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Abstract

Classical solutions to PDEs with discrete state-dependent delay are studied. We prove the well-posedness 
in a set XF which is analogous to the solution manifold used for ordinary differential equations with state-
dependent delay. We prove that the evolution operators are C1-smooth on the solution manifold.
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1. Introduction

Differential equations play an important role in describing mathematical models of many real-
world processes. For many years the models are successfully used to study a number of physical, 
biological, chemical, control and other problems. A particular interest is in differential equations 
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with many variables such as partial differential equations (PDE) and/or integral differential equa-
tions (IDE) in the case when one of the variables is time. Such equations are frequently called 
evolution equations. They received much attention from researchers from different fields since 
such equations could (in one way or another) discover future states of a model. It is generally 
known that taking into account the past states of the model, in addition to the present one, makes 
the model more realistic. This leads to the so-called delay differential equations (DDE). Histori-
cally, the theory of DDE was first initiated for the simplest case of ordinary differential equations 
(ODE) with constant delay (see the monographs [2,7,4,13] and references therein). Recently 
many important results have been extended to the case of delay PDEs with constant delay (see 
e.g., [26,6,25,28]).

Investigating the models described by DDEs it is clear that the constancy of delays is an extra 
assumption which significantly simplifies the study mathematically but is rarely met in the under-
lying real-world processes. The value of the delays can be time or state-dependent. Recent results 
showed that the theory of state-dependent delay equations (SDDE) essentially differs from the 
ones of constant and time-dependent delays. The basic results on ODEs with state-dependent 
delay can be found in [5,10,11,17,12,16,27] and the review [8]. The starting point of many math-
ematical studies is the well-posedness of an initial-value problem for a differential equation. It is 
directly connected with the choice of the space of initial functions (phase space). For DDEs with 
constant delay the natural phase space is the space of continuous functions. However, SDDEs 
non-uniqueness of solutions with continuous initial function has been observed in [5] for ODE 
case. The example in [5] was designed by choosing a non-Lipschitz initial function ϕ ∈ C[−h, 0]
and a state-dependent delay such that the value −r(ϕ) ∈ [−h, 0] (at the initial function) is a non-
Lipschitz point of ϕ. In order to overcome this difficulty, i.e., to guarantee unique solvability 
of initial value problems it was necessary to restrict the set of initial functions (and solutions) 
to a set of smoother functions. This approach includes the restrictions to layers in the space of 
Lipschitz functions, C1 functions or the so-called solution manifold (a subset of C1[−h, 0]). As 
noted in [8, p. 465] “...typically, the IVP is uniquely solved for initial and other data which satisfy 
suitable Lipschitz conditions.” The idea to investigate ODEs with state-dependent delays in the 
space of Lipschitz continuous functions is very fruitful, see e.g. [17,27]. In the present work we 
rely on the study of solution manifold for ODEs [14,16,27].

The study of PDEs with state-dependent delay is naturally more difficult and was initiated only 
recently [19–24]. In contrast to the ODEs with state-dependent delays, the possibility to exploit 
the space of Lipschitz continuous functions in the case of PDEs with state-dependent delays 
meets additional difficulties. One difficulty is that the solutions of PDEs usually do not belong 
to the space of Lipschitz continuous functions. Another difficulty is that the time-derivative of 
a solution belongs to a wider space comparing to the space to which the solution itself belongs. 
This fact makes the choice of the appropriate Lipschitz property more involved, and it depends 
on a particular model under consideration. It was already found (see [22] and [24]) that non-local 
operators could be very useful in such models and bring additional smoothness to the solutions. 
Further studies also show that approaches using C1-spaces and solution manifolds (see [14,27]
and [8] for ODE case) could also be used for PDE models, see [22,24]. In this work we combine 
the results for ODEs [8,16,27] and PDEs [22,24].

We also mention that a simple and natural additional property concerning the state-dependent 
delay which guarantees the uniqueness of solutions in the whole space of continuous functions 
was proposed in [21] and generalized in [23]. We will not develop this approach here.

Our goal in this paper is to investigate classical solutions to parabolic PDEs with discrete 
state-dependent delay. We find conditions for the well-posedness and prove the existence of a 
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solution manifold. We prove that the evolution operators Gt : XF → XF are C1-smooth for all 
t ≥ 0. Our considerations rely on the result [27] and we try to be as close as possible to the line 
of the proof in [27] to clarify which parts of the proof need additional care in the PDE case. As 
in [22,24] it is shown that non-local (in space coordinates) operators are useful in our case. We 
notice that in [22,24] neither classical solutions nor C1-smoothness of the evolution operators 
was discussed. In the final section we consider an example of a state-dependent delay which is 
defined by a threshold condition.

2. Preliminaries and the well-posedness

We are interested in the following parabolic partial differential equation with discrete state-
dependent delay (SDD)

du(t)

dt
+ Au(t) = F

(
ut

)
, t > 0 (1)

with the initial condition

u0 = u|[−h,0] = ϕ ∈ C ≡ C([−h,0];L2(�)). (2)

As usual for delay equations [7], for any real a ≤ b, t ∈ [a, b] and any continuous function 
u : [a − h, b] → L2(�), we denote by ut the element of C defined by the formula ut = ut (θ) ≡
u(t + θ) for θ ∈ [−h, 0].

We assume

(H1) Operator A is the infinitesimal generator of a compact C0-semigroup in L2(�).
(H2) Nonlinear map F has the form

F(ϕ) ≡ B(ϕ(−r(ϕ))), F : C → L2(�), (3)

where B : L2(�) → L2(�) is a bounded and Lipschitz operator. Here the state-dependent 
delay r : C([−h, 0]; L2(�)) → [0, h] is a Lipschitz mapping.

In our study we use the standard (cf. [18, Def. 2.3, p. 106] and [18, Def. 2.1, p. 105])

Definition 1. A function u ∈ C([−h, T ]; L2(�)) is called a mild solution on [−h, T ) of 
the initial value problem (1), (2) if it satisfies (2) and

u(t) = e−Atϕ(0) +
t∫

0

e−A(t−s)F (us) ds, t ∈ [0, T ). (4)

A function u ∈ C([−h, T ); L2(�)) 
⋂

C1((0, T ); L2(�)) is called a classical solution
on [−h, T ) of the initial value problem (1), (2) if it satisfies (2), u(t) ∈ D(A) for 0 < t < T

and (1) is satisfied on (0, T ).

