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Abstract
This work is concerned with the blind source separation (BSS) problem in dy-
namic medical imaging with focus on dynamic planar renal scintigraphy. A
common problem of imaging of a three-dimensional object into an image plane
is that the signal arises as a superposition of signals from underlaying sources
from different depths of a body. The task is to separate individual sources rep-
resenting functional tissues in medical imaging, i.e. their images and activities
over the time.
The main contribution of this work is introduction of novel models of hierar-

chical priors for Bayesian BSS, development of BSS algorithms for them, and
evaluation of their suitability on clinical data. Common method in this appli-
cation domain is still manual analysis by an expert. Existing knowledge of the
expert in dynamic nuclear medicine was used as inspiration for the proposed
hierarchical priors. Two key studied properties of the problem are sparsity of
the sources and modeling of each source activity as a convolution of the common
input function and a source-specific convolution kernel.
The proposed methods are tested together with selected state-of-the-art BSS

algorithms on two large datasets from dynamic renal scintigraphy as well as on
representative data from other imaging modalities and the significant improve-
ments of separation using proposed methods are demonstrated.

Abstrakt
Tato práce se zabývá problémem slepé separace signálu (blind source separation,
BSS) vzniklém při dynamickém zobrazování v medicíně a je především mo-
tivována analýzou signálu z dynamické planární scintigrafie ledvin. Problémem
při zobrazování třírozměrných objektů do obrazové plochy je vznik signálu, který
představuje superpozici signálů z jednotlivých zdrojů v lidském těle. Úkolem
slepé separace signálu je pak tyto zdroje, které reprezentují jednotlivé funkční
orgány, rozlišit, tedy určit jejich obraz a křivku časové aktivity.
Hlavním přínosem této práce je vytvoření nových modelů pomocí hierarchic-

kých aprioren pro Bayesovskou BSS, odvození příslušných BSS algoritmů a zhod-
nocení jejich přínosu pro klinickou praxi. Protože standardem v této oblasti
je stále ruční analýza získaných dat, existující znalosti z dynamické nukleární
medicíny byly využity pro konstrukci hierarchických aprioren. Dvě hlavní oblasti
studia jsou modely řídkosti signálu a modely aktivit jednotlivých zdrojů jakožto
konvoluce mezi společnou vstupní funkcí a specifickými konvolučními jádry.
Odvozené odhadovací metody jsou aplikovány společně se state-of-the-art

metodami na dva rozsáhlé datasety z dynamické scintigrafie ledvin, ale i na
další vybraná data z různých zobrazovacích modalit, kde jsou demonstrována
vyrázná vylepšení separace pomocí navržených metod.
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Notation

Linear Algebra and Calculus
R Set of real numbers.
A ∈ Rp×r A is a real matrix of the size p× r.
AT Transpose of the matrix A.
A−1 Inverse of the matrix A.
ak The kth column of the matrix A.
ai The ith row if the matrix A.
ai,k The i, kth element of the matrix A; i denotes row

index and k denotes column index.
b ∈ Rn b is a vector of the size n.
bj The jth element on the vector b.
diag(A) A diagonal vector of a square matrix A.
diag(b) A matrix with vector b on its diagonal and zeros

otherwise.
tr(A) The trace of a square matrix A ∈ Rp×p defined as

tr(A) =
∑p
i=1 ai,i.

vec(A) Vector composed of columns of the matrix A.
|A| Determinant of the matrix A.
In Identity matrix of the size n.
1p,n Matrix of ones of the size p× n.
0p,n Matrix of zeros of the size p× n.
A⊗B Kronecker product of matrices A ∈ Rp×r and B;

A⊗B =

 a1,1B · · · a1,rB
... . . . ...

ap,1B · · · ap,rB


A ◦B Hadamard product of matrices A and B of the same

size; A ◦B =

 a1,1b1,1 · · · a1,rb1,r
... . . . ...

ap,1bp,1 · · · ap,rbp,r


ln(a) Natural logarithm of argument.
exp(a) Exponential of argument.
f(x) ∝ f(y) f(x) is proportionally equal to f(y).
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Probabilistic Calculus
Ef(x)(..) Expected value of argument with respect to probability

density function f(x).
X̂ Point estimate of (multivariate) parameter X.
Nx(µx,Σx) Multivariate normal distribution, see Appendix A.1.1.
NX(µX ,Σn ⊗ Σr) Matrix normal distribution, see Appendix A.1.2.
tNx(µx, σx, [0,∞]) Truncated normal distribution, see Appendix A.1.3.
tNX(µX ,Σn ⊗
Σr, [0,∞])

Truncated matrix distribution, truncated element-wise
according to truncated normal distribution.

Gx(α, β) Gamma distribution, see Appendix A.2.
tExpx(λ) Truncated exponential distribution, see Appendix A.3.
Ux(a, b) Uniform distribution, see Appendix A.4.
Wx(Σ, ν) Wishart distribution, see Appendix A.5.
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1. Introduction
Aren’t you essentially using Bayes’ theorem?

(Irving Good)
I suppose.

(Alan Turing)

Let us assume that the number 6 is a measurement of a sum of two numbers.
The task is to find these two numbers. There are infinitely many solutions such
as: 3 and 3, 5 and 1, or 1

5 and 29
5 . Similar problems are common in many sig-

nal processing areas where some elements of a measured signal are considered
to be a sum of signals from unknown number of sources such as in astronomy
[34], hyperspectral imaging [79], electroencephalography [58], scintigraphy [108],
positron emission tomography [127], or magnetic resonance imaging [24]. Here,
the observed data are in the form of a mixture of signals and the task is to recon-
struct the original sources. A classical example is the Cocktail Party Problem
[76] where many speakers are recorded by a set of microphones. Theoretically,
every microphone can hear every speaker. The task is to extract signals from
each speaker (source) which is call source separation. Since weight of each source
in each microphone is unknown, the problem is called blind source separation.

1.1. Blind Source Separation

There are many possible models for the blind source separation (BSS) problem
but we consider only a linear model, where the data stored in the matrix D
are assumed to be a linear combination of sources. The linear combination
has specific form where source images, stored in columns of the matrix A, are
weighted by their related activities, stored in columns of the matrix X. Then,
the BSS model can be written as

D = AXT + E, (1.1)

where D ∈ Rp×n, A ∈ Rp×r, X ∈ Rn×r, and E ∈ Rp×n. The scheme of the
BSS model is illustrated in Figure 1.1. Here, p is the size of each source, n is
the number of data points, and r is the number of sources. Typically, the sizes
are ordered as p � n � r. In this work, we refer to the term A as the source
images matrix while the mixing matrix is often used in literature and we refer
to the term X as the time-activity curves (TAC) matrix while the source term

1



1. Introduction

XT

= +

D A E

Figure 1.1.: Illustration of the studied blind source separation problem.

or the source values are often used in literature [76]. The term E is the error
part in the model which commonly represents the measurement of noise.
There are several ambiguities in the BSS problem addressed in this work: the

noise, the number of sources, and the rotation ambiguity.

Noise Noise term in the BSS problem, the equation (1.1), E, is important part
of the model which is, however, not always taken into the account.

• Noiseless BSS: A number of approaches assumes noiseless BSS problem,
E = 0 in the equation (1.1), such as basic versions of the independent
component analysis [22] where exact source reconstruction is possible [27].
This possibility is attractive, however, the condition of noise-free data is
rarely met in practice.

• Residual Approach: Some approaches assume noiseless model of the BSS,
D ≈ AXT ; however, they incorporate the noise in the approximate solu-
tion using, e.g., cost function measuring the quality of approximation such
as square of the Euclidean distance between data and its reconstruction

∣∣∣∣∣∣D −AXT
∣∣∣∣∣∣2 =

∑
i,j

(
Di,j −

(
AXT

)
i,j

)2
, (1.2)

or Kullback-Leibler divergence [68].

• Statistical Approach: The noise model, f(E), can be selected to have an
assumed probability distribution. In this work, we assume the BSS model
with additive Gaussian noise. The most common case is the uncorrelated
noise model

f(ei,j) = Nei,j (0, ω−1
i,j ), (1.3)

where each noise element has zero mean and variance ω−1
i,j . In this work,

we will use the isotropic Gaussian noise model [115] with zero mean and
common variance for all pixels, ei,j ∼ Nei,j (0, ω−1), while other versions
are studied, e.g., in [96].

2



1.1. Blind Source Separation

Number of sources The number of sources estimation is a bottleneck in many
BSS methods. Very often, manual selection of the number of source is a pre-
requisite step for successful run of a BSS method. However, the selection must
be done by an expert or using insight into the problem which is an extremely
demanding condition. Many heuristic methods for selection of rank r exist [57],
however, none are used as a generally accepted methodology. Hence, dealing
with the number of source estimation remain still a challenge.

Separation ambiguity The separation ambiguity arises in the BSS model (1.1)
naturally since for every invertible matrix T ∈ Rr×r, it holds

D = AXT =
(
AT

)(
T−1XT

)
. (1.4)

This is known as the rotational ambiguity in literature [4] and T is called the
rotation matrix. The equation (1.4) demonstrates that the BSS problem, the
equation (1.1), has infinitely many solutions in general. One possible way to
restrict the space of possible solutions is to selected some limiting conditions for
parameters of the BSS model. One such possible condition can be the constraint
of positivity of all elements of matrices A and X. [91] show that under this
constraint, the unique solution is guaranteed if each source has at least one
non-overlapped pixel; however, even this condition is too restrictive in practice.
Further assumption such as sparsity [61, 121] or specific model of dynamics of
sources such as convolution [6, 122] were proposed with advantages in specific
fields.

1.1.1. Example Source Separation of Medical Image Sequence
For example, the data model from equation (1.1) can be used in medical image
sequence analysis from, e.g., the planar scintigraphy. Here, measured signal on
each detector is supposed to be a sum of signals from different depths of the
body; hence, the resulting image is a superposition of signal from an unknown
number of sources. The dynamic image sequence arises when the images, dj ,
are taken repetitively; hence, D = [d1, . . . ,dn]. The main advantage of dynamic
image sequence is that it provides not only spatial information but also infor-
mation about source activity over time. The following task is to analyze the
sequence; it means to estimate:

• original source images, columns of the matrix A,

• their associated activities, called time-activity curves (TACs) [66], columns
of the matrix X.

An example sequence from dynamic renal scintigraphy [29] is given Figure 1.2,
on the left, as a demonstration of the typical input of the BSS algorithm. The
expected form of the output of the BSS algorithm, i.e. estimates of the source
images and related TACs, is in Figure 1.2, right.

3
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Figure 1.2.: The decomposition D = AXT is schematically demonstrated. Left:
every 7th image from the example scintigraphic sequence. Right:
example separation of the sequence into tissue images in the first
column and related TACs in the second column.
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1.2. State of the Art

In scintigraphy, the model (1.1) is also called Factor Analysis of Medical Image
Sequences (FAMIS) [29, 10, 19]. The FAMIS model assumes (i) no motion of
tissues and (ii) no enlarging of tissues as a simplification.

1.1.2. Requirements of Separation

The separation results (i.e. tissue images, A, and tissue TACs, X) should respect
as close as possible physiological expectations of kidneys dynamics which will be
briefly described here. In scintigraphy, the dynamics is defined as temporal ac-
tivity of radioactive tracer in the tissues of interest which is illustrated in Figure
1.2 (right). At first, the radiopharmaceuticals are applied intravenously into the
body and the blood background, heart, and lungs are activated, see Figure 1.2
(right, the first row). At second, the blood is cleaned from radiopharmaceuticals
in the parenchyma, a spongy tissue of kidney, see Figure 1.2 (right, the second
row). At third, waste products including radiopharmaceuticals comes from the
parenchyma to the pelvis located on the inner edge of parenchyma, see Figure
1.2 (right, the third row). The pelvis tissue has a characteristic delay in its TAC,
and the beginning of its activity roughly corresponds with the peak of activity
of the parenchyma [32]. Finally, the activity is excluded from the pelvis to the
urinary bladder, see Figure 1.2 (right, the forth row).

