (8) is a part of the
(information) state. It is obvious as the value function in dynamic programming,
Proposition 1, depends on it. This reflects that the selected actions influence not
only rewards but also future statistics. The optimal policy is to properly balance
the dual – exploitation and exploration – features optimal actions [6]. At present,
we are giving it up and use certainty equivalent policies, which perform dynamic
programming with the newest parameter estimate Θ̂ taken as known transition
probabilities. If need be, the known divergence danger [15] can be overcome by
randomising the proposed policy. Foreseen ways are out of our scope.

4 Illustrative Experiments

The limited extent of the paper prevents us to report properly on performed
experiments. The illustrative one split q = |a| + 1 = 10, in each of |t| = 10
rounds. The self-fair proposer used the reward 0.5Zt;P −0.5Zt;P and the respon-
der used a fixed randomised decision rule given by the probability p(ot = 2 =
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accept|ψt) = p(ot = 2 = accept|at), at ∈ A = {1, . . . , 9}. The proposer assumed
the same structure but the values Θo=2|a, a ∈ A, were recursively estimated,
see Section 2.2, and used in designing certainty-equivalent strategy found by dy-
namic programming, Theorem 1. Samples of experiments running with different
weights of the prior estimate v0 are in Figure 1, where also the used responder’s
description is visible.
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Fig. 1. Final estimates of acceptance probability for possible offers (actions a ∈ A) are
displayed for several weights v= v0 of the prior occurrence array V0 = v0Θ̂0 and are
marked by dots connected with violet dashed lines for distinguishing of each game. The
simulated values Θo=2|a, a ∈ A are marked by squares and the prior values Θ̂o=2|a, a ∈

A are marked by circles. Both of them are connected with blue and red line respectively.

The results are just illustrative and correspond with the expected behaviour:
too high weight v0 makes a significant correction of the prior estimate by a few
available data impossible.

5 Conclusion

The paper contributes to a wider research oriented towards influence of personal
characteristics, emotional states and available deliberation resources on decision
making. Unreported experiments with the proposed optimising adaptive pro-
poser indicate that it can serve to this purpose. On its own, it reveals general
problems related to curse of dimensionality and offers test-bed for a further de-
velopment of techniques fighting with it. Addressing of exploitation-exploration
dichotomy is the nearest foreseen problem. In this respect, different types of pro-
posers behaved differently: the economic and self-fair ones, unlike the fair one,
exhibited tendency to select a narrow range of actions and as such they are more
prone to divergence from optimum. The use of randomised strategies resulting
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from fully probabilistic design of decision policies [13] seems to be the proper
direction.
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