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Abstract

The common limitation in computer network security is the reactive nature of
defenses. A new type of infection typically needs to be first observed live, be-
fore defensive measures can be taken. To improve the pro-active measures, we
have developed a method utilizing WHOIS database (database of entities that has
registered a particular domain) to model relations between domains even those
not yet used. The model estimates the probability of a domain name being used
for malicious purposes from observed connections to other related domains. The
parameters of the model is inferred by a Variational Bayes method, and its effec-
tiveness is demonstrated on a large-scale network data with millions of domains
and trillions of connections to them.

1 Motivation

In network security it is increasingly more difficult to react to influx of new threats. Reactive defense
solutions based on constant anti-virus signature updates do not scale. We aim at revealing a signifi-
cant fraction of zero-day (previously unknown) network threats pro-actively by inferring in advance
the probability of domain names (domains) to be used for malicious purposes to which connections
have not been yet observed. The idea is to use external information to link domains to those with
already observed and investigated connections. The proposed model builds upon Bayesian statistics
with unknowns inferred by variational methods. The model is applicable to estimate probability
of being involved in malicious activities of any computer network entity, given a suitable exter-
nal database is available to connect them. The concept is demonstrated on estimating fraction of
malware-related connections to millions of domains related through records stored in publicly ac-
cessible WHOIS databases. The experimental results show the method is robust enough to be used
in realistic large-scale computer network setting with significant amount of missing data.

1.1 Notation

Let x 2 0, 1 denote a realization of a random variable, which in this work denotes maliciousness
of a network connection (e.g. request of a web browser) to a domain d (e.g. example.com). A
connection has value zero if it is benign and one if it is considered to be malicious by some intrusion
detection system (IDS). The set of all observed connections used in the inference is denoted by
X , and the set of all domains D. Since x is a realization of a random variable, X contains many
connections to the same domain d denoted X (d). A mapping d(x) returning a domain of a request
x will be useful below.

Let m
d

be a parameter of the Bernoulli distribution of domain d determining the probability with
which requests to d are blocked. M is a set of m

d

of all domains, and those are the parameters we
⇤Tomáš Pevný and Petr Somol are also with Cisco Systems Inc.
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want to infer. Individual domains d are linked together by informations stored in WHOIS database,
to which it is referred to as keys. L is the set of all keys in the WHOIS database. The role of keys in
the model is symmetric, it is therefore assumed L = K

o

[K
e

[K
n

[K
p

, where K
n

,K
o

,K
e

,K
p

are
sets of all registrants names, organizations, e-mail addresses and postal addresses. Note that if two
keys from different categories share the same value, they are considered to be distinct, e.g. registrant
with the name Foo and organization with the name Foo are considered to be two different keys in
L. The particular key (composed from values in the WHOIS database) of domain d is a quadruple
k(d) = (k

n

(d), k
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(d), k
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(d), k

p

(d)) of indexes from L, corresponding to k
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(d) 2 K
o

,

k

e
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2 The model

The goal of the proposed system is to estimate probability, m
d

, that a web request to domain d

(e.g. example.com) is related to a malicious activity (such requests are further called malicious).
The system estimates these probabilities from frequencies with which individual requests are clas-
sified to be malicious by some Intrusion Prevention System (IPS) and uses informations about do-
mains provided by the WHOIS database to link domains together. By virtue of this link, the system
provides an estimate for domains to which few or none requests have been observed and / or in-
spected by the IDS. We assume that the WHOIS database provides for every domain a quadruple
k(d) = (k

n(d), ko(d), ke(d), kp(d)), where k

n(d) is the name of the registrant of domain d, k
o(d) its

organization, k
e(d) its contact email address, and k

p(d) the postal address. We model the above
as follows. The probability of a request x directed to domain d being malicious follows Bernoulli
distribution

p

b

(x|m
d

) = m

x

d

(1�m

d

)