1.2. State of the Art
In this Section, we review the most common methods for the BSS. First, we will
focus on the general BSS methods. Second, we will discuss the BSS methods in
the context of medical image analysis.

1.2.1. Methods for Blind Source Separation

Principal Component Analysis (PCA) The PCA [82, 51, 57], the widely used
dimension-reduction method, is based on orthogonal projection of the data space
into the linear subspace with a lower dimension. The central idea of PCA is
dimensionality reduction while preserving as much variation in a dataset as pos-
sible [57]. This is provided by transformation to a new set of variables, called
principal components, which are uncorrelated and where the first few compo-
nents preserve the most variation. The principal components are orthogonal
because they are based on eigenvectors of the symmetric covariance matrix.
Within the BSS problem, PCA is used for denoising while the final BSS solu-
tion can be found, e.g., using calculation of the suitable rotation matrix T from
equation (1.4) [91].

Independent Component Analysis (ICA) In signal processing, the ICA [59]
is a powerful tool for solving the BSS problem (1.1). The ICA model assumes
that the original components are statistically independent. In its origin, ICA

5



1. Introduction

considers only noise-free model which is, however, often unrealistic. The number
of components is the same as the number of observations; however, this is not a
necessary condition although the estimation of number of sources is not common
within the ICA method.

Factor Analysis (FA) The FA model coincides with the one given in the equa-
tion (1.1). Here, observations are expressed as linear combinations of hypotheti-
cal variables, A andX, [89, 57, 4], except the error terms, E. The pair containing
the source image and TAC is called the factor. Contrary to ICA models, the
FA often assumes reduction from p to r parameters for data description.

Optimization Methods The BSS problem (1.1) can be interpreted as an opti-
mization problem of finding matrices A and X, often non-negative, such that

D ≈ AXT . (1.5)

This is the case of the non-negative matrix factorization (NMF) [68, 52], also
known as non-negative matrix approximation. Commonly, the algorithms for
NMF are iterative while iterations depend on quality of reached approximation
defined by a chosen measure which is optimized [68]. Examples of the measure
are, e.g., the square Euclidean distance (1.2) or the Kullback-Leibler divergence
[63]. The measure substitutes detailed model of residuals by favoring some
values over another; however, the inner dimension r has to be preselected and
the results of factorization strongly depends on it.

Clustering Methods Clustering can be seen from different perspective as a
search for clusters representing sources in the BSS problem [125]. In addition,
a special case of the NMF can be seen from a different perspective as a K-
mean clustering where the matrix A denotes cluster centroids and the matrix
X denotes features for clusters membership [31].
The decomposition (1.5) has been studied as a problem of identifying of clus-

ters around representative members. These members around which the clusters
arise could be, e.g., pure-volume pixels [24] or pure source images in case of
near-separable NMF where pure source image within the data is expected for
each source in successive projection algorithm [5].

Bayesian Approach Typically, previous methods work well under ideal condi-
tions such as low noise or known number of sources; however, they are limited
under demanding conditions involving uncertainties. In such cases, the use of
Bayesian methodology could provide more promising results [37, 97, 124].
The key advantages of Bayesian methods are that (i) they provide not only

point estimates of parameters but their posterior distributions and (ii) Bayesian
model selection properties can be used for selection of the number of sources.
On the other hand, the Bayesian inference has limitation in tractability and
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Figure 1.3.: Examples of ROIs: the ROI of parenchyma (red), the ROI of heart
(green), and the ROI of background (blue).

full Bayesian solution for complex and realistic models is not possible and ap-
proximation has to be considered. In this work, we will take advantage of the
Variational Bayes (VB) approximation method [115, 39, 8, 97] which is used to
overcome these difficulties. The advantage of the VB method is that there is no
need for sampling which is substituted by iterations in the VB inference.

1.2.2. Source Separation in Medical Imaging

Various methods have been used in order to separate the original sources from
dynamic medical images. In clinical practice, the separation is done manually
by an expert physician. Hence; manual-based methods are described at first
and then we will continue to the automatized ones.

1.2.2.1. Manual Source Separation in Nuclear Medicine

In nuclear medicine, the analysis of image sequences is performed in few inter-
connected steps that will be discussed in the following paragraphs. The sepa-
ration is typically done manually by an expert physician who defines regions
of interests (ROIs) by drawing borders of the tissues of interest or their parts.
These ROIs are used for further analysis using, e.g., the Patlak-Rutland plot or
deconvolution.

Definition of Region of Interest The region of interest is, in manual medical
image analysis context, a selected region with specific tissue, see examples in
Figure 1.3: the ROI of parenchyma (red), the ROI of heart (green), and the
ROI of background (blue). The problem can be also formalized as

7



1. Introduction

ROI =
{

1 pixel belongs to the tissue of interest,
0 pixel does not belong to the tissue of interest.

(1.6)

In current practice, the selection of the ROI is usually performed manually
by a human operator [126]. The resulting TAC of the source is an integration
of the activity over the selected ROI; hence, in general the aim is to select such
part of the tissue that does not contain any activity from other tissues. It is
easy to imagine that this manually drawn ROIs can suffer from inaccuracy due
to overlapping or mixing of the sources and prone to errors [20]. The tendency
to define as small ROI as possible in an attempt to exclude other structures fails
in the case of weak and very noisy signal and sometimes it is almost impossible.
Many attempts have been made to automatically define ROIs and to avoid

manual interaction [73, 86]. Various methodologies are based on the factor
analysis model [11, 92] or cluster analysis approach [123, 24]; however, none of
them are generally accepted. There were attempts to use regression analysis
[74] to subtract the background as well as to use interpolation [35] which can
separate the whole organ but not its parts.

Input Function Estimation The input function is the concentration of a ra-
dioactive tracer in the arterial blood [53]. The extraction of the input function is
one of the step of manual analysis in dynamic nuclear medicine used in the diag-
nostic coefficients estimation. The input function is traditionally obtained from
blood sampling [44] which is very invasive and often inappropriate in practice.
A typical alternative practice is to select a ROI where clear blood or vascular
structure is present and the TAC estimated from this region (after background
correction) is assumed to be the input function. This step can be done manually
or automatically [21, 77, 128, 78]; however, such a structure may not be present
in the images. Recently, attempts were made to extract image-derived input
function as well [117, 3, 65]. All of these methods were reported to provide good
results in specific conditions and some of them are used by their authors but,
again, none has been generally accepted in general clinical practice.

Quantitative Analysis ROIs selection and input function estimation are pre-
requisites for quantitative analysis the result of which is a specific parameter rep-
resenting a functional aspect of a selected tissue. There are two main approaches
in dynamic renal scintigraphy: the Patlak-Rutland plot and the deconvolution
technique.

Patlak-Rutland plot [81, 66] is based on the assumption that a tissue or its
part is an integrator of the input activity. Assume that R(t) is the activity in
the tissue ROI in time t and P (t) is the activity in the blood. Then

R(t) = a

ˆ
P (t)dt+ bP (t), (1.7)
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Figure 1.4.: Examples of Patlak-Rutland plots with selected linear parts (red
lines).

where coefficient a denotes an ability of absorption of the tissue and coefficient
b denotes the influence of the background.
Dividing by P (t), the equation (1.7) can be rewritten as

R(t)
P (t) = a

´
P (t)dt
P (t) + b, (1.8)

which is a linear model of R(t)
P (t) as a function of

´
P (t)dt
P (t) . Estimation of coefficients

a and b allows to estimate the proportion of the activity belonging to the tissue
(a) and to the background (b). The estimation is performed on a manually
selected region of linear part of the plot, see Figure 1.4.
Limitations of the method are sensitivity to the ROI selection, as already

discussed, and in selection of the linear part of the Patlak-Rutland plot, see
[99].

Deconvolution technique is based on assumption that the TAC of a tissue,
R(t), arises as a convolution of the input activity, I(t), and tissue-specific kernel,
H(t), [64, 30, 33]. Mathematically,

R(t) =
T̂

0

I(T − t)H(t)dt, (1.9)

where T is the total time of the measurement. Since the functions R(t) and I(t)
can be measured, e.g., using ROI definition, the unknown convolution kernel
H(t) can be computed. The convolution kernel H(t) is used for evaluation of
diagnostic parameters [32].
However, the direct deconvolution methodology strongly depends on the ex-

pert, i.e. on proper tissue ROI selection, correct input function estimation, and
correct tissue background and noise subtraction [46].
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1.2.2.2. Automatic Blind Source Separation

Many attempts have been made to separate the measured signal automatically
or semi-automatically to counteract the difficulties of manual-based methods.
Thresholding methods, e.g., [116], are available; however, the thresholding is
generally unstable. The automated ROIs detection was studied in [35] based
on edge detection and contrast change detection; however, this work is focused
only on strong tissues with low distinction of overlap sources and background
subtraction using interpolation. The model of fuzzy ROI was established in [93]
within the FA model, and the quality of separation of renal scan based on this
model was discussed in [11] with promising results.
Clustering was successfully used in analysis of data from imaging modalities

such as PET or MRI. In [123], the clustering for segmentation by time-activity
curves is proposed. The algorithm segments the dynamic PET data into k
clusters, based on the least-square distance measure. The number of clusters, k,
has to be set manually. The least square fit is used in case of fMRI for dimension
reduction in [25]; however, further analysis is done by clustered component
analysis.
Since sources or at least their parts are clearly visible in images with high

signal-to-noise ratio, the separation problem can be solved using techniques such
as non-negative matrix factorization (NMF) [67, 41] or clustering-based methods
[24, 70], where, typically, a pixel which belongs only to a single source need to be
identified for each source to achieve uniqueness of solution [91]. However, such
conditions are not typically met in real world measurement. In scintigraphy,
the sources overlap with each other by their whole volume and the signal-to-
noise ratio is intentionally kept low to minimize the radiation dose applied to
patient. For this reason, models where the error part is taken into the account
are required in the BSS of medical image data. Widely used model is the FA
model [19]. The FA was used as a preprocessing for manual methods [2], or as
a stand-alone method, e.g., in PET of the heart [62] or in renal scintigraphy
[97, 98] where a biologically reasonable model was established and solved using
the VB method.

1.3. Aim of the Work

The aim of this work is to study and extend blind source separation methodology
with focus on blind source separation of scintigraphic image sequences. For this
reason, we select the Variational Bayes methodology as the most, in our opinion,
perspective way for inference of a wide range of blind source separation models.
The main aims of this work are:

• to transform the knowledge from nuclear medicine analysis (Section 1.2.2.1)
into the BSS methodology, into the form of prior distribution for the
Bayesian BSS,
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Figure 1.5.: Development-process of each method for medical data analysis.

• to develop a methodology for inference of these models,

• to test and to compare derived methods on real data from dynamic renal
scintigraphy,

• to apply derived methods on other problems of BSS.

1.3.1. Methodology of Method Development

Development of methods for analyzing medical data is extremely difficult since
the successful method must consider all uncertainty that could occur in medical
practice such as noise and artifacts of an imaging method, non-physiological
behavior or position of scanned tissues, or even completely rare cases such as
three kidneys [105]. Hence, we would like to formalize a general approach how
we develop and validate methods for dynamic medical image analysis in this
work. The development-process is displayed in Figure 1.5.
Based on the considered application domain and properties of real data acqui-

sition, a set of assumptions can be created. The assumption set should reflect
essential attributes of the data such as properties of noise, elasticity and move-
ment of observed sources, the number of sources, the character of TACs, and
others. Then, the assumptions are transformed into the mathematical model
for which a method of parameter inference is derived.
The derived method will be validated in two stages. First, we validate each

method on a synthetically generated data (the phantom data) generated from
the assumed mathematical model. Correct inference of the parameters on this
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data validates correct implementation of the method and suitability of the re-
quired approximations. Second, we use real data to validate the performance
of proposed methods in realistic conditions. Performance of the method on
this data indicates validity of the selected assumptions for the real application.
Very often, the validation on real data is very difficult since no ground truth is
available and methodology for this validation should be developed.