Theorem 1. Assume (H1)–(H2) are satisfied. Then for any ϕ ∈ C there is tϕ > 0 such that initial-
value problem (1), (2) has a mild solution for t ∈ [0, tϕ).
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The proof is standard since F is continuous (see [6]).
We notice that F is not a Lipschitz mapping from C to L2(�), so we cannot, in general, 

guarantee the uniqueness of mild solutions (for ODE case see [5]).
Let us fix any mild solution u of (1), (2) and consider

g(t) ≡ F
(
ut

)
, t ∈ [0, tφ). (5)

Mapping g is continuous (from [0, tϕ) to L2(�)) since B , u and r are continuous. Choose T ∈
(0, tϕ). We have g ∈ C([0, T ]; L2(�)), hence g ∈ L2(0, T ; L2(�)). The initial value problem

dv(t)

dt
+ Av(t) = g(t), v(0) = x ∈ L2(�) (6)

has a unique mild solution, which is v = u if we choose x = u(0).
Now we assume that

(H3) operator A is the infinitesimal generator of an analytic (compact) semigroup in L2(�).

Below we always assume that (H1)–(H3) are satisfied.
As usual, we denote the family of all Hölder continuous functions with exponent α ∈ (0, 1)

in I ⊂ R by Cα(I ; L2(�)). By [18, Theorem 3.1, p. 110] the solution v (= u) of (6) is Hölder 
continuous with exponent 1/2 on [ε, T ] for every ε ∈ (0, T ). If additionally x ∈ D(A) then 
v ∈ C

1
2 ([0, T ]; L2(�)).

Now we show that g ∈ C
1
4 ([0, T ]; L2(�)) if ϕ ∈ C

1
2 ([−h, 0]; L2(�)) ⊂ C. Since for u ∈

C
1
2 ([−h, T ]; L2(�)) and t ∈ [0, T ] one has ||ut − us ||C ≤ Hu|t − s| 1

2 and

||g(t) − g(s)|| ≤ LB ||u(t − r(ut )) − u(s − r(us))|| ≤ LBHu|t − s + r(ut ) − r(us)| 1
2

≤ LBHu (|t − s| + Lr ||ut − us ||C)
1
2 . (7)

Here Hu is the Hölder constant of u on [−h, T ], LB and Lr are Lipschitz constants of B and 
r respectively. We get from (7) that

||g(t) − g(s)|| ≤ LBHu

(
(T

1
2 + LrHu)|t − s| 1

2

) 1
2

≤ LBHu

(
T

1
2 + LrHu

) 1
2 |t − s| 1

4 , s, t ∈ [0, T ].

Here we used |t − s| ≤ T
1
2 |t − s| 1

2 . We have shown that g ∈ C
1
4 ([0, T ]; L2(�)). It gives, 

by [18, Corollary 3.3, p. 113], that our mild solution u is classical (under assumptions ϕ ∈
C

1
2 ([−h, 0]; L2(�)) ⊂ C and u(0) ∈ D(A)).
Set

X ≡
{
ϕ ∈ C1([−h,0];L2(�)), ϕ(0) ∈ D(A)

}
, (8)

||ϕ||X ≡ max ||ϕ(θ)|| + max ||ϕ̇(θ)|| + ||Aϕ(0)||. (9)

θ∈[−h,0] θ∈[−h,0]
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Clearly, X is a Banach space since A is closed. We show that problem (1), (2) has a unique
solution for any ϕ ∈ X.

As mentioned before, F is not Lipschitz on C, but if ϕ is Lipschitz (with Lipschitz con-
stant Lϕ), then one easily gets the following estimate (see (3))

||F(ϕ) − F(ψ)|| ≤ LB ||ϕ(−r(ϕ)) − ψ(−r(ψ))||
≤ LB(Lϕ |r(ϕ) − r(ψ)| + ||ϕ − ψ ||C) ≤ LB(LϕLr + 1)||ϕ − ψ ||C. (10)

Here LB and Lr are Lipschitz constants of maps B and r .
By [18, Theorem 3.5, p. 114] (item (ii)), Au and du/dt are continuous on [0, T ], so u is 

Lipschitz from [−h, T ] to L2(�). This property together with (10) implies the uniqueness of 
solution to (1), (2).

The above proves the following

Theorem 2. Assume (H1)–(H3) are satisfied. Then for any ϕ ∈ X there is tϕ > 0 such that initial 
value problem (1), (2) has a unique classical solution on [−h, tφ).

3. Solution manifold

Let U ⊂ be an open subset of X. We need the following assumption.

(S) The map F : U → L2(�) is continuously differentiable, and for every ϕ ∈ U the deriva-
tive DF(φ) ∈ Lc(X; L2(�)) has an extension DeF(φ) which is an element of the space 
of bounded linear operators Lc(X0; L2(�)), where X0 = {ϕ ∈ C([−h, 0]; L2(�)), ϕ(0) ∈
D(A)} is a Banach space with the norm ||ϕ||X0 = maxθ∈[−h,0] ||ϕ(θ)|| + ||Aϕ(0)||.

Condition (S) is analogous to that of [8, p. 467].
Let us consider the subset

XF = {ϕ ∈ C1([−h,0];L2(�)), ϕ(0) ∈ D(A), ϕ̇(0) + Aϕ(0) = F(ϕ)} (11)

of X. XF will be called solution manifold according to the terminology of [27]. The equation in 
(11) is understood as equation in L2(�). We have the following analogue to [27, Proposition 1].

Lemma 1. If condition (S) holds and XF 	= ∅ then XF is a C1 submanifold of X.

Proof of Lemma 1. Consider any ϕ̄ ∈ XF ⊂ X (see (11) and also (8)). Choose b > 0 so large 
that

||DeF(ϕ̄)||Lc(X0;L2(�)) < b.

Define a : [−h, 0] � s �→ sebs ∈R. Then

a(0) = 0, a′(0) = 1, |a(s)| ≤ 1

eb
(−h ≤ s ≤ 0).

Define the closed subspaces Y and Z of X as follows:
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Y = {a(·)y0 : y0 ∈ L2(�)} ⊂ X

and

Z = {ϕ ∈ X : ϕ̇(0) = 0} ⊂ X.

