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Abstract The article studies deliberation aspects by modelling a re-
sponder in multi-proposers ultimatum game (UG). Compared to the clas-
sical UG, deliberative multi-proposers UG suggests that at each round
the responder selects the proposer to play with. Any change of the pro-
poser (compared to the previous round) is penalised. The simulation
results show that though switching of proposers incurred non-negligible
deliberation costs, the economic profit of the deliberation-aware respon-
der was significantly higher in multi-proposer UG compared to the clas-
sical UG.
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1 Introduction

The role of deliberation in decision making (DM) has been addressed in many
ways. Examples can be found elsewhere, see, for instance, political sciences [4],
economy [6], behavioral science [3]. The reason is simple: any decision made ei-
ther by human or machine costs time, energy and possibly other resources, which
are always limited. Importance of the proper balance between deliberation and
quality of the resulting decision is repeatedly confirmed by a considerable effort
devoted within different communities: computation costs in computer sciences
[8],[9]; transaction costs in financial sciences [7]; cooperation effort in social sci-
ences [11], negotiation in multi-agent systems [10] and many others. Despite
many promising results, see for instance recent work [5], the well-justified theo-
retical framework of deliberation is still missing.

The present article contributes to this problem by modelling a responder’s
DM in multi-proposers ultimatum game (UG) [2], introduces deliberation effort
into reward function and optimises it. The simplicity of UG makes it a powerful
test case providing a general insight into human DM, which can further serve
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to other fields. The basic model of UG consists of two players (proposer and
responder) having different roles. The proposer’s task is to share some known
amount of money between him and the responder. The responder’s role is to
accept or reject the proposal. Acceptance leads to splitting the money according
to the proposal, whereas rejection means none player gets anything.

Compare to [2], deliberative multi-proposers UG scenario suggests that at
each round the responder selects the proposer to play with. However any change
of the proposer (compare to the previous round) is penalised. The responder
has no or little information about the proposers, thus the responder’s optimal
strategy should maximise economic profit while minimising deliberation cost
under incomplete knowledge. It should be stressed that such modification of
UG scenario makes a sense only for the studying either deliberation aspects or
cooperative aspects of human DM. In the last case, repetitive selecting/non-
selecting serves as a kind of the responder’s feedback to a particular proposer
and may influence future decision policy of the proposer.

Markov decision process (MDP) framework [1] has proven to be very useful
for DM in stochastic environments. The paper considers modelling the respon-
der’s DM in the deliberation-aware multi-proposer multi-round UG experiment
by MPD formalism and describes how the responder’s deliberation effort can be
respected and optimised.

The paper layout is as follows. Section 2 introduces necessary notations and
formulates the problem. Section 3 introduces an optimal solution. Section 4
specialises the reward function of economic responder playing in multi-proposer
UG. The experimental setup is described in Section 5. Section 6 summarises the
main results and discusses open problems and possible solution ways.

2 Problem Formulation

The section introduces notations and a basic concept of Markov Decision Process
(MDP) necessary to solve our problem. For more background on MDP, see [1].

2.1 Preliminaries

Throughout the paper, we use xt to denote value of x at discrete time labelled
by t = 1, . . ., t ∈ N. Bold capitals X denote a set of x-values; an abbreviation
pd means probability density function, pt(x|y) is a conditional pd. χ(x, y) is a

function defined on R× R as χ(x, y) =

{

1 x 6= y,
0 x = y.

MDP provides us a mathematical framework for describing an agent (decision
maker), which interacts with a stochastic system by taking appropriate actions
to achieve her goal. The decisions about actions are made in the points of time
referred as decision epochs. In each decision epoch, the agent’s decisions are
influenced only by a state of the stochastic system in a particular decision epoch,
not by history of the system.
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2.2 Markov decision process

Definition 1 (Markov Decision Process). Markov Decision Process over
the discrete finite set of decision epochs T = {1, 2, ..., N}, N ∈ N is defined by
a tuple {T,S,A, p, r}, where:

S is a discrete, finite state space s ∈ S; S = ∪
t∈T

St, where St is a set of possible

states of the system at the decision epoch t ∈ T and st ∈ St is a state of the
system at the decision epoch t ∈ T,