1.4. Layout of the Work
The work is organized as follows:

Chapter 2: The basic Bayesian theory that is relevant to blind source separa-
tion is introduced. The focus will be given to the Variational Bayes method used
through the whole work and to the automatic relevance determination princi-
ple for which illustrative examples are introduced. A blind source separation
problem is studied and matrix formulation of this problem is introduced.

Chapter 3: Prior models of the noise within the BSS problem are studied.
Prior models of the source images are studied with emphasis on models enfor-
cing sparsity of the source images. Prior models of time-activity curves follow
with emphasis on convolution parameterization of the TAC. Prior models for
the parameters of the convolution parametrization (i.e. the convolution kernels
and the input function) are introduced. For all priors, the Variational Bayes
method was used to derive equations for shaping parameters of the correspond-
ing posterior distributions.

Chapter 4: Priors from the previous chapter are combined to obtain vari-
ous blind source separation methods with different purpose and performance.
The initialization, estimation of number of sources, and numerical problems are
discussed. State of the art methods appropriate for blind source separation
of dynamic image data are introduced and tested together with the proposed
methods on a synthetic phantom dataset.

Chapter 5: Key application area of this work is dynamic renal scintigraphy.
Here, the qualitative evaluation of the separation of data from dynamic renal
scintigraphy is discussed and illustrated. Then, quantitative experiments with
large datasets are conducted with both, the proposed and state of the art met-
hods.

Chapter 6: Experiments on various image sequence data are conducted. Speci-
fically, data from dynamic positron emission tomography, functional magnetic
resonance imaging, and hyperspectral imaging are used to study behavior of the
proposed algorithms under various conditions.
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Chapter 7: We summarize the main contributions of the work and point some
possible and interesting ways for further research which are demonstrated on
preliminary studies.
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2. Approximate Bayesian Inference

Bayes’ theorem has come back from the cemetery to which it
has been consigned.
(Jerome Cornfield)

Bayesian probability theory [13, 50] offers a theoretical background that allows
to deal with uncertainty and our beliefs and knowledge. In this chapter, we will
describe the basics of Bayesian theory. Since the inference is often intractable, we
will continue with approximation methods with special focus on the Variational
Bayes approximation.

2.1. Bayesian Theory

The probability density function of continuous random vector θ, f(θ), obeys

f(θ) =0, ∀θ, (2.1)ˆ
Θ
f(θ)dθ =1. (2.2)

Assume that D is the measured data and θ ∈ Θ represents parameters of the
data model where Θ is the space of parameters θ. A parametric probabilistic
model of the data can be given as density function f(D|θ) conditioned by model
parameters θ. Our beliefs and knowledge about these parameters θ is expressed
using prior distribution f(θ). Probability distribution over parameters θ after
considering the data D is expressed by posterior density function f(θ|D). The
form of the posterior can be found using the Bayes theorem

f(θ|D) = f(θ, D)
f(D) = f(D|θ)f(θ)´

Θ f(D|θ)f(θ)dθ . (2.3)

The term
´

Θ f(D|θ)f(θ)dθ is the normalizing constant and can be omitted using
proportional equality as

f(θ|D) ∝ f(D|θ)f(θ), (2.4)

while the evaluation of the normalizing constant is often very expensive or even
intractable.
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The moment of a function of parameter θ, g(θ), is defined as

Ef(θ|D) (g(θ)) =
ˆ

Θ
g(θ)f(θ|D)dθ, (2.5)

which will be used in a simple notation (when obvious) as ĝ(θ).

2.1.1. Choice of Prior Distribution
The choice of prior distribution, f(θ), is a subjective and important task when
the model is designed [97, 76]. Generally, when the data are expected to be more
informative, the prior distribution is chosen as less informative to minimize its
influence on posterior distribution f(θ|D).
In this work, we need to consider the practical impact of chosen prior on

tractability of a problem, hence, the prior distributions will be chosen:

1. to supplement the data in cases where the data are demanding or the
model is poorly defined which is called regularization via the prior [97],

2. to reflect various restrictions on the model parameters,

3. to express the ignorance about the model parameters, e.g., non-informative
prior in case of the information data is expected.

Typically, we will work with conjugate priors. In inference of parametric dis-
tributions, all distributions have a known functional form determined by its
shaping parameters. It is beneficial when the prior functional form fconjug(θ)
remains the same in posterior distribution after application of the Bayes rule:

fconjug(θ|D) ∝ f(D|θ)fconjug(θ). (2.6)

The distribution fconjug is known as self-replicating [13] or conjugate distribution
to observation model [97].

2.1.2. Model Selection
We might wish to select a model from a set of models for the given data. In
Bayesian theory, unknown model is treated as unknown variable and under this
designation belongs task such as structure learning, cardinality, or dimension-
ality inferring [8]. Here, consider a simple task of decision between two models,
M1(θ) andM2(θ), for the given data D. The probability of data under the given
model and its parameters is f (D|M1(θ)) or f (D|M2(θ)). Then, the Bayes rule
provides a way for computing the probability of the model in the light of the
observed data as

f (Mi(θ)|D) ∝ f (D|Mi(θ)) f (Mi(θ)) , ∀i, (2.7)

where f (Mi(θ)) is the prior of the model Mi(θ).
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2.2. Approximate Bayesian Inference

Bayes rule (2.3) provides the theoretical update of distribution over parameters
with incoming data. However, these integrals are analytically intractable in
most cases and numerical integration is not suitable for high-dimensional inte-
grals. For this reason, various approximate methods for solving this issue were
proposed.

2.2.1. Maximum a Posteriori Method

The simplest way to approximate the posterior distribution is to approximate it
by the Dirac delta function δ. Maximum a posteriori method (MAP) is closely
related to the maximum likelihood method [13]; however, prior information can
be incorporated into an estimate using straightforward application of the Bayes
theorem (2.3) in MAP as

θ̂MAP = arg max
θ

f(d1, . . . ,dn|θ)f(θ), (2.8)

where f(θ) is prior distribution of parameter θ. Then, MAP approximates
f(θ|D) as

f(θ|D) ≈ δ (θ − θMAP) . (2.9)

2.2.2. Laplace Approximation

The method is useful approximation of the density function f(θ|D) at the MAP
estimate θ̂ using Normal distribution as

f(θ|D) ≈ N
(
θ̂,−H−1

)
, (2.10)

where the matrix H(θ̂) is Hessian matrix defined as

H
(
θ̂
)
i,j

= ∂2 log f(θ|D)
∂θi∂θj

∣∣∣∣∣
θ=θ̂

, i, j = 1, . . . , p, (2.11)

for p-dimensional vector θ. See [60, 8] for more details.

2.2.3. Markov Chain Monte Carlo Method

Markov Chain Monte Carlo (MCMC) approximation is a strategy for approxi-
mation of a posterior density function using histogram constructed from a se-
quence of random samples of variable θ,

{
θ(1), . . . ,θ(n)

}
. This sequence is called

Markov Chain if

f
(
θ(n)|θ(n−1), . . . ,θ(1)

)
= f

(
θ(n)|θ(n−1)

)
, (2.12)
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i.e. if the nth sample θ(n) is generated from conditional distribution f
(
θ(n)|θ(n−1)

)
depending only on previous state θ(n−1).
Then, the expectation of the function g(θ) under the density function f(θ|D)

using generating of samples θ(i) ∼ f(θ|D) can be computed as unbiased estimate
using N samples as

IN (g) = 1
N

N∑
i=1

g(θ(i)) '
ˆ

Θ
g(θ)f(θ|D)dθ. (2.13)

The more samples are taken, the more reliable estimates are obtained. This
approach has typically computational problems when the dimension of a problem
is high.

2.2.4. Expectation Maximization Algorithm
The expectation maximization (EM) algorithm [28] is an iterative approach for
estimation of a subset of model parameters of interest while the model also de-
pends on unobserved latent variables. The EM algorithm provides expectation
step, which computes posterior distribution over latent variables using estimates
of parameters of interest, and maximization step, which computes model param-
eters that maximizing the log-likelihood found in the expectation step.
Formally, suppose notation (t) for number of iteration and two-dimensional

parameter θ = [θ1, θ2]. Then:

E-step: f (t+1) (θ1|D) ≈ f
(
θ1|D, θ̂2

(t)
)
,

M-step: θ̂2
(t+1) = arg maxθ2

´
θ1
f (t+1) (θ1|D) ln f (θ1, θ2, D) dθ1.

2.3. Variational Bayes Approximation
Variational Bayes (VB) approximation is an effective way to design tractable
inference for parametric probabilistic models. The key step is to replace the
intractable integration in marginalization. We will review the basics of the VB
method [97, 8] (also known as ensemble learning [76]).
The task is to find optimal function f̆(θ|D) ∈ Fc, where θ = [θ1, . . . , θq] and

Fc is the space of conditionally independent distributions,

Fc =
{
f(θ1, . . . , θq|D) | f(θ1, . . . , θq|D) =

q∏
i=1

f(θq|D)
}
. (2.14)

The number of parameters is assumed to be q > 1. Since we try to find approx-
imate function f̆(θ|D), it is necessary to measure the proximity of the f̆(θ|D)
to the true function f(θ|D). It was shown that optimal loss function is logarith-
mic when the task is to extract maximum information from the data [12] which
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leads to use of Kullback-Leibler divergence (KLD) [63] (also known as informa-
tion divergence or relative entropy) between approximative and true function.
The KLD is defined as

KLD
(
f̆(θ|D)||f(θ|D)

)
=
ˆ

Θ
f̆(θ|D) ln f̆(θ|D)

f(θ|D)dθ. (2.15)

KLD(.||.) ≥ 0 and KLD(.||.) = 0 if arguments are equal almost everywhere.
Moreover, KLD(f̆ ||f) 6= KLD(f ||f̆). In the following text, we will use the
version (2.15) in VB approximation.
The VB theorem for distributional approximation is then [97]:

Theorem 1. Let f(θ|D) is the posterior distribution of the multivariate param-
eter θ = [θ1, . . . , θq]. Let f̆(θ|D) be an approximate distribution form a set of
conditionally independent distribution for θ1, . . . , θq such that

f̆(θ|D) =
q∏
i=1

f̆(θi|D). (2.16)

Then, the minimum of the KLD

f̃(θ|D) = arg min
f̆(θ|D)

KLD
(
f̆(θ|D)||f(θ|D)

)
(2.17)

is reached for

f̃(θi|D) ∝ exp
(
Ef̃(θ/i|D) (ln f(θ, D))

)
, i = 1, . . . , q, (2.18)

where θ/i denotes the complement of θi in θ. The f̃(θi|D) will be refereed to as
the VB-marginal.

The proof of the Theorem 1 can be found e.g. in [97] or in [76]. The ap-
proximation (2.18) is deterministic but not unique. The approximation (2.18)
forms a set of implicit equations that leads naturally to an iterative algorithm,
see iterative VB (IVB) Algorithm 2.1.
The IVB algorithm is closely related to the EM algorithm, Section 2.2.4, and

is also known as the Variational EM algorithm [9].

Remark 2. The reverse order of arguments in KLD, equation (2.15), leads to
the Expectation-Propagation algorithm, see [75, 12] for details. However, this
approach is not suitable for large dimensional problems.

2.3.1. Review of the Variational Bayes Method

We review the systematic way for using the VB approximation (2.18) for Bayesian
inference, the VB method [96, 97].
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Algorithm 2.1 Iterative Variational Bayes Algorithm.
The following steps monotonically decrease KLD in Theorem 1:

1. Set the initialization f̃ [0](θ|D) and counter n = 1.

2. While stopping rule is not met, run the following steps:

a) Compute update of the VB-marginal f̃(θi|D) at the nth iteration for
i = 1, . . . , q using (2.18):

f̃ [n](θi|D) ∝ exp
ˆ

Θ/i
f̃ [n−1](θ/i|D) ln f(θ,D)dθ/i, (2.19)

b) n = n+ 1.

3. Report estimates θ̂i for i = 1, . . . , q.

Step 1: Choose a Model

Choice of the joint distribution f(θ, D); i.e. observations model of the data,
f(D|θ), and prior model of parameters, f(θ); have to be done.