Clearly Y ∩ Z = {0}, and X = Y ⊕ Z.
We can define the projections

PY φ = a(·)φ̇(0), PZφ = φ − a(·)φ̇(0).

Use φ = y + z = PY φ + PZφ.
We define

G : X = Y ⊕ Z � φ �→ φ̇(0) + Aφ(0) − F(φ) ∈ L2(�).

Clearly φ ∈ XF ⇐⇒ G(φ) = 0. For the bounded linear map DYG(ϕ̄) ∈ Lc(Y ; L2(�)) we 
have

DY G(ϕ̄)y = ẏ(0) + Ay(0) − DF(ϕ̄)y = y0 − DF(ϕ̄)a(·)y0 = y0 − DeF(ϕ̄)a(·)y0

since y = a(·)y0 for some y0 ∈ L2(�), ẏ(0) = y0, y(0) = 0.
Using the choices of a and b ∈ R we obtain

||DY G(ϕ̄)y||L2(�) ≥ ||y0||L2(�)

(
1 − ||DeF(ϕ̄)||

eb

)
≥ 1

2
||y0||L2(�).

Then DY G(ϕ̄) : Y → L2(�) is a linear isomorphism. The Implicit function theorem can be 
applied to complete the proof of lemma. �

For the convenience of the reader we remind some properties of the semigroup {e−At}t≥0.

Lemma 2. (See [9, Theorem 1.4.3, p. 26] or [18, Theorem 2.6.13, p. 74].) Let A be a sectorial 
operator in the Banach space Y and Reσ(A) > δ > 0. Then

(i) for α ≥ 0 there exists Cα < ∞ such that

||Aαe−At || ≤ Cαt−αe−δt for t > 0; (12)

(ii) if 0 < α ≤ 1, x ∈ D(Aα),

||(e−At − I )x|| ≤ 1

α
C1−αtα||Aαx|| for t > 0. (13)

Also Cα is bounded for α in any compact interval of (0, ∞) and also bounded as α → 0+.
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Remark 1. It is important to notice that we can write ||(e−At − I )Aϕ(0)|| ≤ ||e−At − I || ·
||Aϕ(0)||, but ||e−At − I || 	→ 0 as t → 0+ because e−At is not a uniformly continuous semi-
group since A is unbounded (see [18, Theorem 1.2, p. 2]).

Remark 2. We also notice that the (linear) mapping D(A) � ξ �−→ (e−At − I )ξ ∈ C1([0, T ];
L2(�)) is continuous, while L2(�) � ξ �−→ (e−At − I )ξ ∈ C1((0, T ]; L2(�)) is not.

We need the following

Lemma 3. Let A be a sectorial operator in the Banach space Y and f : (0, T ) → Y be locally 
Hölder continuous with 

∫ ρ

0 ||f (s)|| ds < ∞ for some ρ > 0. For 0 ≤ t < T , define

IT (f )(t) =F(t) ≡
t∫

0

e−A(t−s)f (s) ds. (14)

Then

(i) F(·) is continuous on [0, T );
(ii) F(·) continuously differentiable on (0, T ), with F(t) ∈ D(A) for 0 < t < T , and dF(t)/dt +

AF(t) = f (t) on 0 < t < T , F(t) → 0 in X as t → 0+.
(iii) If additionally f : (0, T ) → Y satisfies

||f (t) − f (s)|| ≤ K(s)(t − s)γ for 0 < s < t < T < ∞,

where K : (0, T ) → R is continuous with 
∫ T

0 K(s) ds < ∞, then for every β ∈ [0, γ ) the 
function F(t) is continuously differentiable F : (0, T ) → Yβ ≡ D(Aβ) with

∥∥∥∥dF(t)

dt

∥∥∥∥
β

≤ Mt−β ||f (t)|| + M

t∫
0

(t − s)γ−β−1K(s)ds (15)

for 0 < t < T . Here M is a constant independent of γ , β , f (·).
Further, if 

∫ h

0 K(s) ds = O(hδ) as h → 0+, for some δ > 0, then t → dF(t)/dt is locally 
Hölder continuous from (0, T ) into Yβ .

(iv) If f : [0, T ] → Y is Hölder continuous (on the compact [0, T ] the local and global Hölder 
properties coincide), then F ∈ C1([0, T ]; Y).

Proof of Lemma 3. Items (i) and (ii) are proved in [9, Lemma 3.2.1, p. 50]. Item (iii) is proved in 
[9, Lemma 3.5.1, p. 70]. The proof of (iv) is contained in the proof of [18, Theorem 3.5, item (ii), 
p. 114]. We briefly outline the main steps. Using properties (ii) (i.e. dF(t)/dt + AF(t) = f (t)

on 0 < t < T ) and f ∈ C([0, T ]; Y) it is enough to show that AF is continuous at t = 0. We 
write F(t) = ∫ t

0 e−A(t−s)[f (s) − f (t)] ds + ∫ t

0 e−A(t−s)f (t) ds = v1(t) + v2(t). The property 
Av1 ∈ Cγ ([0, T ]; Y) is proved in [18, Lemma 3.4, p. 113]. To show that Av2 ∈ C([0, T ]; Y) one 
uses
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Av2(t) =
t∫

0

Ae−A(t−s)f (t) ds =
t∫

0

Ae−Aτf (t) dτ =
t∫

0

{
− d

dτ
e−Aτf (t)

}
dτ

= f (0) − e−Atf (t) = f (0) − e−Atf (0) + e−At (f (0) − f (t)).

Hence ‖Av2(t)‖ ≤ ‖f (0) − e−Atf (0)‖ + ‖e−At‖‖f (0) − f (t)‖ ≤ ‖f (0) − e−Atf (0)‖ +
M‖f (0) − f (t)‖ → 0 as t → 0+ due to the continuity of e−At and f (t). It completes the proof 
of Lemma 3. �

To simplify the calculations we assume the following Lipschitz property holds

∃α ∈ (0,1), ∃LB,α ≥ 0 so that

||Aα(B(u) − B(v))|| ≤ LB,α||u − v|| holds for all u,v ∈ L2(�). (16)

Remark 3. It is easy to see that (16) implies similar property with α = 0, i.e.,

∃LB,0 ≥ 0 so that ||B(u) − B(v)|| ≤ LB,0||u − v|| holds for all u,v ∈ L2(�). (17)

Example 1. Let us consider B(u) = ∫
�

f (x − y)b(u(y)) dy which is a convolution of a func-
tion f ∈ H 1(�) and composition b ◦ u with b : R → R Lipschitz. We use the properties of a 
convolution (see e.g. [3, pp. 104, 108]) (f � g)(x) = ∫

�
f (x − y)g(y) dy, namely ||f � g||Lp ≤

||f ||L1 ||g||Lp for any f ∈ L1 and g ∈ Lp , 1 ≤ p ≤ ∞ and also Dβ(f � g) = (Dβf ) � g, partic-
ularly, ∇(f � g) = (∇f ) � g (for details see e.g. [3, Proposition 4.20, p. 107]).