A stands for a discrete, finite action set; A = ∪
t∈T

At, where At is a set of

admissible actions in the decision epoch t ∈ T and at ∈ At denotes chosen
action in the decision epoch t ∈ T,

p represents a transition probability function p = pt(st|st−1, at), which is a
non-negative function describing the probability that system reaches the state
st after the action at is taken at the state st−1;

∑

st∈S

pt(st|st−1, at) = 1,

∀t ∈ T, ∀at ∈ A, ∀st−1 ∈ St−1,

r stands for a reward function r = rt(st, st−1, at), which is used to quantify
reaching of the agent’s aim. The reward function rt(st, st−1, at) depends on
the state st that the system occupies after action at is made.

At the decision epoch t, an agent chooses an action at to be executed. As
a result the system transits to a new state st ∈ S stochastically determined
by pt(st|st−1, at). The agent gets a reward, which equals the value of reward
function rt(st, st−1, at). The agent’s goal is to find the optimal DM policy, which
maximises the average reward received over time.

To avoid explicit dependence of the reward on the future state st ∈ St the
expected reward is introduced as follows:

Et[rt(st, st−1, at)] =
∑

at∈A

∑

st∈S

st−1∈S

rt(st, st−1, at)pt(st|st−1, at)pt(at|st−1)pt(st−1)

(1)

In (1), pt(at|st−1) is a randomised decision rule satisfying the condition
∑

at∈A

pt(at|st−1) = 1, ∀st−1 ∈ St−1, ∀t ∈ T.

Definition 2 (Stochastic policy). A sequence of randomised decision rules
{

pt(at|st−1)
∣

∣

∣

∑

at∈A

pt(at|st−1) = 1, ∀st−1 ∈ St−1, ∀t ∈ T

}

forms the stochastic pol-

icy πt ∈ πππ, where pt(at|st−1) is the probability of action at at the state st−1.

To solve MDP (Definition 1) we need to find an optimal policy maximising
the sum of expected rewards (1).
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Definition 3. The optimal solution to MDP is a policy π
opt
t that maximises the

expected accumulated reward (1), πopt
t = {poptτ (aτ |sτ−1)}

t

τ=1 ⊂ πππ.

max
{pt(at|st−1)}

N
t=1

∑

t∈T

Et[rt(st, st−1, at)|st−1] =

∑

t∈T

∑

at∈A

∑

st,st−1∈S

rt(st, st−1, at)pt(st|st−1, at)p
opt
t (at|st−1)pt(st−1) (2)

2.3 Deliberation-Aware Multi-Proposer Ultimatum Game

Compare to general formulation of UG [2], the considered multi-proposer N -
round UG scenario assumes nP ∈ N proposers and one responder. The goal is
the same as in traditional UG, i.e. to maximise a total profit while sharing a
fixed amount of money q. The main difference is that at the beginning of each
round the responder chooses a proposer to play with. For choosing different
proposer than that in the previous round, the responder is penalised by a so-
called deliberation penalty d ∈ N. Then, similarly to [2] the selected proposer
offers a split ot ∈ {1, 2, . . . , q − 1} for the responder and (q − ot) for herself. If
the responder accepts the offer, money split according to the proposal, otherwise
none of the players get anything. Proposers not selected in this round play passive
role.

Let us define a multi-proposer N -round UG via MDP (see Section 2.2) with
proposers representing stochastic environment and the responder acting as agent.
All proposers are part of the environment and have their policies fixed.

Definition 4. Multi-proposer UG in MDP framework over a set of decision
epochs ( game rounds) T is defined as in Definition 1 and

• st = (ot, Pt, Dt, ZR,t, Z
1
P,t, Z

2
P,t, . . . , Z

nP

P,t ) is environment state at t ∈ T,
where
ot ∈ O is an offer
Pt ∈ {P 1, . . . , PnP } is the proposer chosen in the round (t− 1)

Dt ∈ D is the deliberation accumulated up to round t, Dt =
t
∑

τ=1
dχ(a1,τ , Pτ )

ZR,t and Zi
P,t is an accumulated economic profit of the responder and pro-

poser P i, respectively
• at = (a1,t, a2,t) is a two-dimensional action, where a1,t ∈ A1 = {1, 2, ..., nP }
denotes the selection of a proposer to play with; a2,t ∈ A2 = {1, 2} stands
for the acceptance (a2,t = 2) or the rejection (a2,t = 1) of the offer ot,
A = A1 ×A2.