Step 2: Parameters Separation

Partition of θ into q sub-vectors is a crucial test if the VB approximation is
applicable to the selected Bayesian model. It has to ensure that it is possible to
expand natural logarithm ln f(θ, D) as (for, e.g., q = 2)

ln f(θ, D) = f1(θ1, D)f2(θ2, D), (2.20)

where functions f1, f2 on the right side are vectors of compatible dimensions. If
so, the f(θ, D) is said to be in separable-in-parameters family. If this condition
does not hold, the VB approximation is not suitable for the model.

Step 3: VB-marginals

Direct application of the VB theorem to ith parameter, i = 1, . . . , q, is straight-
forward:

f̃(θi|D) ∝ exp
[
Ef̃(θ/i|D)(ln f(θ, D))

]
∝ exp

fi(θi, D)
q∏

j=1,j 6=i

̂gj(θj , D)

 ,
(2.21)

where symbol ĝ(..) denotes the VB-moments.
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2.3. Variational Bayes Approximation

Step 4: Identification of Standard Distributional Forms

A standard functional form of (2.21) has to be identified. The VB-moments of
̂gj(θj , D) are taken as constants. The standard forms are

f̃(θi|D) = fstd(θi|ϑi), (2.22)

where fstd is the standard distributional form (examples are listed in Appendix
A) and ϑi is a set of parameters of the standard form, called the shaping pa-
rameters.

Step 5: VB-moments Formulation

The required VB-moments of ̂gj(θj , D) are functions of shaping parameters and
typically can be listed in standard parametric distributions, see Appendix A.
The equations for the shaping parameters together with those for the VB-

moments form a set of VB-equations to be solved.

Step 6: VB-equations Reduction

This step is technical and we present it in order to be consistent with [97]. The
set of VB-equations is typically implicit; however, a subset could have an explicit
solution or could be simplified.

Step 7: Run IVB Algorithm

The IVB algorithm, Algorithm 2.1, was already described. Special care should
be given to the choice of initial shaping parameters. They can be set randomly
[15]; however, a good problem-specific initial guess can lead to better and faster
solution since this algorithm is gradient-based and converges only to a local
minimum. The number of iterations should be also carefully considered and
will be discussed in the following text in concrete cases.

Step 8: Report VB-marginals

The results of the IVB algorithm are in the form of shaping parameters of the
standard forms and related VB-moments.
Remark 3. We will use the steps of the VB method in this work; however, we
will not refer to their numbers in text but we will use the terminology defined
here which helps to identify the individual steps.

2.3.2. Message Passing in Variational Bayes Method
The implementation of the IVB algorithm is often presented in the form of
message passing [119] which allows to generalize the algorithm to almost arbi-
trary model. We will discuss a special case of the message passing idea between
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Figure 2.1.: Graphical hierarchical prior model for demonstration of communi-
cation flow within the IVB algorithm.
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Figure 2.2.: Example scheme of the IVB algorithm for the graphical hierarchical
prior models from Figure 2.1.

the VB-marginals within the IVB algorithm. Consider hierarchical prior model
where the data D is modeled using 2 parameters: θ1 and θ2, see the hierarchical
model in Figure 2.1, left. Formally, the likelihood and the prior models are

f(D|θ1, θ2), f(θ1), f(θ2). (2.23)

Following the VB method, the natural logarithm of the joint distribution is
expanded as

ln f(D, θ1, θ2) = ln f(D|θ1, θ2) + ln f(θ1) + ln f(θ2). (2.24)

We impose the conditional independence between parameters θ1 and θ2. Then,
the term ln f(θ2) is considered as a constant in the inference for parameter
θ1 while moments of θ2 are used for VB-marginal of the parameter θ1 in the
term ln f(D|θ1, θ2), see the illustration of the IVB algorithm for this example in
Figure 2.2a, and vice versa for the parameter θ2.
Consider now another similar hierarchical model where the data D is modeled

using 2 parameters: θ1 and θ2, however, the parameter θ2 has one additional
prior hyper-parameter υ, see graphical model in Figure 2.1, right. Formally, the
likelihood and the prior models are

f(D|θ1, θ2), f(θ1), f(θ2|υ)f(υ). (2.25)
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a x

ra rx
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α0, β0 γ0, δ0

Figure 2.3.: Graphical hierarchical prior model of the scalar multiplicative de-
composition (left) and scalar multiplicative decomposition with
ARD prior (right).

The natural logarithm of the joint distribution is

ln f(D, θ1, θ2, υ) = ln f(D|θ1, θ2) + ln f(θ1) + ln f(θ2|υ) + ln f(υ) (2.26)

Let us focus on the inference of parameter θ2. Since hyper-parameter υ appears
only in the model of the parameter θ2, the only VB-marginal that needs the
moments of υ is the VB-marginal f̃(θ2|D) and similarly, the VB-marginal f̃(υ|D)
needs only the moments of θ2 as demonstrated in Figure 2.2b.
The inference of the parameter θ2 and its hyper-parameter υ provides only

moments ̂g(θ2, D) for the remaining VB-marginals of the IVB algorithm. This
is demonstrated using dashed circle in Figure 2.2b. This implies significant sim-
plification of software implementation of the IVB algorithm since various priors
for the parameters influence only a small part of the algorithm. Implementa-
tion via the message passing idea thus allows to write a modular software with
clearly defined interface.

2.3.3. Scalar Example
We will demonstrate the VB method on a simple scalar example as proposed in
[97]. Consider scalar model

d = ax+ e, (2.27)

where the term ax is supposed to be the signal and the term e is supposed to be
the noise. To separate the signal from the noise, the model must be regularized
since infinitely many solutions are possible otherwise. Let us assume that e is
normally distributed, see Appendix A.1, e ∼ Ne(0, re), then

f(d|a, x, re) = Nd(ax, re). (2.28)

Even with this assumption, the solution holds âx̂ = d is as good as those with
rotation l: (âl)

(
l−1x̂

)
= d. Further selection of prior models for a and x is

necessary to achieve unique solution.
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2. Approximate Bayesian Inference

Suppose prior models for a and x to be

f(a|ra) =Na(0, ra), (2.29)
f(x|rx) =Nx(0, rx), (2.30)

with given ra and rx, see graphical model in Figure 2.3, left. Then, the VB
theorem yields the VB-marginals:

f̃(a|d) ∝ exp
(
−1

2a
2(x̂2r−1

e + r−1
a )− a(dx̂r−1

e )
)
, (2.31)

f̃(x|d) ∝ exp
(
−1

2x
2(â2r−1

e + r−1
x )− x(dâr−1

e )
)
, (2.32)

where standard distributional forms are easily recognized to be Normal distri-
butions:

f̃(a|d) =Na(µa, σa), (2.33)
f̃(x|d) =Nx(µx, σx), (2.34)

with shaping parameters

σa =(x̂2r−1
e + r−1

a )−1, µa =σadx̂r−1
e , (2.35)

σx =(â2r−1
e + r−1

x )−1, µx =σxdâr−1
e . (2.36)

The required VB-moments of the Normal distribution are

â =µa, â2 =µ2
a + σa, (2.37)

x̂ =µx, x̂2 =µ2
x + σx. (2.38)

The set of equations (2.35)–(2.38) can be solved in different ways as shown in
Figure 2.4.

1. Exact solution can be found for this scalar example, see [97], in Figure
2.4, red cross.

2. MAP solution for this scalar problem, see [97], in Figure 2.4, red star.

3. Using IVB algorithm, Figure 2.4, full line with final estimate by circle.

4. Using a method for solution of linear equation problem, e.g. conjugate
gradients (CG):

µa
σa
µx
σx

 = diag




(x2r−1
e + r−1

a )
(x2r−1

e + r−1
a )

(a2r−1
e + r−1

x )
(a2r−1

e + r−1
x )




dxr−1

e

1
dar−1

e

1

 , (2.39)

Figure 2.4, dashed line with final estimate by circle.

We conclude that the convergence is reached much faster using the IVB algo-
rithm than using the CG solution for this particular example.
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Figure 2.4.: VB-approximation for the scalar decomposition where d = 2, re = 1,
ra = 10, rx = 10. The star denotes MAP solution, the full line
denotes solution using IVB algorithm, and the dashed line denotes
solution using conjugate gradients algorithm.
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Figure 2.5.: Example of the normal distribution N (1, 1), blue line, and the trun-
cated normal distribution tN (1, 1, [0,∞]), red line.

2.3.3.1. Solution in Positive Domain

Consider again scalar model (2.27); however, assume the parameters a and x to
be positive. Then, the priors of a and x, (2.29)–(2.30), should be changed in
order to reflect positivity. Here, we use the truncated normal distribution for
this purpose and reformulate the prior distribution for these parameters as

f(a|ra) =tNa(0, ra, [0,∞]), (2.40)
f(x|rx) =tNx(0, rx, [0,∞]), (2.41)

where tN denotes the truncated normal distribution defined in Appendix A.1.3
on defined support. An example of the truncated normal distribution is given
in Figure 2.5. Then, the VB-marginals have the standard distributional forms
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2. Approximate Bayesian Inference

of the prior and are recognized to be

f̃(a|d) =tNa(µa, σa, [0,∞]), (2.42)
f̃(x|d) =tNx(µx, σx, [0,∞]), (2.43)

where the shaping parameters are computed using the same equations as in
the previous case, (2.35)–(2.36). The difference is in computation of the VB-
moments which are non-trivial and can be found in Appendix A.1.3. Using
notation from Appendix A.1.4, the VB-moments are computed as

â =MtN
1 (µa, σa, 0,∞), (2.44)

â2 =MtN
2 (â, µa, σa, 0,∞), (2.45)

x̂ =MtN
1 (µx, σx, 0,∞), (2.46)

x̂2 =MtN
2 (x̂, µx, σx, 0,∞). (2.47)

2.4. Automatic Relevance Determination
Automatic relevance determination (ARD) principle [15, 114, 120] is based on
joint estimation of the parameters of the prior together their variances in the
VB inference. Specifically, the parameter θ has an unknown precision υ which
is assumed to have conjugate Gamma prior

f(θ|υ) =Nθ(0, υ−1), (2.48)
f(υ) =Gυ(α0, β0), (2.49)

with scalar prior parameters α0, β0. The ARD principle is an effect when the
expected value of the prior precision υ̂−1 approaches to zero which also tighten
the expected value of the parameter of interest, θ̂, close to zero.
We will demonstrate this principle on scalar decomposition example from

Section 2.3.3.