If we consider Laplace operator with Dirichlet boundary conditions A ∼ (−�)D , then 
||A1/2 ·|| is equivalent to || ·||H 1 , so ||A1/2(B(u) −B(v))|| ≤ C2

1 ||B(u) −B(v)||2 +C2
1 ||∇(B(u) −

B(v))||2 ≤ C2
1 ||f ||2

L1 ||b(u) −b(v)||2 +C2
1 ||∇f ||2

L1 ||b(u) −b(v)||2. Using the Lipschitz property 
of b, we get (16) with α = 1/2 and LB,α = C1Lb(||f ||2

L1 + ||∇f ||2
L1)

1/2.
Using (16) and (3) one easily gets the Lipschitz property for F . Namely, for Lipschitz ψ and 

Lipschitz SDD r

||Aα(F (ψ) − F(χ))|| ≤ ||Aα(B(ψ(−r(ψ))) − B(χ(−r(χ))))||
≤ LB,α||ψ(−r(ψ))) − χ(−r(χ)))||

≤ LB,αLψLr ||ψ − χ ||C + LB,α||ψ − χ ||C = LF,α||ψ − χ ||C, LF,α = LB,α(LψLr + 1).

(18)

Using (17), similarly to (18), one gets

||F(ψ) − F(χ)|| ≤ LF,0||ψ − χ ||C, LF,0 = LB,0(LψLr + 1). (19)

We use all notations of [27], changing Rn for L2(�) when necessary. For example, we use 
the notation ET (see [27, p. 50])

ET : C1([−h,0]) → C1([−h,T ]), (ET ϕ)(t) ≡
[

ϕ(t), for t ∈ [−h,0),

ϕ(0) + t ϕ̇(0) for t ∈ [0, T ].
(20)
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Let B be a real Banach space. The open ball in B with radius μ > 0 and centre 0 is denoted 
by Bμ. For m ∈ M and μ > 0 we denote Mm,μ = M ∩ (m + Bμ).

On the other hand, some notations should be changed. For example, for any ψ ∈ XF and 
μ > 0 we set (remind that || · ||X is not just C1-norm, see (8), (9), (11))

Xψ,μ ≡ XF

⋂{
ψ + (C1([−h,0];L2(�)))X,μ

}
= {ψ ∈ XF : ||ϕ − ψ ||X < μ} . (21)

For T > 0 (to be chosen below), we split a map x ∈ C1([−h, T ]) ≡ C1([−h, T ]; L2(�)) with 
x0 = ϕ ∈ XF given, as x = y + ϕ̂, where for short ϕ̂(t) = (ET ϕ)(t) is defined in (20).

We look for a fixed point of the following map (ϕ is the parameter)

RT μ(ϕ, y) ≡
[

e−Atϕ(0) − ϕ(0) − t ϕ̇(0) + ∫ t

0 e−A(t−τ)F (yτ + ϕ̂τ ) dτ, t ∈ [0, T ],
0 t ∈ [−h,0),

(22)

where RT μ : Xψ,μ × (C1
0([−h, T ]; L2(�)))ε → C1

0([−h, T ]; L2(�)), and Xψ,μ defined in (21). 
Here for T > 0 we denote by C1

0([−h, T ]; L2(�)) the closed subspace of maps z ∈ C1([−h, T ];
L2(�)) which vanish on [−h, 0].

Proposition 1. RT μ : Xψ,μ × (C1
0([−h, T ]; L2(�))) → C1

0([−h, T ]; L2(�)).

To prove that the image of RT μ(ϕ, y) = z belongs to C1
0([−h, T ]; L2(�)), we notice that 

y ∈ C1([−h, T ]; L2(�)) implies y + ϕ̂ ∈ Lip([−h, T ]; L2(�)), which together with (10) gives
that F(yτ + ϕ̂τ ), τ ∈ [0, T ] is Lipschitz, so [9, Lemma 3.2.1, p. 50] can be applied to the integral 
term in RT μ (see (22)). This gives z ∈ C1(0, T ; L2(�)).

The property ||z(t)|| → 0 as t → 0+ is simple. The last step is to show that ||ż(t)|| → 0 as 
t → 0+. Using [9, Lemma 3.2.1, p. 50] and property ϕ ∈ XF , we have

ż(t) = −Ae−Atϕ(0) − ϕ̇(0) − A

t∫
0

e−A(t−τ)F (yτ + ϕ̂τ ) dτ + F(yt + ϕ̂t )

= −Ae−Atϕ(0) + Aϕ(0) − F(ϕ) − A

t∫
0

e−A(t−τ)F (yτ + ϕ̂τ ) dτ + F(yt + ϕ̂t ).

Hence

||ż(t)|| ≤ ||(e−At − I )Aϕ(0)|| + ||F(yt + ϕ̂t ) − F(ϕ)|| +
∥∥∥∥∥∥A

t∫
0

e−A(t−τ)F (yτ + ϕ̂τ ) dτ

∥∥∥∥∥∥ .