• The transition probabilities p = pt(st|st−1, a1) and the reward function r =
rt(st, st−1, at) are assumed to be known.

The responder’s accumulated economic profit, ZR,t ∈ ZR, at the round t is:

ZR,t =

t
∑

τ=1

oτ (a2,τ − 1), (3)
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and accumulated economic profit of the ith proposer, Zi
P,t ∈ Zi

P , equals

Zi
P,t =

t
∑

τ=1

(q − oτ )(a2,τ − 1)χ(a1,τ , i), ∀i = 1, 2, ..., nP . (4)

The action a2,t, see Definition 4, considers dependence on offer ot ∈ O.
However action a1,t is made without this knowledge, thus

pt(at|ot, st−1) = pt(a1,t, a2,t|ot, st−1) = pt(a1,t|st−1)pt(a2,t|ot, a1,t, st−1). (5)

Thus, the optimal policy for MDP, given by Definition 4, is searched among

sequences of functions
(

pt(a1,t|st−1), pt(a2,t|ot, a1,t, st−1)
)N

t=1
.

3 Optimal Solution

Let the state be decomposed as follows

st = (ot, s̄t) where s̄t = (Pt, Dt, ZR,t, Z
1
P,t, Z

2
P,t, ..., , Z

nP

P,t ) s̄t ∈ S̄. (6)

Using (6) and (5), the conditional expected reward can be expressed as:

Et[rt(s̄t, ot, st−1, a1,t, a2,t)|st−1] =
∑

a1,t∈A1

∑

a2,t∈A2

∑

ot∈O

[(

∑

s̄t∈S̄

rt(s̄t, ot, st−1, a1,t, a2,t)pt(s̄t|ot, a1,t, a2,t, st−1)
)

pt(a2,t|ot, a1,t, st−1)pt(ot|a1,t, st−1)pt(a1,t|st−1)
]

. (7)

Denoting the expression in round brackets in (7) by rt(a2,t, a1,t, ot, st−1), the
optimal decision rule p

opt
t (a2,t|ot, a1,t, st−1) maximising (7) is given by

p
opt
t (a2,t|ot, a1,t, st−1) = χ(a2,t, a

∗
2,t(ot, a1,t, st−1)), where (8)

a∗2,t(ot, a1,t, st−1) ∈ argmax
a2,t∈A2

rt(a2,t, a1,t, ot, st−1) ∀(ot, a1,t) ∈ O×A1.

Now we have to maximize the remaining part of the expected reward (7):

max
pt(a1,t|st−1)

∑

a1,t∈A1

[(

∑

a2,t∈A2

∑

ot∈O

rt(a2,t, a1,t, ot, st−1)p
opt
t (a2,t|ot, a1,t, st−1)

pt(ot|a1,t, st−1)
)

pt(a1,t|st−1)
]

(9)

Similarly to the above let us denote:

rt(a1,t, st−1) =
∑

a2,t∈A2

∑

ot∈O

rt(a2,t, a1,t, ot, st−1)p
opt
t (a2,t|ot, a1,t, st−1)pt(ot|a1,t, st−1).

(10)
Then the optimal decision rule p

opt
t (a1,t|st−1) is

p
opt
t (a1,t|st−1) = χ(a1,t, a

∗
1,t(st−1)), where (11)

a∗1,t(st−1) ∈ argmax
a1,t∈A1

rt(a1,t, st−1).
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Theorem 1 (Optimal policy of the deliberation-aware responder).