2.4.1. Relation to Model selection
The ARD principle can be seen as a special version of model selection, Section
2.1.2. Consider a problem of selection between two models:

M1 :θ = [θ1, θ2] , (2.50)
M2 :θ = [θ1, 0] . (2.51)

Let us focus on parameter θ2. In the sense of ARD, we would select the prior
for θ2 as

f (θ2|υ2) = Nθ2

(
0, υ−1

2

)
(2.52)

with Gamma prior for υ2 as f (υ2) = Gυ2 (α0, β0). Joint estimation of parameter
of interest, θ2, and its precision, υ−1

2 , on the VB method yields υ−1
2 ≈ 0 resulting

in selection of the model M2 or υ−1
2 � 0 resulting in selection of the model M1.
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2.4. Automatic Relevance Determination

2.4.2. Scalar Example with ARD
Consider again the scalar example (2.27) with e ∼ Ne(0, re), however, the prior
model is now the ARD prior for a and x as follows:

f(d|a, x, υa, υx) =Nd(ax, re), (2.53)
f(a|υa) =Na(0, υ−1

a ), (2.54)
f(υa) =Gυa(α0, β0), (2.55)

f(x|υx) =Nx(0, υ−1
x ), (2.56)

f(υx) =Gυx(γ0, δ0), (2.57)

with given prior parameters α0, β0, γ0, δ0, see graphical model in Figure 2.3,
right. Then, the VB theorem yields the VB-marginals:

f̃(a|d) ∝ exp
(
−1

2a
2(x̂2r−1

e + υ̂a)− a(dx̂r−1
e )

)
, (2.58)

f̃(υa|d) ∝ exp
((1

2 + α0 − 1
)

ln υa −
(
â2

2 + β0

)
υa

)
, (2.59)

f̃(x|d) ∝ exp
(
−1

2x
2(â2r−1

e + υ̂x)− x(dâr−1
e )

)
, (2.60)

f̃(υx|d) ∝ exp
((1

2 + γ0 − 1
)

ln υx −
(
x̂2

2 + δ0

)
υx

)
, (2.61)

which are recognized to be in standard distributional forms:

f̃(a|d) =Na(µa, σa), (2.62)
f̃(υa|d) =Gυa(α, β), (2.63)
f̃(x|d) =Nx(µx, σx), (2.64)
f̃(υx|d) =Gυx(γ, δ), (2.65)

with shaping parameters

σa =(x̂2r−1
e + υ̂a)−1, µa =σadx̂r−1

e , (2.66)

α =1
2 + α0, β = â2

2 + β0, (2.67)

σx =(â2r−1
e + υ̂x)−1, µx =σxdâr−1

e , (2.68)

γ =1
2 + γ0, δ = x̂2

2 + δ0 (2.69)

The required VB-moments are

â =µa, â2 =µ2
a + σa, (2.70)

x̂ =µx, x̂2 =µ2
x + σx, (2.71)

υ̂a =α

β
, υ̂x =γ

δ
. (2.72)
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2.4.2.1. Positive Solution Enforcement

Consider again the scalar example (2.27) with the ARD prior; however, now
with positivity restriction using truncated normal distribution

f(a|ra) =tNa(0, υ−1
a , [0,∞]), (2.73)

f(x|rx) =tNx(0, υ−1
x , [0,∞]). (2.74)

Then, the VB-marginals reflect the form of prior and are recognized as

f̃(a|d) =tNa(µa, σa, [0,∞]), (2.75)
f̃(x|d) =tNx(µx, σx, [0,∞]), (2.76)

where shaping parameters are computed using the same equations as in the pre-
vious case, (2.66)–(2.68) with different computation of the VB-moments which
are non-trivial and can be found in Appendix A.1.3. Using notation from Ap-
pendix A.1.4, the moments are computed as

â =MtN
1 (µa, σa, 0,∞), (2.77)

â2 =MtN
2 (â, µa, σa, 0,∞), (2.78)

x̂ =MtN
1 (µx, σx, 0,∞), (2.79)

x̂2 =MtN
2 (x̂, µx, σx, 0,∞). (2.80)

2.4.3. Influence of Prior Selection on Scalar Decomposition
Performance of the introduced methods for scalar decomposition is studied here.
The results for fixed prior, Section 2.3.3, and for ARD prior, Section 2.4.2, are
given using both, unrestricted support and support truncated to positive values.
The results are given in Figure 2.6:

1. No positivity is enforced during VB and ARD scenarios. The results are
given in Figure 2.6 using the black line (basic VB scenario) and the blue
line (ARD scenario). The results well correspond with the inference bound
in VB scenario [97],

d >
√
re, (2.81)

and the inference bound in ARD scenario [101],

d > 2
√
re. (2.82)

Note that the ARD property enforces sparse estimates more aggressively
then basic solution. This may be a consequence of the variance underes-
timation of the VB approximation [71].

2. The positivity is enforced during IVB algorithms using truncation de-
scribed in Appendix A.1.3. Figure 2.6 shows that in case of low signal,
the basic VB solution (magenta line) has tendency to overestimation which
is suppressed in the case of ARD priors (green line).
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Figure 2.6.: Product of estimates â and x̂ in increasing data term d and constant
noise term re = 1 for scalar examples from Sections 2.3.3 and 2.4.2.
The settings for VB scalar example without ARD priors (black and
magenta lines) are ra = rx = 10.

2.5. Extension to Matrix Decomposition

Here, we expand the scalar example from Section 2.3.3 into the matrix form
to explain the matrix decomposition which is used in the remainder of this
work. Consider observation model (1.1), D = AXT + E, where D ∈ Rp×n,
A ∈ Rp×r, X ∈ Rn×r, and E ∈ Rp×n. For the isotropic Gaussian noise model
[115] ei,j ∼ N(0, ω−1), the prior data model is

f (di,j |A,X, ω) = Ndi,j

(
r∑

k=1
ai,kxj,k, ω

−1
)

(2.83)

which may be reduced to scalar model (2.28) for p = n = r = 1.
Let us focus on modeling of the matrix A while the same approach can be

used for the matrix X. The term (2.83) contains combinations of elements of
the matrix A; hence, the standard form of the VB-marginals fits to the form
of the multivariate normal distribution, see Appendix A.1.1. Here, we need to
define an ordering of the elements of the matrix A = [a1, . . . ,ar] which we do
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2. Approximate Bayesian Inference

using vectorization:

vec(A) =


a1
a2
...

ap

 ≡ a ∈ Rpr×1. (2.84)

Then, the prior distribution for the matrix A can be written as the multivariate
normal distribution

f(A) = f(a) = Na (µa,Σa) = 1
(2π)

pr
2 |Σa|

1
2
×

× exp
(
−1

2 (a − µa)T Σ−1
a (a − µa)

)
, (2.85)

where Σa ∈ Rpr×pr is the covariance matrix.
Since the covariance matrix is extremely large, we can consider some further

assumptions. For example, if the pixels of each source image ak, k = 1, . . . , r,
would be independently identically distributed (i.i.d.), the covariance matrix
could be rewritten as

Σa = ΣA ⊗ Ip, (2.86)
where Ip is the identity matrix of given size, ΣA ∈ Rr×r is diagonal matrix, and
symbol ⊗ denotes Kronecker product defined as

A⊗B =

 a11B · · · a1rB
... . . . ...

ap1B · · · aprB

 (2.87)

for arbitrary matrices A and B. Generalization of (2.86) is model

Σa = ΣA ⊗ ΦA, (2.88)

where ΦA ∈ Rp×p is symmetric positive definite matrix; hence, two matrices
of the size r × r and p × p is needed instead of one matrix of the size pr × pr.
Using Kronecker structure of the covariance matrix Σa, we can rewrite the prior
distribution for the matrix A using matrix normal distribution, see Appendix
A.1.2, as

NA(µA,ΦA ⊗ ΣA) = 1
(2π)

pr
2 |ΦA|

r
2 |ΣA|

p
2
×

× exp
(
−1

2tr
[
Φ−1
A (A− µA)(Σ−1

A )T (A− µA)T
])
, (2.89)

where tr(.) denotes trace of a square matrix defined as

tr(B) =
n∑
j=1

bjj . (2.90)
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Note that the order of the covariance matrices in multivariate normal distribu-
tion of the vectorized form of the matrix A is ΣA ⊗ΦA while the order of these
matrices in the matrix normal distribution is ΦA ⊗ ΣA in this notation.
The following equalities hold for compatible matrices A, B, and C and identity

matrix I and will be useful in the following text:

tr(A) =tr
(
AT
)
, tr

(
ATB

)
=vec(A)Tvec(B), (2.91)

tr(AB) =tr(BA), vec(ABC) =
(
CT ⊗A

)
vec(B), (2.92)

(A⊗B)T =AT ⊗BT , vec(ABC) =
(
A⊗ CT

)
vec

(
BT
)
, (2.93)

(A⊗B)−1 =A−1 ⊗B−1, vec(ABC) = (I ⊗AB) vec(C). (2.94)

2.5.1. Matrix Decomposition
The observation model (2.83) can be rewritten for the whole data matrix D as

f(D|A,X, ω) = ND
(
AXT , ω−1Ip ⊗ In

)
, (2.95)

where Ip is the identity matrix of the given size and ω−1 denotes an unknown
common variance of the noise. The observation model must be accompanied
with the prior model in the VB method. The parameters A, X, and ω are
modeled in the same way as in [97]:

f(A) =NA (0p,r, Ip ⊗ Ir) , (2.96)
f(X) =NX (0n,r, In ⊗ Ir) , (2.97)
f(ω) =Gω(ϑ0, ρ0). (2.98)

Here, the prior parameters ϑ0 and ρ0 can be chosen to yield non-informative
prior.
The logarithm of the the joint distribution is then

ln f(D,A,X, ω) = pn

2 lnω − 1
2tr

(
(D −AXT )(D −AXT )T

)
+

− 1
2tr(ATA)− 1

2tr(XXT ) + (ϑ0 − 1) lnω + ρ0ω + γ, (2.99)

where γ stands for all terms that are independent of model parameters.
From this step, we will continue only with inference for the parameter A for

simplicity and clarity while inference for remaining parameters is analogical.
Application of the VB theorem (2.18) on the logarithm of the joint distribution

results in the following VB-marginal for parameter A:

f̃(A|D) ∝ exp
[
−1

2 ω̂tr(−2AX̂TDT )− 1
2 ω̂tr(A(X̂TX)AT ))− 1

2tr(AAT )
]
,

(2.100)
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The VB-marginal is recognized to has following matrix normal distribution stan-
dard form:

f̃(A|D) = NA (µA,ΦA ⊗ ΣA) , (2.101)

The shaping parameters of the standard forms are

ΦA ⊗ ΣA =
(
Ip ⊗ ω̂X̂TX + Ip ⊗ Ir

)−1
, (2.102)

µA = ΣA

(
ω̂DX̂

)
ΦA, (2.103)

Here, we can use the advantage of the Kronecker product and expand the right
side of the equation (2.102) as(
Ip ⊗ ω̂X̂TX + Ip ⊗ Ir

)−1
=
(
Ip ⊗

(
ω̂X̂TX + Ir

))−1
= Ip ⊗

(
ω̂X̂TX + Ir

)−1
,

(2.104)
where matrices ΦA and ΣA can be easily identify as

ΦA =Ip, (2.105)

ΣA =
(
ω̂X̂TX + Ir

)−1
. (2.106)

Here can be seen the advantage of the Kronecker form of the VB-marginal where
only inversion of the r × r size matrix need to be inverted instead of pr × pr
size matrix. The shaping parameters are accompanied with the necessary VB-
moments according to the Appendix A.1.2:

Â =µA, (2.107)

ÂTA =µTAµA + tr (ΣA) ΦA. (2.108)

2.5.1.1. Truncation to Positive Domain

Consider replacement of the prior (2.96) by the truncated prior with positive
support

f(A) = tNA (0p,r, Ip ⊗ Ir, [0,∞]) . (2.109)

Then, the posterior distribution has also the form of the truncated normal dis-
tribution as

f̃(A|D) = tNA (µA,ΦA ⊗ ΣA, [0,∞]) , (2.110)

and moments Â and ÂTA needs to be evaluated; however, they are not available
in closed-form. Hence, in this case, we used approximation using independence
[97] as

f̃(A|D) = f̃(a|D) ≈ tNa (µa,diag (σa) , [0,∞]) , (2.111)
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where σa = diag (ΦA ⊗ ΣA)−1. Note that this approximation remove all corre-
lation between pixels in the matrix A, thus, (2.111) can be rewritten as

f̃(a|D) ≈
pr∏
l

tNal (µa,l, σa,l, [0,∞]) , (2.112)

with moments evaluated according to the scalar truncated normal distribution
given in Appendix A.1.3 reaching Â and ÂTA after rearranging. Using notation
from Appendix A.1.4, the moments are computed as

Â =MtN
1 (µA,ΦA ⊗ ΣA, 0,∞) , (2.113)

ÂTA =MtN
2

(
Â, µA,ΦA ⊗ ΣA, 0,∞

)
. (2.114)
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3. Prior Models in Superposition
Problem

Newton spoke of God in his book. I have perused yours but
failed to find His name ever once. Why?

(Napoleon)
Sir, I have no need of that hypothesis.