(23)

The first two terms in (23) tend to zero as t → 0+ since ϕ(0) ∈ D(A), e−At is strongly 
continuous, F is continuous and ||yt + ϕ̂t − ϕ||C → 0 as t → 0+. To estimate the last term in 
(23) we use (18) for ψ = 0 and the property ||Aαe−At || ≤ Cαt−αe−δt , α ≥ 0 (remind that e−At

is analytic and see Lemma 2 and [9, Theorem 1.4.3, p. 26], [18, Theorem 2.6.13, p. 74]). So
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∥∥∥∥∥∥A

t∫
0

e−A(t−τ)F (yτ + ϕ̂τ ) dτ

∥∥∥∥∥∥ =
∥∥∥∥∥∥

t∫
0

A1−αe−A(t−τ)AαF (yτ + ϕ̂τ ) dτ

∥∥∥∥∥∥
≤

t∫
0

C1−α(t − τ)α−1e−δ(t−τ)LB,α||yτ + ϕ̂τ ||C dτ

≤ LB,αC1−α · max
s∈[0,T ]

||ys + ϕ̂s ||C
t∫

0

(t − τ)α−1e−δ(t−τ) dτ → 0

as t → 0+ since the last integral is convergent for α > 0. It completes the proof of Proposi-
tion 1. �
Remark 4. It is important in the proof of Proposition 1 to have the property (16) with α > 0 for 
the convergence of the last integral.

As in [27, p. 56] we will use local charts of the manifold XF and a version of Banach’s fixed 
point theorem with parameters (see e.g., Proposition 1.1 of Appendix VI in [4, p. 497]).

Remark 5. More precisely, we look for a fixed point of RT μ(ϕ, y) as a function of y where 
parameter is the image of ϕ under a local chart map instead of ϕ ∈ Xψ,μ. The reason is that the 
parameter should belong to an open subset of a Banach space, but Xψ,μ is not even linear (it is a 
subset of the manifold XF ).

We remind that for short we denoted by ϕ̂ ≡ ET ϕ, where ET ϕ is defined in (20).

Proposition 2. (See [27, Prop. 2].) For every ε > 0 there exist T = T (ε) > 0 and μ = μ(ε) such 
that for all ϕ ∈ ψ + (C1([−h, 0]; L2(�)))μ and all t ∈ [0, T ],

ϕ̂t ∈ ψ + (C1([−h,0];L2(�)))ε

The proof is unchanged as in [27, Proposition 2], so we omit it here.
Let us denote MT > 0 a constant satisfying ||e−As || ≤ MT for all s ∈ [0, T ]. Now we prove 

an analogue to [27, Proposition 3].

Proposition 3. For all ϕ ∈ Xψ,μ and y, w ∈ (C1
0([−h, T ]; L2(�)))ε one has

||RT μ(ϕ, y) − RT μ(ϕ,w)||C1([−h,T ];L2(�)) ≤ LRT μ
||y − w||C1([−h,T ];L2(�)), (24)

where we denoted for short the Lipschitz constant

LRT μ
≡ T LF,0,ε(MT + 1) + T αC1−αMT α−1LF,α,ε (25)

with LF,α,ε = LB,α(εLr + 1) and LF,0,ε = LB,0(εLr + 1) (cf. (18), (19)). The constant α is 
defined in (16).
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Proof of Proposition 3. Using (19), we have for all ||ψ ||C1 ≤ ε

||F(ψ) − F(χ)|| ≤ LF,0,ε||ψ − χ ||C, LF,0,ε = LB,0(εLr + 1).

Let z = RT μ(ϕ, y), v = RT μ(ϕ, w) for y, w ∈ (C1
0([−h, T ]; L2(�)))ε . For all t ∈ [0, T ], one 

gets

||z(t) − v(t)|| ≤ ||
t∫

0

e−A(t−τ)(F (yτ + ϕ̂τ ) − F(wτ + ϕ̂τ )) dτ ||

≤ T MT LF,0,ε||y − w||C1([−h,T ];(L2(�)). (26)

Next ‖ż(t) − v̇(t)‖ ≤ ‖F(yt + ϕ̂t ) − F(wt + ϕ̂t )‖ + ‖A 
∫ t

0 e−A(t−τ)(F (yτ + ϕ̂τ ) − F(wτ +
ϕ̂τ )) dτ‖ ≤ LF,0,ε‖yt − wt‖C + ∫ t

0 ‖A1−αe−A(t−τ)‖‖Aα(F (yτ + ϕ̂τ ) − F(wτ + ϕ̂τ ))‖ dτ . To 
estimate the first term we write

||yt − wt ||C = max
s∈[−h,0]

||
t+s∫
0

(ẏ(τ ) − ẇ(τ )) dτ || ≤
T∫

0

||ẏ(τ ) − ẇ(τ )||dτ

≤ T ||y − w||C1([−h,T ];L2(�)).

For the second term, as in Proposition 1, we use the property ||Aαe−At || ≤ Cαt−αe−δt , α ≥ 0
(see [9, Theorem 1.4.3, p. 26] or [18, Theorem 2.6.13, p. 74]), the Lipschitz property (18) and 
calculations 

∫ t

0 (t − τ)α−1 dτ = tα/α to get

t∫
0

‖A1−αe−A(t−τ)‖‖Aα(F (yτ + ϕ̂τ ) − F(wτ + ϕ̂τ ))‖dτ

≤ C1−αT αα−1MT LF,α,ε‖y − w‖C1([−h,T ];L2(�)).

Hence

||ż(t) − v̇(t)|| ≤
{
T LF,0,ε + T αC1−αMT α−1LF,α,ε

}
||y − w||C1([−h,T ];L2(�)).

The last estimate and (26) combined give (24). �
The following statement is an analogue to [27, Proposition 4 and Corollary 1].

Proposition 4. For given δ > 0 there exist T = T (δ) > 0, μ = μ(δ) > 0, such that for all ϕ ∈
Xψ,μ (||ψ − ϕ||X ≤ μ) one has

||RT μ(ϕ,0)||C1([−h,T ];L2(�)) < δ.
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Moreover, for a positive ε there exist δ > 0 (and T = T (δ) > 0, μ = μ(δ) > 0 as above) and 
λ ∈ (0, 1), such that RT μ (defined in (22)) maps the subset Xψ,μ × (C1

0([−h, T ]; L2(�)))ε into 
the closed ball Cl (C1

0([−h, T ]; L2(�)))λε ⊂ (C1
0([−h, T ]; L2(�)))ε .

Proof of Proposition 4. Consider z ≡ RT μ(ϕ, 0). For t ∈ [0, T ], we write

z(t) = e−Atϕ(0) − ϕ(0) − t ϕ̇(0) +
t∫

0

e−A(t−τ)F (ϕ̂τ ) dτ

= (e−At − I )(ϕ(0) − ψ(0)) + (e−At − I )ψ(0) − t · (ϕ̇(0) − ψ̇(0)) − tψ̇(0)

+
t∫

0

e−A(t−τ)
{
F(ϕ̂τ ) − F(ψ̂τ )

}
dτ +

t∫
0

e−A(t−τ)F (ψ̂τ ) dτ. (27)

We estimate different parts of (27) in the following ten steps.