1�x

, (1)
where it is assumed that all requests are independent. The parameter m

d

, which is equal to the
fraction of blocked request to d, is the parameter we would like to infer based on observed data X
and the WHOIS record K. To do so, we introduce a Beta prior on the value of m

d

in form

p

d

=

m

a

k(d)�1
d

(1�m

d

)

b

k(d)�1

�(a

k(d), bk(d))
, (2)

where parameters a
k(d) and b

k(d) are parameters of the Beta-prior depending on the key k(d), which
is an unique quadruple retrieved from the WHOIS database. Formulation (2) can be possibly used
to infer all m

d

2 M using maximum likelihood approach, but it makes Beta priors a

k(d), bk(d)

unique to each quadruple k(d), which means that two records differing in one or more sub-keys
(e.g. postal address) have to be treated independently. Moreover both priors would need to be
guessed sufficiently well, which would be very difficult. To resolve both problems, priors a

k(d) and
b

k(d) are factorised such that each factor depends only on the portion of the key (e.g. e-mail address)
and a Gamma prior is put on each factor [4]. Specifically,
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with K
n

, K
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, K
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, and K
p

being set
of all unique names, organizations, e-mail addresses, and postal addresses respectively. To simplify
notation, we introduce L = K

o

[K
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n

(if a same value of key appears in for example K
o

and K
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, they are treated as two different keys). With this notation we index a
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Q
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introduce Gamma prior on a

l
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The final joint-probability function of the model is

p(M,A,B|X , ✓) =
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(5)

where a

k(d) and b

k(d) are from (3).
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Algorithm 1 Variational Bayes inference of model parameters M = [
d2Dmd

, A = [
l2Lal, B =

[
l2Lbl. The convergence criterion is the change of expected value of m

d

.

1. choose the parameters ⇥ = (u

a

, v

a

, u
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b

)
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)

3. For it = 1 to max iterations
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d
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(d) If convergence criteria < threshold Then break

3 Inference of parameters by Variational Bayes

Since an analytical solution of (5) does not exist due to the integral of the beta distribution not hav-
ing a closed-form solution, a Variational Bayes method [5, 1] approximating posterior distribution
implied by (5) using a product of marginal distributions is evaluated

p(M,A,B|X , ✓) ⇡ q(M,A,B) =
Y

d2D
q(m
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l

). (6)

The Variational Bayes method minimizes the KL-divergence between the approximation (6) and the
joint pdf (5) by iteratively optimizing individual marginals q(m

d

), q(a

l

), and q(b

l

) while keeping
all other marginals fixed. After sufficient number of iterations the algorithm converges to a local
minimum. The algorithm is outlined in Algorithm 1 with the marginals1 being
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, and the ˆ· denotes expected value of the

variable. Exact variational marginals do not have an analytical solutions due to the intractability of
the Beta distribution. Therefore we have used approximation proposed in [4] to obtain q(a

l

) and
q(b

l

). The approximations are based on Taylor expansion of the logarithm of the Beta distribution
in a

k(d)

V

, b
k(d)

V

from previous iteration. Since the Taylor expansion is valid only for a
k(d)

V

, b

k(d)

V

> 1,
both variables are set to one if they are smaller.

4 Experimental results

The proposed method was evaluated on data obtained from web-logs Cisco’s Cloud Web Secu-
rity [3], which is a cloud web proxy scrutinizing the traffic for the presence of known malware and

1Derivation of the marginals can be found in the supplemental material.
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Figure 1: Comparison of the proposed method (IV) with the Probabilistic Threat Propagation (PTP).

other threats. For the experiments we have used traffic from the first week of September, October,
November 2014, and January and Fabruary 2015. Each week of traffic contained approximately
7.5 · 109 connections (size of the set X ) out of which approximately 20 · 103 were deemed as ma-
licious) to approximately 2 · 106 domains (size of the set D) with approximately 10

5 keys retrieved
from the WHOIS database.

The data allows a natural division into training and testing data, where we have used the data from a
previous month for training (inferring values in sets A = [

l2Lal, B = [
l2Lbl, and M = [

d2Dmd

)
and the data from the next month for the evaluation.

The proposed method was compared to Probabilistic Threat Propagation [2], which is a method
that propagates a probability of certain network node being malicious based on connection graph.
The method extrapolates maliciousness of “tips”, which are domains used for malicious purposes,
to other connected domains, which were domains sharing at least one key in WHOIS database. In
our experiments “tips” were domains with at least 20% blocked connection, which was a fraction
determined to avoid trivial false positives like yahoo.com.