(Pierre Simon Laplace)

In this chapter, we construct a prior model of each parameter in the BSS
problem, i.e. incorporate additional informations using hierarchical priors. Re-
call the BSS problem (1.1), D = AXT +E, where D stands for measured data,
A stands for source images, X stands for source TACs, and E stands for error
term, mostly noise.
We will use the ability of the VB method to combine various prior models of

model parameters in an arbitrary order which is schematically demonstrated in
Figure 3.1. Here, the data is modeled hierarchically using the image, weight,
and noise priors, i.e. f(A), f(X), and f(E).
Bayesian estimation of all unknown parameters of the BSS model (1.1) re-

quires evaluation of joint posterior densities. However, this is analytically in-
tractable and an approximate evaluation is required. We use the Variational
Bayes (VB) approach [76, 97], see Section 2.3, which seeks the best posterior in
the form of conditionally independent factors; in this case:

f(A,X,E|D) ≈ f(A|D)f(X|D)f(E|D). (3.1)

The best approximation of this form in the sense of Kullback-Leibler divergence

Data

Images Prior Weights Prior

Noise Prior

Figure 3.1.: Modular model of blind source separation.
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can be found analytically the Variational Bayes (VB) method [97].
The VB methodology allows us to do inference for each parameter separately

and then arbitrary combine them as discussed and demonstrated in Section 2.3.2.
Hence, we study a prior model for each model parameter A,X,E separately and
then combine them in various ways in order to obtain specific separation method.

3.1. Prior of Noise
The observation errors in nuclear medical imaging is Poisson distributed; how-
ever, the inference with Poisson noise is analytically nor computationally in-
tractable [97]. Therefore, Poisson noise is substituted by Gaussian noise in
Probabilistic Principal Component Analysis (PPCA) [115, 98] which is also the
base of our model.

3.1.1. Isotropic Prior Model of Noise
In the model (1.1), the elements of the matrix E are independently identically
distributed with unknown common precision ω as

f(E|ω) =
p∏
i=1

n∏
j=1
Nei,j (0, ω−1), (3.2)

where ω plays a role of precision of noise and is assume to be unknown. In
matrix formulation, the matrix E has matrix normal distribution, see Appendix
A.1.2,

f(E|ω) = NE(0p,n, ω−1Ip ⊗ In), (3.3)
known as the isotropic Gaussian noise model [115]. The equations (1.1) and
(3.3) can be rewritten together as

f(D|A,X, ω) = ND(AXT , ω−1Ip ⊗ In), (3.4)

or equally for one time-point t as

f(dt|A,xt, ω) = Ndt

(
r∑

k=1
akxt,k, ω−1Ip

)
, (3.5)

where the bar symbol denotes a row vector, xt = [xt,1, . . . , xt,r].
The hierarchical model of the vector version (3.5) is given in Figure 3.2. The

task of the further research is to develop a prior models of the noise, the source
images, ak, and prior models of the time-activity curves, xk.
The prior data model has to be accompanied with prior model of precision

parameter ω. The precision parameter ω of the normal density (3.4) or (3.5)
has a conjugate prior in the form of Gamma distribution

f(ω) = Gω(ϑ0, ρ0), (3.6)
where coefficients ϑ0, ρ0 are chosen prior constants.
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dt

ak xk

ω

ϑ0, ρ0

k = 1, . . . , r

Figure 3.2.: Hierarchical model of superposition.

VB-posterior

Prior noise model (3.6) yields posterior standard distributional form

f̃(ω|D, r) = Gω(ϑ, ρ), (3.7)

with shaping parameters

ϑ =ϑ0 + np

2 , (3.8)

ρ =ρ0 + 1
2tr

(
DDT − ÂX̂TDT −DX̂ÂT

)
+ 1

2tr
(
ÂTAX̂TX

)
. (3.9)

The associated VB-moment is
ω̂ = ϑ

ρ
. (3.10)

Remark 4. The isotropic Gaussian noise model (3.3) can be seen as too sim-
plistic since the whole noise is estimated only using one parameter ω ∈ R.
Alternatively, the model (3.4) can replaced by more flexible prior model [97] as

f (D|A,X,Ωp,Ωn) =ND
(
AXT ,Ω−1

p ⊗ Ω−1
n

)
, (3.11)

Ωp =diag (ωp) , (3.12)
Ωn =diag (ωn) , (3.13)

where vectors ωp ∈ Rp×1 and ωn ∈ Rn×1 is additional parameters of the model
with their own prior models. Estimates of Ω̂p and Ω̂n can be obtained using VB
approximation; however, we conclude that the effect of this more complicated
prior model of noise is very low [97].

3.2. Priors of Source Images
The key task is to regularize the separation problem (1.1) using prior models
while prior models for source images, the matrix A = [a1, . . . ,ar], are studied in
this Section. After isotropic prior [14, 97], we study incorporation of assumption
that the source images are most likely sparse. We propose two different prior
models: mixture model and ARD model.
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dt

ak . . .

ξk

ω

φ0, ψ0

ϑ0, ρ0

k = 1, . . . , r

Figure 3.3.: Hierarchical isotropic prior model of source images.

3.2.1. Isotropic Prior
The prior model of A = [a1, . . . ,ar] is given as follows [14, 97]:

f(ak|ξk) =tNak(0p,1, ξ−1
k Ip, [0,∞]), (3.14)

f(ξk) =Gξk(φ0, ψ0), (3.15)

∀k = 1, . . . , r, where φ0, ψ0 are chosen prior constants. The parameter ξk ∈ R
is the ARD hyper-parameter, see Section 2.4, measuring significance of the kth
source image. This hierarchical prior is shown in Figure 3.3
The VB-marginals are recognized to have standard distributional forms

f̃(A|D, r) =tNA(µA, Ip ⊗ ΣA, [0,∞]), (3.16)
f̃(ξk|D, r) =Gξk(φk, ψk), (3.17)

with shaping parameters

ΣA =
(
ω̂X̂TX + diag(ξ̂)

)−1
, (3.18)

µA = ω̂DX̂ΣA, (3.19)

φ = φ0 + p

21r,1, (3.20)

ψ = ψ0 + 1
2diag

(
ÂTA

)
, (3.21)

where ξ = [ξ1, . . . , ξr]. The associated VB-moments are

Â =MtN
1 (µA, Ip ⊗ ΣA, 0,∞) , (3.22)

ÂTA =MtN
2

(
Â, µA, Ip ⊗ ΣA, 0,∞

)
, (3.23)

ξ̂ =diag
(
φ ◦ψ−1

)
, (3.24)

where functions MtN
1 () and MtN

2 () are defined in Appendix A.1.4.
The prior distribution (3.14), f(ak), is chosen with prior parameter ξk on

diagonal of its covariance matrix, hence we call this prior isotropic.
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3.2. Priors of Source Images

dt

ai,k . . .

ξkii,k

ω

λ0 φ0, ψ0

ϑ0, ρ0
i = 1, . . . , p

k = 1, . . . , r

Figure 3.4.: Hierarchical sparse prior model of source images using mixture
model.

3.2.2. Sparsity Using Mixture Prior

We have proposed the enforcement of sparsity into the superposition model using
indicator variables related to each element (pixel) of the matrix A [100]. Suppose
that each element of the matrix A, ai,k, is a mixture of uniform distribution
Uai,k(0, 1) and tNai,k(0, ξ−1

k ), where the uniform distribution is the model of
significant signal and normal distribution with unknown variance is the noise
model, which is switched using the indicator ii,k ∈ {0; 1} as

f(ai,k|ξk, ii,k) =
{
Uai,k(0, 1) ii,k = 1,
tNai,k(0, ξ−1

k , [0,∞]) ii,k = 0.
(3.25)

However, the inference for this model with discrete variable i would be compu-
tationally very costly; therefore, a ”soft version” of the model (3.25) is adopted
using continuous variables ii,k ∈ [0, 1]. The model is modified as

f(ai,k|ξk, ii,k) = Uai,k(0, 1)ii,ktNai,k(0, ξ−1
k , [0,∞])(1−ii,k) (3.26)

∀i = 1, . . . , p and ∀k = 1, . . . , r, with extremes given in (3.25). Following the
VB methodology, priors for ii,k and ξk have to be selected. We proposed the
following in [100]:

f(ii,k) =tExpii,k(λ0, (0, 1]), (3.27)
f(ξk) =Gξk(φ0, ψ0), (3.28)

where tExp() is truncated exponential distribution with given support, see Ap-
pendix A.3. This hierarchical prior is shown in Figure 3.4.
Natural partitioning for the rows of source images, rows ai of the matrix A,
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can be found to match the Gaussian distribution as follows:

tr
[(
D −AXT

) (
D −AXT

)T ]
=

=
p∑
i=1

2ai
n∑
j=1

(xjdi,j)T − ai
n∑
j=1

(xTj xj)aTi

+ cA, (3.29)

where standard form can be easily seen as

f̃(ai|D, r) = tNai
(
µai ,Σai , [0,∞]

)
. (3.30)

Posterior distributions of other model parameters are recognized from the VB-
marginals to have standard distributional forms

f̃(ξk|D, r) =Gξk(φk, ψk), (3.31)
f̃(ii,k|D, r) =tExpii,k(λi,k, (0, 1]), (3.32)

where the bar symbol denotes row vector, ai = [ai,1, . . . , ai,r]. The shaping
parameters are

Σai =
(
ω̂

n∑
k=1

x̂Tk xk + ξ̂(Ir − diag(îi))
)−1

, (3.33)

µai = Σaiω̂
n∑
k=1

x̂kdi,k, (3.34)

φk = φ0 + 1
2

p∑
i=1

(
1− îi,k

)
, (3.35)

ψk = ψ0 + 1
2

p∑
i=1

(
1− îi,k

)
â2
i,k, (3.36)

λi,k = λ0 −
1
2
̂ln ξk + 1

2
̂ai,kξkai,k, (3.37)

where ξ = [ξ1, . . . , ξr]. The associated VB-moments are

âi =MtN
1
(
µai ,Σai , 0,∞

)
, (3.38)

âTi ai =MtN
2

(
âi,µai ,Σai , 0,∞

)
, (3.39)

ξ̂k =φk
ψk
, (3.40)

îi,k =λ−1
i,k , (3.41)

where functions MtN
1 () and MtN

2 () are defined in Appendix A.1.4.
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dt

ak . . .

ξk

ω

φ0, ψ0

ϑ0, ρ0

i = 1, . . . , p

Figure 3.5.: Hierarchical sparse prior model of source images using automatic
relevant determination.

Remark 5. We have studied the so called direct ROI model where the ROI is
represented using the matrix I of the same size as the matrix A with source
images stored columnwise. The prior model for I is I ∈ {0, 1}p×r. Then, the
model (1.1) is modified using I as

D = (A ◦ I)X ′ + E, (3.42)

where ◦ denoted the Hadamard product. We have selected the prior for I as

f(I) = tExpI (λpr,0, (0, 1]) (3.43)

and derived the iterative VB algorithm for this model. In this derivation, the
solution for the matrix A is partitioned to solution for each row of the matrix,
ai, as in Section 3.2.2.
We did not published this model since it suffers from computational insta-

bility and highly depends on starting point of iterations as well as on stopping
condition.

3.2.3. Sparsity Using ARD Prior

We have used the sparsity model suggested in 2.4. The ARD property can be
adopted not only on the whole sources, Section 3.2.1, but also on each pixel,
ai,k. Each element (pixel) of the matrix A, ai,k, has its own ARD Gaussian prior
modeled by its precision ξi,k suppressing the value ai,k down to zero while being
low.
Hence, each pixel has the prior

f(ak|ξk) =tNak

(
0p,1, diag (ξk)

−1 , [0, 1]
)
, (3.44)
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∀k = 1, . . . , r, while the prior for precision parameter ξk is chosen as Gamma
distribution such as

f(ξk) =
p∏
i=1
Gξi,k(φ0, ψ0) (3.45)

with selected prior constants φ0, ψ0. Note that the prior distributions of elements
of the matrix A, equation (3.44), are restricted to interval [0, 1]. This restriction
is not necessary but helps to suppress scaling ambiguity of the final algorithm.
The parameter ξi,k is estimated together with the parameter of interest, ai,k. If
the ai,k is not significant then the precision ξi,k will be large, forcing the ai,k
closer to zero. This hierarchical prior is shown in Figure 3.5.
Posterior distributions are recognized from the VB-marginals to have standard

distributional forms

f̃(ai|D) =tNai(µai ,Σai , [0, 1]), (3.46)

f̃(ξi|D) =
r∏

k=1
Gξi,k(φi,k, ψi,k), (3.47)

∀i = 1, . . . , p, with shaping parameters

Σai =

ω̂ n∑
j=1

(x̂Tj xj) + diag(ξ̂i)

−1

, (3.48)

µai =Σaiω̂
n∑
j=1

(x̂jdi,j), (3.49)

φi =φi,0 + 1
21r,1, (3.50)

ψi =ψi,0 + 1
2diag

(
âTi ai

)
, (3.51)

The associated VB-moments are

âi =MtN
1
(
µai ,Σai , 0, 1

)
, (3.52)

âTi ai =MtN
2

(
âi,µai ,Σai , 0, 1

)
, (3.53)

ξ̂i =φi ◦ψ−1
i , (3.54)

where functions MtN
1 () and MtN

2 () are defined in Appendix A.1.4.