1. Using the property ||(e−At − I )x|| ≤ 1
α
C1−αtα||Aαx|| (see [9, Theorem 1.4.3]) one gets

||(e−At − I )(ϕ(0) − ψ(0))|| ≤ C 1
2
t

1
2 ||A 1

2 (ϕ(0) − ψ(0))|| ≤ Ĉt
1
2 ||A(ϕ(0) − ψ(0))||

≤ Ĉt
1
2 ||ϕ − ψ ||X.

2. ||t · (ϕ̇(0) − ψ̇(0))|| ≤ t · ||ϕ − ψ ||X .

3. || ∫ t

0 e−A(t−τ)
{
F(ϕ̂τ ) − F(ψ̂τ )

}
dτ || ≤ MT tLF,0 maxτ∈[0,t] ||ϕ̂τ − ψ̂τ ||C ≤ MT tLF,0(1 +

T )||ϕ − ψ ||X .
4. || ∫ t

0 e−A(t−τ)F (ψ̂τ ) dτ || ≤ MT tLB,0 maxτ∈[0,t] ||ψ̂τ ||C ≤ MT tLB,0(1 + T )||ψ ||X .
Now we proceed to estimate the time derivative of z(t)

ż(t) = −Ae−Atϕ(0) − ϕ̇(0) + F(ϕ̂t ) − A

t∫
0

e−A(t−τ)F (ϕ̂τ ) dτ

= −Ae−Atϕ(0) + Aϕ(0) + F(ϕ) + F(ϕ̂t ) − A

t∫
0

e−A(t−τ)F (ϕ̂τ ) dτ

= (e−At − I )A(ψ(0) − ϕ(0)) − (e−At − I )Aψ(0)

+ [F(ϕ̂t ) − F(ψ̂t )] + [F(ψ̂t ) − F(ψ)] + [F(ψ) − F(ϕ)]

−
t∫

0

Ae−A(t−τ){F(ϕ̂τ ) − F(ψ̂τ )}dτ −
t∫

0

Ae−A(t−τ)F (ψ̂τ ) dτ. (28)

We use the following
5. ||(e−At − I )A(ψ(0) − ϕ(0))|| ≤ (MT + 1)||ϕ − ψ ||X .

We remind (19) for steps 6 and 7.
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6. ||F(ϕ̂t ) − F(ψ̂t )|| ≤ LF,0 maxτ∈[0,t] ||ϕ̂τ − ψ̂τ ||C ≤ LF,0(1 + T )||ϕ − ψ ||X .
7. ||F(ϕ) − F(ψ)|| ≤ LF,0||ϕ − ψ ||X .
8. ||F(ψ̂t ) − F(ψ)|| → 0 as t → 0+ since ψ̂ is continuous from [−h, T ] to L2(�).
9. || ∫ t

0 Ae−A(t−τ){F(ϕ̂τ ) − F(ψ̂τ )} dτ || = || ∫ t

0 A1−αe−A(t−τ)Aα{F(ϕ̂τ ) − F(ψ̂τ )} dτ ||

≤
t∫

0

C1−α(t − τ)α−1e−δ(t−τ)LF,α||ϕ̂τ − ψ̂τ ||C dτ ≤ C1−αLF,αDα,T ||ϕ − ψ ||X,

where Dα,T ≡ ∫ T

0 (T − τ)α−1e−δ(T −τ) dτ , α > 0.
10. Similar to the previous case (LB,α instead of LF,α)

||
t∫

0

Ae−A(t−τ)F (ψ̂τ ) dτ || ≤ C1−αLB,αDα,T ||ψ ||X.

Now we can apply estimates 1–10 (combined) to (27), (28). It gives the possibility to choose 
small enough T = T (δ) > 0, r = r(δ) > 0 such that

||z||C1([−h,T ];L2(�)) ≡ ||RT μ(ϕ,0)||C1([−h,T ];L2(�)) < δ. (29)

Remark 6. Small μ is used in 5–7 only. For all the other terms it is enough (to be small) to have 
a small T .

Now we prove the second part of Proposition 4. We have

||RT μ(ϕ, y)||C1([−h,T ];L2(�)) ≤ ||RT μ(ϕ, y) − RT μ(ϕ,0)||C1([−h,T ];L2(�))

+ ||RT μ(ϕ,0)||C1([−h,T ];L2(�)). (30)

The first term in (30) is controlled by Proposition 3 (see (24)), while the second one by (29).
More precisely, we proceed as follows. First choose ε > 0, then choose small T (ε) > 0 to 

have the Lipschitz constant LRT μ
< 1 (see (24), (25)). Next we set δ ≡ ε

2 (1 − LRT μ
) > 0 and the 

corresponding T = T (δ) ∈ (0, T (ε)], μ = μ(δ) > 0 as in the first part of Proposition 4, see (29). 
Finally, we set λ ≡ 1

2 (1 + LRT μ
) ∈ (0, 1). Now estimates (30), (24) and (29) show that for any 

y ∈ (C1
0([−h, T ]; L2(�)))ε we have

||RT μ(ϕ, y)||C1([−h,T ];L2(�)) ≤ LRT μ
||y||C1([−h,T ];L2(�)) + δ ≤ LRT μ

ε + δ

= LRT μ
ε + ε

2
(1 − LRT μ

) = ε
1

2
(1 + LRT μ

) = ελ < ε.

It completes the proof of Proposition 4. �
We assume

(H4) Nonlinear operators B : L2(�) → D(Aα) for some α > 0 and r : C([−h, 0]; L2(�)) →
[0, h] are C1-smooth.
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Remark 7. Assumption (H4) implies that the restriction r : C([−h, 0]; L2(�)) ⊃ C1([−h, 0];
L2(�)) → [0, h] is also C1-smooth. In addition, it is easy to see that (H4) implies condition (S).

Proposition 5. Assume (H1)–(H4) are satisfied. Then RT μ is C1-smooth.