Figure 1 shows ROC curves when the inference was done on data captured in September, October,
and November, and evaluated on October, November, and January respectively. The ROC curve was
obtained by changing the threshold on m

d

from which the domain would be considered malicious
and counting correctly classified flows (blocked vs. not blocked). The false positive rate is drawn in
logarithmic scale, because in security applications only very low false positive rate are interesting.
Therefore only the region from zero to one percent false positive rate is shown to decide which
algorithm is better. We observe that ROC curves of both methods intersect, but that of the proposed
method is generally above (better) in the region of interest. Moreover, the proposed method does not
require known “tips”, which is an important feature for practical deployment, as it can be executed
autonomously.

5 Conclusion

We have defined and verified a Bayesian model to infer probability of a network entity being in-
volved in malicious activities. The important feature for practice is that the model propagates prob-
ability from entities with observed connections to those without using external information relating
entities together. The model was instantiated to enable preventive blacklisting of yet unobserved
domains using information about observed HTTP request blocks and domain registration records in
the WHOIS database. The scalability of the model was shown on modeling millions of domains
using trillions of web requests.
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1 Recapitulation of variational Bayes to introduce notation

The recapitulation of Variational Bayes follows [1] page 464. To simplify the notation, we assume
p(z, d) to be the joint distribution of data d and parameters z we are interesting in. Furthermore, p(x)
is the marginal distribution of the data and q(z) is a distribution by which we want to approximate
p(z|x) (distribution of parameters given data). Naturally it is assumed z to be multi-dimensional
with k components. It holds that

log p(x) =

Z

Z
q(z) log p(x)dz

=

(1)

Z

Z
q(z) log

✓
p(x, z)

p(z|x)
q(z)

q(z)

◆
dz

=

Z

Z
q(z) log

p(x, z)

q(z)

dz �
Z

Z
q(z) log

p(z|x)
q(z)

dz

=

(2)
E(q(z)) + DKL (q(z)||p(z|x)) ,

(1)

where in (1) we have used the fact that p(x, z) = p(z|x)p(x) and in (2) we have recognized KL-
divergence in the second term and denoted the first one by E(q(z)) =

R
Z q(z) log

p(x,z)
q(z) dz.

The KL-divergence DKL (q(z)||p(z|x)) measures the closeness of q(z) and p(z|x). While it is not
a true distance, it is non-negative and equal to zero iff q(z) = p(z|x). Since the KL-divergence is
always positive, by maximizing E(q(z)) we minimize the DKL (q(z)||p(x|z)) for which we usually
do not have a closed form solution. Thus finding the best approximation q(z) amounts to maximize
E(q(z)).

⇤Tomáš Pevný and Petr Somol are also with Cisco Systems Inc.
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Factorized models assume that q(z) is a product of independent probability distributions, i.e. q(z) =Q
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where the notation \j means with respect or over to all variables except j. Let now introduce
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. The the above can be simplified to
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Now imagine that we optimize E(q(z)) only with respect to q

j

(z

j

). The the sum on the right-hand
is independent and the KL term is maximized if the KL-divergence is equal to zero, which is when
q

j

(z

j

) = p̃

j

(x, z).

2 Extended factorized approximation method

The problem we face in our work is that the expectation EZ\j⇠q\j [log p(x, z)] is not tractable due
to the integration of the logarithm of the beta function. The extended factorized approximation
proposes to find a lower bound on E(q(z)) and maximise this lower bound instead of E(q(z)). By
maximising the lower bound iteratively we can still asymptotically reach the optimum. Specifically,
Ref. [2] search a lower bound on p(x, z) (further denoted as p̃(x, z)) such that it holds that

Z
q(z) log p(x, z)dz �

Z
q(z) log p̃(x, z).dz (5)

The last inequality trivially holds iff p(x, z) � p̃(x, z).

The extended factorized approximation method maximizes
R
Z q(z) log

p̃(x,z)
q(z) dz instead of E(q) by

using the variational Bayes method. In every iteration, the lower bound (or envelope) is updated, by
which the same solution can be reached as if the original E(q) would be optimised.