3.3. Priors of Time-activity Curves
The same problem of regularization as for the source images arises in case of
the source activities, the matrix X. Hence, similar isotropic prior, Section 3.2.1,
and ARD prior, Section 3.2.3, as for the matrix A will be proposed here for
the matrix X. In addition, we study the convolution prior models of TACs
motivated by techniques used in clinical practice from Section 1.2.2.1.

42



3.3. Priors of Time-activity Curves

dt

. . . xk

υk

ω

α0, β0

ϑ0, ρ0

k = 1, . . . , r

Figure 3.6.: Hierarchical isotropic prior model of source TACs.

3.3.1. Isotropic Prior
The isotropic prior model of X = [x1, . . . ,xr] is constructed in the same way as
in Section 3.2.1:

f(xk|υk) =tNxk

(
0n,1, υ−1

k In, [0,∞]
)
, (3.55)

f(υk) =Gυk(α0, β0), (3.56)

∀k = 1, . . . , r, where α0, β0 are chosen prior constants. Again, the parameter
υk ∈ R is the ARD hyper-parameter measuring significance of each TAC xk.
This hierarchical prior is shown in Figure 3.6.
Posterior distributions are recognized from the VB-marginals to have standard

distributional forms

f̃(X|D, r) =tNX(µX , In ⊗ ΣX , [0,∞]), (3.57)
f̃(υk|D, r) =Gυk(αk, βk), (3.58)

with shaping parameters

ΣX =
(
ω̂ÂTA+ diag(υ̂)

)−1
, (3.59)

µX = ω̂DT ÂΣX , (3.60)

α = α0 + n

2 1r,1, (3.61)

β = β0 + 1
2diag

(
X̂TX

)
, (3.62)

where υ = [υ1, . . . , υr]. The associated VB-moments are

X̂ =MtN
1 (µX , In ⊗ ΣX , 0,∞) , (3.63)

X̂TX =MtN
2

(
, X̂, µX , In ⊗ ΣX , 0,∞

)
, (3.64)

υ̂ =α ◦ β−1, (3.65)
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dt

. . . xk

υk

ω

α0, β0

ϑ0, ρ0

j = 1, . . . , n

Figure 3.7.: Hierarchical sparse prior model of source TACs using automatic
relevant determination.

where functions MtN
1 () and MtN

2 () are defined in Appendix A.1.4.

3.3.2. Sparse TACs Using ARD Prior
We propose very similar model for TACs as for source images in Section 3.2.3.
Once again, we recall ARD methodology from Section 2.4 for each element of
each TAC [109] as

f(xk|υk) =tNxk

(
0n,1, diag(υk)−1, [0,∞]

)
, (3.66)

f(υk) =
n∏
j=1
Gυj,k(α0, β0), (3.67)

where υj,k is unknown variance parameter to be estimated together with weight
xj,k while α0, β0 are known prior parameters. This hierarchical prior is shown
in Figure 3.7.
Posterior distributions are recognized from the VB-marginals to have standard

distributional forms

f̃(xj |D) =tNxj

(
µxj ,Σxj , [0,∞]

)
, (3.68)

f̃(υj |D) =
r∏

k=1
Gυj,k(αj,k, βj,k), (3.69)

∀j = 1, . . . , n and the shaping parameters computed accordingly to

Σxj =
(
ω̂

p∑
i=1

(âTi ai) + diag(υ̂j)
)−1

, (3.70)

µxj =Σxj ω̂
p∑
i=1

(âidi,j), (3.71)

αj =α0 + 1
21r,1, βj = β0 + 1

2diag
(

x̂Tj xj
)
. (3.72)
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Time-activity curve Input function Convolution kernel

*=

Figure 3.8.: Example deconvolution of TAC to an input function and convolution
kernel.

The associated VB-moments are

x̂j =MtN
1

(
µxj ,Σxj , 0,∞

)
, (3.73)

x̂Tj xj =MtN
2

(
x̂j ,µxj ,Σxj , 0,∞

)
, (3.74)

υ̂j =αj ◦ β−1
j , (3.75)

where functions MtN
1 () and MtN

2 () are defined in Appendix A.1.4.

3.3.3. Convolution Priors

Assumption of convolution is common in compartment modeling [66, 6] where
sources are modeled based on kinetics of radiopharmaceuticals inside them. Gen-
erally, compartment models assume that the object of interest can be modeled
as its parts (i.e. compartments) and using kinetic relations between them. Ac-
cumulation of radiopharmaceuticals is commonly modeled as a convolution be-
tween common input function and source-specific convolution kernel [104, 6, 83].
Since the measurement in dynamic nuclear medical imaging is discrete in time,

we assume the discrete version of convolution. We use the following notations:
input function is stored in vector b ∈ Rn×1 and convolution kernels of the kth
source is stored in vector uk ∈ Rn×1. Then, the element of the kth TAC in time
t, xt,k, can be written as

xt,k =
t∑
i=1

bt−i+1ui,k. (3.76)

More elegant form of (3.76) can be found using linear algebra by constructing
the matrix B from elements of vector b as

B =


b1 0 0 0
b2 b1 0 0
. . . b2 b1 0
bn . . . b2 b1

 . (3.77)
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Using this notation, the kth TAC, xk, can be rewritten as

xk = Buk. (3.78)

The matrix form of convolution is straightforward extension of the equation
(3.78):

X = BU, (3.79)
where matrix U stores convolution kernels in columns, U = [u1, . . . ,uk] ∈ Rn×r.
The shapes of the convolution kernels and the input function are important in
analysis and diagnosis in medical practice [32].

3.3.3.1. Prior of Input Function

We select the prior model for input function, vector b, as follows:

f(b|ς) =tNb(0n,1, ς−1In, [0,∞]), (3.80)
f(ς) =Gς(ζ0, η0), (3.81)

where ς plays to role of scaling parameter and ζ0, η0 selected prior constants.
Posterior distributions are recognized from the VB-marginals to have standard

distributional forms

f̃(b|D) =tNb(µb,Σb, [0,∞]), (3.82)
f̃(ς|D) =Gς(ζ, η), (3.83)

with shaping parameters

Σb =

ς̂In + ω̂
r∑

i,j=1
(âTi aj)

 n−1∑
k,l=0

∆T
k ∆l ̂uk+1,jul+1,i

−1

, (3.84)

µb =Σbω̂
r∑

k=1

n−1∑
j=0

∆j ûj+1,k

T DT âk, (3.85)

ζ =ζ0 + n

2 , (3.86)

η =η0 + 1
2tr

(
b̂Tb

)
. (3.87)

Here, the auxiliary matrix ∆k ∈ Rn×n is defined as (∆k)i,j =
{

1, if i− j = k,

0, otherwise.
The associated VB-moments are

b̂ =MtN
1 (µb,Σb, 0,∞) , (3.88)

b̂Tb =MtN
2

(
b̂,µb,Σb, 0,∞

)
, (3.89)

ς̂ =ζ

η
, (3.90)
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dt

. . . xk

ω

wk

υk

b

ςmwk

hk sk lk

ϑ0, ρ0

α0, β0

ζ0, η0

τ0

k = 1, . . . , r

Figure 3.9.: Hierarchical convolution prior model of source TACs using piece-
wise linear model of convolution kernels.

In the following text, we need to compute moments B̂ and B̂TB which will
be prepared here with the help of the auxiliary matrix ∆k. The moments are

B̂ =
n−1∑
j=0

∆j b̂j+1, (3.91)

B̂TB =
n−1∑
j=1

n−1∑
l=1

∆T
j ∆l

̂bj+1bl+1. (3.92)

Remark 6. We have studied other versions of input function prior. Increases
of input function have been modeled to ensure the monotonicity of the input
function [112] and ARD prior

f(bj |ςj) =tNbj (0, ς
−1
j ), (3.93)

f(ςj) =Gςj (ζj,0, ηj,0); (3.94)

for each element of input function have been proposed [113]; however, no signif-
icant differences from the prior model (3.80)–(3.81) have been observed.

3.3.3.2. Piece-wise Linear Prior of Convolution Kernels

We proposed and studied the piece-wise linear model of convolution kernels in
[113, 112, 102]. The main idea is that each convolution kernel is restricted to be
composed from a linear plateau following by linear decline to zero, see Figure
3.8, left, as an example. This can be modeled using increments as proposed in
[64].
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The matrix X is decomposed according to (3.79) to input function, vector b,
and the matrix with convolution kernels in column, matrix U . Each element of
the matrix U is further modeled using non-negative increments:

ut,k =
n∑
j=t

wj,k, (3.95)

where vector wk ∈ Rn×1 contains increments forming the vector uk. We select
model where hk is the height of each non-zero increment, sk is the starting point
of increments, and lk is the length of increments; hence, wk has a prior structure
such as

wk = [0, . . . , 0, hk, . . . , hk, 0, . . . , 0] ≡mwk
, (3.96)

where the positions of cluster-based structure with hk is fully determined by
start sk and length lk.
Following the VB methodology, each parameter has its prior distribution:

f(wk|υk) = tNwk

(
mwk

, υ−1
k In, [0,∞]

)
, (3.97)

f(υk) = Gυk (α0, β0) , (3.98)
f(hk) = tNhk(0, τ0, [0,∞]), (3.99)
f(sk) = Usk(0, n), (3.100)

f(lk|sk) = Ulk(0, n− sk), (3.101)

where α0, β0, τ0 are selected prior constants. This hierarchical prior is shown in
Figure 3.9.
Posterior distributions are recognized from the VB-marginals to have standard

distributional forms

f̃ (w|D, r) =tNw(µw,Σw, [0,∞]), (3.102)
f̃ (υk|D, r) =Gυk(αk, βk), (3.103)

where w = vec(W ), with shaping parameters

Σw =
(
(ÂTA

T
⊗ ω̂CT B̂TBC) + (diag(υ̂)⊗ In)

)−1
, (3.104)

µw =Σw(diag(υ̂)vec
(
(CT B̂TBC)−1CT B̂TDT Â(ÂTA)−1

)
(3.105)

+ Σw((diag(υ̂)⊗ In)vec(M̂W ), (3.106)

αk =α0 + n

2 , (3.107)

βk =β0 + 1
2(Ŵ TW )k,k + 1

2(−2Ŵ T M̂W )k,k + 1
2(M̂T

WMW )k,k. (3.108)

Here, MW contains prior vectors of wk, mwk
, in columns composed of estimates

of hk, sk, and lk (obtained using EM algorithm, see [106] for details), auxiliary
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dt

. . . xk

uk b

υk ς

ω

α0, β0 ζ0, η0

ϑ0, ρ0

k = 1, . . . , r

Figure 3.10.: Hierarchical convolution prior model of source TACs using auto-
matic relevant determination model of convolution kernels.

matrix ∆k ∈ Rn×n is defined as (∆k)i,j =
{

1, if i− j = k,

0, otherwise,
, and auxiliary

matrix C ∈ Rn×n is defined as

C =


1 1 · · · 1 1
0 1 · · · 1 1
...