The proof of Proposition 5 follows the one of [27, Prop. 5]. The main essential difference is 
the following. The C1-smoothness of B : L2(�) → D(Aα) implies the C1-smoothness of F̃ :
Xψ,μ ×C1([−h, 0]; L2(�)) → D(Aα) defined as F̃ (ϕ, y) ≡ B(ϕ(−r(ϕ +y)) +y(−r(ϕ +y))).

We also use evident additional property of the C1-smoothness of the map X � ϕ �→
e−Atϕ(0) ∈ C([0, T ]; L2(�)) (remind the definition of X in (8)). Here we use IT : C1([0, T ];
L2(�)) → C1([0, T ]; L2(�)) given by IT (y)(t) ≡ ∫ t

0 e−A(t−τ)y(τ ) dτ instead of IT used in 
[27, p. 50]. We rely on [9, Lemma 3.2.1, p. 50] (see Lemma 3, item (iv) above). �

As in [27, p. 56] we are ready to use local charts of the submanifold XF and a version of 
Banach’s fixed point theorem with parameters (see e.g., [4, Proposition 1.1 of Appendix VI]). 
Namely, Propositions 3–5 allow us to apply Banach’s fixed point theorem to get for any ϕ ∈
Xψ,μ the unique fixed point y = yϕ ∈ (C1

0([−h, T ]; L2(�)))ε of the map RT μ. We denote this 
correspondence by YT μ : Xψ,μ → (C1

0([−h, T ]; L2(�)))ε and it is C1-smooth.
It also gives that the map

ST μ : Xψ,μ → C1([−h,T ];L2(�)), (31)

defined by ST μϕ = xϕ ≡ yϕ + ϕ̂ ≡ YT μ(ϕ) + ET ϕ is C1-smooth. Here ET ϕ is defined in (20).
The local semiflow

FT μ : [0, T ] × Xψ,μ → XF ⊂ X

is given by

FT μ(t, ϕ) = x
ϕ
t = evt (ST μ(ϕ)). (32)

Here we denoted the evaluation map

evt : C1([−h,T ];L2(�)) → C1([−h,0];L2(�)), evtx ≡ xt for all t ∈ [0, T ].
(33)

Proposition 6. Assume (H1)–(H4) are satisfied. Then FT μ is continuous, and each solution map 
FT μ(t, ·) : Xψ,μ � φ �→ x

(φ)
t ∈ XF , t ∈ [0, T ], is C1-smooth. For all t ∈ [0, T ], all φ ∈ Xψ,μ, 

and all χ ∈ TφXF , one has TFT μ(t,φ) � D2FT μ(t, φ)χ = v
(φ,χ)
t , where the function v ≡ v(φ,χ) ∈

C1([−h, T ]; L2(�)) ∩ C([0, T ]; D(A)) is the solution of the initial value problem

v̇(t) = Av(t) + DF(x
(φ)
t )vt for all t ∈ [0, T ], v0 = χ. (34)

Here TφXF is the tangent space to the manifold XF at point φ ∈ XF .
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Proof of Proposition 6. We denote for short G ≡ FT μ and S ≡ ST μ. Now we discuss the conti-
nuity of F (remind the definition of X in (8) and the norm || · ||X in (9)).

||G(s,χ) − G(t,ϕ)||X = ||xχ
s − x

ϕ
t ||C1[−h,0] + ||A(xχ(s) − xϕ(t))||

≤ ||xχ
s − xϕ

s ||C1[−h,0] + ||xϕ
s − x

ϕ
t ||C1[−h,0] + ||A(xχ(s) − xϕ(s))|| + ||A(xϕ(s) − xϕ(t))||

≤ ||S(χ) − S(ϕ)||C1[−h,T ] + ||xϕ
s − x

ϕ
t ||C1[−h,0] + ||A(xχ(s) − xϕ(s))||

+ ||A(xϕ(s) − xϕ(t))||. (35)

Consider the third term in (35).

||A(xχ(s) − xϕ(s))|| ≤ ||e−AsA(χ(0) − ϕ(0))||

+
s∫

0

||e−A(s−τ)A1−αAα(F (xχ
τ ) − F(xϕ

τ ))||dτ

≤ ||χ − ϕ||X + C1−αT αα−1MT LB,α(LxϕLr + 1)||xχ − xϕ ||C[−h,T ]
≤ ||χ − ϕ||X + C1−αT αα−1MT LB,α(LxϕLr + 1)||S(χ) − S(ϕ)||C[−h,T ].

We see that due to the continuity of S ≡ ST μ (see (31)) the first and the third terms in (35)
tend to zero when ||χ − ϕ||X → 0. The second term in (35) tends to zero as |s − t | → 0 since 
x ∈ C1([−h, T ]; L2(�)). The last term in (35) vanishes due to [18, Theorem 3.5, item (ii), p. 114]
(remind that xϕ(0) ≡ ϕ(0) ∈ D(A)). We proved the continuity of F . To verify the differential 
equation for v (see (34)), we follow the line of arguments presented in [27, p. 58]. More precisely, 
we first verify the integral equation (4) i.e. show that v is a mild solution to (34). The only 
difference in our case is the presence of the operator A which is linear. Hence it does not add any 
difficulties in the differentiability of S ≡ ST μ when we define for fixed φ ∈ Xψ,μ, and χ ∈ TφXF

the function v ≡ DS(φ)χ ∈ C1([−h, T ]; L2(�)). Here DS is understood as the differential of a 
map between manifolds (see (31) for the definition of S and [1] for basic theory of manifolds). 
One can see [27, p. 58] that v0 = ev0DS(φ)χ = D(ev0 ◦ S)(φ)χ = χ . Here the evaluation map 
evt is defined in (33). Also for t ∈ [0, T ] and all ϕ ∈ Xψ,μ one has evt (S(ϕ)) = evtx

(ϕ) = x
(ϕ)
t =

F(t, ϕ), which implies (see (32))

vt = evtDS(φ)χ = D(evt ◦ S)(φ)χ = D2F(t,χ).