Derivation of marginals

The joint pdf function is

p(M,A,B|X , ✓) =
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The logarithm of it, which will prove useful immediately can be written as
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To use the Variational Bayes, we are interested in following quantities

log q(m

d
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Again the notation D\d denotes the set of domains D without the element d, and similarly for A and
B. Note that for brevity, all terms not depending on the variable omitted from the expectation will
be skipped, as they will become part of the normalizing constant making q(·) a proper probability
distribution. We therefore use / instead of = to signalized the equality up to multiplicative constant.
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in which we recognize a logarithm of the beta distribution. Therefore
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whereˆ· denotes expected value of the variable.
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where a
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Q
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02k(d)\l al0 and likewise for b
k(d)\l. It is the term � log �(a

k(d), bk(d)) which
causes the problem, as otherwise q(a

k

) would have the desired form of Gamma distribution, as the
posterior would be the same as the prior. A remedy is to lower bound log q(a

l
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bound of � log �(a

k(d), bk(d)), instead. By maximising the new lower bound we maximize the joint
pdf as well. The derivation follows the steps [2] with the difference that here a
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Q

l2k(d) al. It
relies on the two following properties copied from [2] without the proof.

3



Property 1. The normalization coefficient of Beta distribution can be approximated in point x0

using pseudo-Taylor [2] approximation as

� log �(x, y) � � log �(x0, y) + [ (x0 + y)�  (x0)]x0(log x� log x0), (12)

where the  is Digamma function, which is defined as first derivative of a logarithm of Gamma

function. This inequality holds for y > 1, and x, x0 2 R.

Property 2. Digamma function can be approximated in point y0 using pseudo-Taylor approximation

as

 (x0 + y) �  (x0 + y0) +  

0
(x0 + y0)y0(log y � log y0), (13)

where the  

0
is Trigamma function, which is defined as second derivative of a logarithm of Gamma

function. This inequality holds for y > 1, and x, x0 2 R.

The expectation of � log �(a

k(d), bk(d)) can be lower-bounded as

EB,A\al

⇥
� log �(a

k(d), bk(d))
⇤
�
(1)

EB,A\al

⇥
� log �(a0, b

k(d))+

+

⇥�
 (a0 + b

k(d))�  (a0)
�
a0

�
log a

k(d) � log a0

�⇤⇤

/
(2)

EB
⇥
a0

�
 (a0 + b

k(d))�  (a0)
�
log a

l

⇤
,

(14)

where in (1) we have used Property 1, and in (2) we have dropped terms not depending on a

l

and
used the fact that log a

k(d) =
P

l2k(d) log al.

To further break the term E

B

⇥
 (a0 + b

k(d))
⇤

we use the Property 2 as

EB
⇥
 (a0 + b

k(d))
⇤
�EB

⇥
 (a0 + b0) +  

0
(a0 + b0)b0(log b

k(d) � log b0)
⇤

= (a0 + b0) +  

0
(a0 + b0)b0

�
EB[log b

k(d)]� log b0

�
,

(15)

where the approximation again used Taylor expansion in point b0 and the expectation opera-
tor is moved deeper inside the brackets. Note that no terms can be dropped in (15), because
EB

⇥
 (a0 + b

k(d))
⇤

is multiplicative of log a
l

in (14).

By substituting (15) into (14) we obtain

EB,A\al

⇥
� log �(a

k(d), bk(d))
⇤
�

⇥
EB

⇥
 (a0 + b

k(d))
⇤
�  (a0)

⇤
a0 log al

�
⇥
 (a0 + b0)�  (a0) + b0 

0
(a0 + b0)(EB[log b

k(d)]� log b0)
⇤
a0 log al

= ⇣

d,al log al,

(16)

where ⇣
d,al =

⇥
 (a0 + b0)�  (a0) + b0 

0
(a0 + b0)(EB[log b

k(d)]� log b0)
⇤
a0.

Finally, by substituting (16) into (18) a final lower bound on log q(a

l

) is obtained as

log q(a

l

) /EB,A\al

2

4
a

k

X

{d2D|k2k(d)}

a

k(d)\k logmd

+ ⇣

d,al log al

�(u

a

� 1) log a

k

� v

a

a

k

] ,

(17)

where a Gamma distribution can be recognized. Hence

log q(a

l

) = Gamma

0

@
u

a

+

X

{d2D|k2k(d)}

⇣

d,al , va �
X

{d2D|k2k(d)}

â

k(d)\klogmd

V

1

A
,

(18)

where againˆ· is the expected value.

In the algorithm described in the paper a0 = a

k(d)

V

and b0 = b

k(d)

V

from the previous iteration.
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