A sequence of decision rules
{

(poptt (a1,t|st−1), p
opt
t (a2,t|ot, a1,t, st−1))

}N

t=1
max-

imising the reward (1) forms an optimal policy and is computed via modification
of dynamic programming [12] starting with ϕN (sN ) = 0, where

ϕt−1(st−1) = Et[(rt(s̄t, ot, st−1, a
∗
1,t, a

∗
2,t) + ϕt(st))|st−1, a

∗
1,t, a

∗
2,t]

a∗1,t(st−1) ∈ argmax
a1,t∈A1

Et [rt(a1,t, st−1) + ϕt(st) | st−1] (12)

a∗2,t(ot, a1,t, st−1) ∈ argmax
a2,t∈A2

Et [rt(a2,t, a1,t, ot, st−1) + ϕt(st) | st−1, a
∗
1,t]

Remark 1. Note that: i) the actions a1,t, a2,t and the offer ot do not depend
on the previous offer ot−1 explicitly; ii) the action a2,t and the offer ot do not
depend on deliberation cost Dt−1; iii) the action a2,t does not depend on the
economic gains of proposers.

4 Decision Making of Economic Responder

This paper considers purely self-interested type of responder (so called economic
responder), which behaves in accordance with Game Theory and accepts all of-
fers as anything is better than nothing. The motivation of the economic responder
is pure economic profit, thus her reward function in the round t equals:

rt(st, st−1, at) = (ZR,t − ZR,t−1)− (Dt −Dt−1). (13)

For simplicity of presentation let us assume that the transition probability func-
tions of the proposers pt(ot|ZR,t−1, Z

a1,t

P,t−1, a1,t), ∀t ∈ T are given.
The desired optimal strategy should maximize the expected reward (1) while

respecting deliberation. Using (13) and Remark 1, the conditional expected re-
ward of the economic responder reads:

Et[rt(st, st−1, a1,t, a2,t)|st−1] =
∑

a1,t∈A1

a2,t∈A2

∑

ot∈O

[

[ot(a2,t − 1)− dtχ(a1,t, a1,t−1)]

× pt(a2,t|ot, a1,t, ZR,t−1)pt(ot|ZR,t−1, Z
a1,t

P,t−1, a1,t)

× pt(a1,t|ZR,t−1, Dt−1, Z
1
P,t−1, ..., Z

nP

P,t−1)
]

. (14)

With it, the optimal policy is given by Theorem 1.

5 Illustrative example

The example considered a N -round UG as described in Section 2, with N = 30,
q = 30, deliberation penalty d = 5 and number of proposers nP = 3. The tran-
sition probabilities of respective proposers were considered independent of the
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economic profit. Before the simulation, the offers for all proposers were gener-
ated. The probabilities of the offers are drawn from Gaussian distribution with
σ = 2 and mean equal to the pre-generated offer. Then four games were played.
Classical UG with each proposer and deliberative multi-proposer N -round UG.
In the 4th game the responder played according to the optimal strategy found in
Section 3. We analysed the result of the simulation by comparing the Responder
gain in each game. The results are summarised in Table 1 (ZR - Responder’s
profit, DR - Deliberation cost, Zi

P - Economic gain of the i-th proposer,
∑

Zi
P

- The total gain of all proposers) and Figure 1.

Table 1: Data obtained from the simulation of four games

No of game ZR −DR DR ZR Z
1

P Z
2

P Z
3

P

∑
Z

i

P

1 515 0 515 385 0 0 385

2 458 0 458 0 442 0 442

3 494 0 494 0 0 406 406

4 628 40 668 110 38 84 232

1 2 3 4
0

100

200

300

400

500

600

700

Responder's gain
Proposers' gain
Deliberation penalty

Figure 1: Responder’s overall profit (lowered by the deliberation penalty), eco-
nomic gain of all proposers and deliberation penalty for each of 4 games
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6 Concluding Remarks

The paper examined the deliberation of the responder in multi-proposer Ultima-
tum Game. The responder behaviour was modelled by MDP and the deliberation
cost was included into the responder’s reward function and optimised so as eco-
nomic profit. Comparison of the overall responder profit gained in the classical
UG and in the deliberative multi-proposer UG was made. The results shown
that though switching of proposers incurred non-negligible deliberation costs,
the economic profit of the deliberation-aware responder was significantly higher
in multi-proposer UG.

Many challenging aspects remain to be studied, in particular: i) modelling
other types of responders considering not only pure economic profit, but non-
economic aspects (fairness); ii) incorporating affective aspects of decision mak-
ing, for example emotional state of the responder. Another direction is adding
an adaptive feature, i.e. learning of the stochastic environment, i.e. learning the
proposer model, see [13].
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