To show that v satisfies the integral variant of equation (34) i.e., it is a mild solution to (34), we 
first remind (31) and notation ϕ̂(t) = (ET ϕ)(t) (20). For t > 0 we have

S(ϕ)(t) = x(ϕ)(t) = y(ϕ) + ET ϕ ≡ YT μ(ϕ) + ET ϕ

= e−Atϕ(0) − ϕ(0) − t ϕ̇(0) +
t∫

0

e−A(t−τ)F (yτ + ϕ̂τ ) dτ + ϕ(0) + t ϕ̇(0)

= e−Atϕ(0) +
t∫
e−A(t−τ)F (yτ + ϕ̂τ ) dτ.
0



T. Krisztin, A. Rezounenko / J. Differential Equations 260 (2016) 4454–4472 4469
Hence

S(φ)(t) = e−Atφ(0) +
t∫

0

e−A(t−τ)F (x(φ)
τ ) dτ, t > 0, (36)

and the definition v ≡ DS(φ)χ ∈ C1([−h, T ]; L2(�)) gives for t > 0

v(t) = (DS(φ)χ)(t) = χ(0) +
t∫

0

e−A(t−τ)DF(x(φ)
τ ) vτ dτ.

For more details see [27, p. 58]. So v is a mild solution to (34).

Remark 8. To differentiate the nonlinear term in (36) we apply the same result on the smoothness 
of the substitution operator as in [27, p. 51]. More precisely, we consider an open set U ⊂
C1([−h, 0]; L2(�)) and the open set

UT ≡ {η ∈ C([0, T ];C1([−h,0];L2(�))) : η(t) ∈ U for all t ∈ [0, T ]}.

It is proved in [4, Appendix IV, p. 490] that the substitution operator FT : UT � η �→ F ◦ η ∈
C([−h, 0]; L2(�)) is C1-smooth, with (DFT (η)χ)(t) = DF(η(t))χ(t) for all η ∈ UT , χ ∈
C([0, T ]; C1([−h, 0]; L2(�))), t ∈ [0, T ].

To show that v is classical solution we remind first that Assumption (H4) gives the (local) 
Lipschitz property for the Frechet derivative DF : X ⊃ U → L2(�) here U ⊂ X is an open set. 
We remind (see e.g. [8, p. 466]) the form of DF using the restricted evaluation map (not to be 
confused with the evaluation map evt defined in (33))

Ev : C1([−h,0];L2(�)) × [−h,0] � (φ, s) �→ φ(s) ∈ L2(�)

which is continuously differentiable, with D1Ev(φ, s)χ = Ev(χ, s) and D2Ev(φ, s)1 = ϕ′(s). 
Hence we write our delay term F as the composition F ≡ B ◦ Ev ◦ (id × (−r)) (see (3)) which 
is continuously differentiable from U to L2(�), with

DF(φ)χ = DB(φ(−r(φ)))[D1Ev(φ,−r(φ))χ − D2Ev(φ,−r(φ))Dr(φ)χ ]
= DB(φ(−r(φ)))[χ(−r(φ)) − φ′(−r(φ))Dr(φ)χ ] (37)

for φ ∈ U and χ ∈ C1([−h, 0]; L2(�)).
Mappings B and r satisfy (H4) and we remind (see Remark 7) that our F satisfies the condi-

tion similar to (S) in [8, p. 467]. For an example of a delay term see below.
The (local) Lipschitz property for the Frechet derivative DF : X → L2(�) and the additional 

smoothness of the initial function χ ∈ TφXF ⊂ X gives the possibility to apply Theorem 2 to 
show that v is a classical solution to (34). �
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Define the set ϒ = ⋃
φ∈X[0, t (φ)) × {φ} ⊂ [0, ∞) × X and the map G : ϒ → X given by the 

formula G(t, φ) = x
φ
t . Propositions 1–6 combined lead to the following

Theorem 3. Assume (H1)–(H4) are satisfied. Then G is continuous, and for every t ≥ 0
such that ϒt 	= ∅ the map Gt is C1-smooth. For every (t, φ) ∈ ϒ and for all χ ∈ TφX, one 
has DGt(φ)χ = vt with v : [−h, t (φ)) → L2(�) is C1-smooth and satisfies v̇(t) = Av(t) +
DF(G(t, φ))vt , for t ∈ [0, t (φ)), v0 = χ .

4. Example of a state-dependent delay

Consider the following example of the delay term used, for example, in population dynamics 
[15, p. 191]. It is the so-called, threshold condition.

The state-dependent delay r : C([−h, 0]; L2(�)) → [0, h] is given implicitly by the following 
equation

R(r;ϕ) = 1, (38)

where

R(r;ϕ) ≡
0∫

−r

(
C1

C2 + ∫
�

ϕ2(s)(x) dx
+ C3

)
ds, Ci > 0. (39)

Since

D1R(r(ϕ);ϕ) · Dr(ϕ)ψ + D2R(r(ϕ);ϕ)ψ = 0

and

D1R(r(ϕ);ϕ) · 1 =
(

C1

C2 + ∫
�

ϕ2(−r)(x) dx
+ C3

)
· 1 	= 0, Ci > 0,

D2R(r(ϕ);ϕ)ψ = −
0∫

−r

⎧⎨⎩ C1

[C2 + ∫
�

ϕ2(s)(x) dx]2
· 2 ·

∫
�

ϕ(s)(x) · ψ(s)(x) dx

⎫⎬⎭ ds,

we have

Dr(ϕ)ψ =
(

C1

C2 + ∫
�

ϕ2(−r)(x) dx
+ C3

)−1

×
0∫

−r(ϕ)

⎧⎨⎩ C1

[C2 + ∫
�

ϕ2(s)(x) dx]2
· 2 ·

∫
�

ϕ(s)(x) · ψ(s)(x) dx

⎫⎬⎭ ds. (40)

Now, we substitute the above form of Dr(ϕ)ψ into (37) and arrive at
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DF(ϕ)ψ = DB(ϕ(−r(ϕ)))

[
ψ(−r(ϕ)) − ϕ′(−r(ϕ)) ×

(
C1

C2 + ∫
�

ϕ2(−r)(x) dx
+ C3

)−1

×
0∫

−r(ϕ)

⎧⎨⎩ C1

[C2 + ∫
�

ϕ2(s)(x) dx]2
· 2 ·

∫
�

ϕ(s)(x) · ψ(s)(x) dx

⎫⎬⎭ ds

⎤⎥⎦ . (41)

We see that mapping r satisfies (H4). We also remind (see Remark 7) that in this example F
satisfies the condition similar to (S) in [8, p. 467], provided operator B : L2(�) → D(Aα) (for 
some α > 0) is C1-smooth.
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