... . . . ...
...

0 0 · · · 0 1

 . (3.109)

The associated VB-moments are

ŵ =MtN
1 (µw,Σw, 0,∞) , (3.110)

ŵTw =MtN
2 (ŵ, µw,Σw, 0,∞) (3.111)

ξ̂k =κk
νk
, (3.112)

where functions MtN
1 () and MtN

2 () are defined in Appendix A.1.4.

3.3.3.3. ARD Prior of Convolution Kernels

The convolution assumption of the TACs has been proven to be relevant and
helpful [104, 113]; however, too restrictive models of the convolution kernels such
as [24], exponential form, or [113], piece-wise linear form, have limited area of
usage and work only under ideal conditions that hold their assumptions. This
is hardly met in such a complicated system as a living organism. Therefore,
we seek a more relaxed parametrization of the convolution kernels that could
reflect high variability of dynamics of sources in dynamic medical imaging.
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We adopt the general convolution model of TACs, (3.79),

X = BU, (3.113)

where B is composed of elements of the vector with input function b as defined
in (3.77) and U is composed of convolution kernels uk stored columnwise. The
only further assumption on the convolution kernels is that, once again, the
convolution kernels are sparse which can be modeled using ARD priors in the
similar way as in Section 2.4.
Each column of the matrix U ; uk, k = 1, . . . , r, is modeled using the truncated

normal distribution as

f(uk|υk) = tNuk

(
0n,1, diag(υk)−1, [0,∞]

)
, (3.114)

while the prior for vector with precision parameters for each convolution kernel
uk, υk ∈ Rn×1, has conjugate Gamma prior distribution

f(υk) =
n∏
j=1
Gυj,k(α0, β0) (3.115)

with selected prior constants α0, β0. This hierarchical prior is shown in Figure
3.10.
We will discuss the VB method for the constructed ARD prior model. In

this case, the VB method is not straightforward and several partitioning of the
model parameters may by considered.
The log-likelihood function (3.4) with imposed convolution model of TACs,

(3.113), is

ln f(D|A,U,b, ω) ∝ pn

2 lnω − 1
2ωtr

[(
D −AUTBT

) (
D −AUTBT

)T ]
.

(3.116)

No partitioning to match standard distribution in form of the matrix normal
distribution has been found for the matrices A and U . The partitioning for the
matrix A was already derived in (3.29). No such situation happen for the convo-
lution kernels U where issue with the term tr

(
ABTUTUBAT

)
from the equa-

tion (3.116) arises. However, full posterior distributional form can be derived for
vectorized matrix U , using multivariate normal distribution rather than using
matrix normal distribution since Kronecker structure of the covariance matrix
does not preserve here.

Dependent Convolution Kernels Using Vectorization Operator Let the vec-
tor u ∈ Rnr×1 without subscript arises as the vectorization of the matrix U ,
u = vec(U). Then, it holds:

tr
(
ABTUTUBAT

)
= uT

(
ATA⊗BTB

)
u, (3.117)
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3.3. Priors of Time-activity Curves

Note that all elements of convolution kernels interact with each other lowing
the approximation error of the VB method and allowing the estimate the full
posterior f(u|D). We published this partitioning in [108] where it is shown
that this version outperforms the parametrization with independent convolution
kernels which will be briefly revised in Remark 7 at the end of this section.
After constructing the VB-marginals, the recognized standard distributional

forms are

f̃(u|D) =tNu(µu,Σu, [0,∞]), (3.118)
f̃(υj,k|D) =Gυj,k(αj,k, βj,k), (3.119)

with shaping parameters

Σu =
(
ÂTA⊗ ω̂B̂TB + Υ̂

)−1
, (3.120)

µu =Σu
(
ÂTA⊗ ω̂B̂TB

)
vec

(
B̂TB

−1
B̂TDT ÂÂTA

−1)
, (3.121)

α =α0 + 1
21nr,1, (3.122)

β =β0 + 1
2diag

(
ûuT

)
, (3.123)

where Υ ∈ Rnr×nr is a diagonal matrix with υk, k = 1, . . . , r, on its diagonal.
The associated VB-moments are

û =MtN
1 (µu,Σu, 0,∞) , (3.124)

ûTu =MtN
2 (û,µu,Σu, 0,∞) , (3.125)

Υ̂ =diag
(
α ◦ β−1

)
, (3.126)

where functions MtN
1 () and MtN

2 () are defined in Appendix A.1.4.
Remark 7. It is possible to consider computational simplification: to partition
the matrix U as its columns, i.e. to assume convolution kernels uk to be condi-
tionally independent. The problematic term from the equation (3.116) can be
rewritten for kth convolution kernel uk as follows

tr
(
ABTUTUBAT

)
= tr

2
r∑

l=1,l 6=k
BTBulaTl akuTk

+ tr
(
uTkBTBaTk akuk

)
.

(3.127)
From this partitioning, uk can be easily recognized as normally distributed and
µuk and Σuk can be computed.
We derived this partitioning in [101] and shown that the model is promising

for given true number of sources, r. However; the algorithm has tendency to
split the strongest source when the initial number of sources is overestimated due
to the independence of the convolution kernels, see Section 4.5.3.4 for demon-
stration of this issue.
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4. Blind Source Separation Methods

As long as you are set that the probability is going to be
zero, then nothing’s going to change your mind. If you have

decided that the sun rises each morning because it has
always done so in the past, nothing is going change your
mind except one morning when the sun fails to appear.

(Albert Madansky)

The blind source separation (BSS) model (1.1) was studied with different
assumptions using hierarchical prior models for all three unknown matrices A,X,
and E in Chapter 3. In Variational Bayes (VB) inference, we assume that
these three variables are conditionally independent. This allow us to arbitrary
combine priors for these parameters, see Section 2.3.2, to obtained specific BSS
methods. Thus, we can combine the priors without additional computational of
logical difficulties.

Prior models described in Chapter 3 are reviewed in the Table 4.1 and com-
binations of prior models are suggested. We will not reach all possible combina-
tions but only those that were tested and published. We will discuss potential
other combinations; however, they are mainly a subset of the published models.

In the second part of this chapter, we will discuss computational aspects of
the algorithms such as initialization, estimation of the number of sources, or nu-
merical stability. The next section will be devoted to state-of-the-art algorithms
for the BSS problem related to medical image sequences. Example results on
synthetic phantom are given in the end of this chapter.

Priors TACs

Images

Isotropic Conv. P.-wise linear Conv. ARD
Isotropic BSS+ (4.1) BCMS (4.3) –
Mixture FAROI (4.2) – –
ARD – – S-BSS-vecDC (4.4)

Table 4.1.: Reviews of the prior models described in Chapter 3 with selected
combinations.

53



4. Blind Source Separation Methods

Algorithm 4.1 Blind Source Separation with Positivity Constraints (BSS+)
algorithm.

1. Initialization:

a) Set prior parameters α0, β0, ϑ0, ρ0.

b) Set initial values for Â, ÂTA, X̂, X̂TX, υ̂, ω̂.
c) Set the initial number of sources rmax.

2. Iterate until convergence is reached using computation of shaping param-
eters (and related moments) of:

a) Source images µA,ΣA using (2.113)–(2.114).
b) Time-activity curves µX ,ΣX using (3.59)–(3.60).
c) Variance of TACs α,β using (3.61)–(3.62).
d) Variance of noise ϑ, ρ using (3.8)–(3.9).

3. Report estimates Â and X̂.

4.1. Blind Source Separation with Positivity (BSS+)

Blind Source Separation with Positivity Constraints (BSS+) [76, 97] combines
prior model of source images from Section 2.5.1.1 and isotropic prior model of
TACs from Section 3.3.1 where relevance of each source has been modeled. The
resulting algorithm is summarized in Algorithm 4.1.
The key assumption of the algorithm is that the priors of the source images as

well as that of the TACs are isotropic. This assumption serves as the separability
criterion; however, the criterion with no physical or biological meaning. It means
that although the general decomposition (1.1), D = AXT , could be fulfilled, the
separation results could not correspond to the expected biological sources.
The BSS+ algorithm can be downloaded from http://www.utia.cz/AS/

softwaretools/image_sequences.

4.2. Factor Analysis with ROI (FAROI)

Factor analysis with integrated regions of interest (FAROI) method [100] models
the source images as mixtures as proposed in Section 3.2.2 while the TACs are
modeled using isotropic priors from Section 3.3.1. The resulting algorithm is
summarized in Algorithm 4.2.
The idea to model sparsity of source images using mixtures (3.26),

f(ai,k|ξk, ii,k) = Uai,k(0, 1)ii,ktNai,k(0, ξ−1
k , [0,∞])(1−ii,k), (4.1)
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4.3. Blind Compartment Model Separation (BCMS)

Algorithm 4.2 The factor analysis with integrated regions of interest (FAROI)
algorithm.

1. Initialization:

a) Set prior parameters α0, β0, ϑ0, ρ0, φ0, ψ0.

b) Set initial values for Â, ÂTA, î, ξ̂, X̂, X̂TX, υ̂, ω̂.
c) Set the initial number of sources rmax.

2. Iterate until convergence is reached using computation of shaping param-
eters (and related moments) of:

a) Source images µA,ΣA using (3.33)–(3.34).
b) Variance of noise parts of images φk, ψk ∀k.(3.35)–(3.36).
c) Indicator λi,k ∀i,∀k (3.37).
d) Time-activity curves µX ,ΣX using (3.59)–(3.60).
e) Variance of TACs α,β using (3.61)–(3.62).
f) Variance of noise ϑ, ρ using (3.8)–(3.9).

3. Report estimates Â and X̂.

as a normal distributed noise part and uniform distributed signal part is proven
to be relevant [100]; however, the main issue with this model is numerical insta-
bility and unreliable convergence.
The FAROI algorithm can be downloaded from http://www.utia.cz/AS/

softwaretools/image_sequences.

4.3. Blind Compartment Model Separation (BCMS)
Blind compartment model separation (BCMS) was introduced in [106] and ap-
plied to dynamic renal scintigraphy in [102, 112, 113]. The model combines the
isotropic prior of source images, Section 3.2.1, and convolution model of TACs
with piece-wise linear parametrization of convolution kernels, Section 3.3.3.2.
The BCMS algorithm is summarized in Algorithm 4.3. The parametrization of
convolution kernels as a linear plateau and then linear decline to zero, see Figure
3.8 (right), was motivated by specific application in dynamic renal scintigraphy:
differential renal function (DRF) estimation. The DRF is relative ratio of ac-
tivity in left and right kidney, which is computed from the uptake part of a
sequence, i.e. the initial part of the sequence when the activity is only accumu-
lated with no excretion from a kidney. It is assumed that the assumption of the
piece-wise linear convolution kernels is valid on this uptake part.
However; the practical usage of the BCMS algorithm show that the selection
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Figure 4.1.: Example results of the FAROI algorithm on data from dynamic
renal scintigraphy using source images (top) and their histograms
(bottom).

Algorithm 4.3 The blind compartment models separation (BCMS) algorithm.
1. Initialization:

a) Set prior parameters α0, β0, ϑ0, ρ0, φ0, ψ0, τ0, ζ0, η0.

b) Set initial values for Â, ÂTA, ξ̂, ŵk, ŵT
k wk, υ̂, b̂, b̂Tb, ς̂ , ω̂, and mwk

.
c) Set the initial number of sources rmax.

2. Iterate until convergence is reached using computation of shaping param-
eters (and related moments) of:

a) Source images µA,ΣA using (3.18)–(3.19).
b) Variance of source images φ,ψ using (3.20)–(3.21).
c) Increases forming convolution kernels µw,Σw using (3.104)–(3.105).
d) Variance of increases α,β using (3.107)–(3.108).
e) Compute prior means mwk

∀k using EM algorithm, see [106] for
details.

f) Input function µb,Σb and their variance ζ, η using (3.84)–(3.87).
g) Variance of noise ϑ, ρ using (3.8)–(3.9).

3. Report estimates Â and X̂.
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4.4. Sparse BSS and Deconvolution (S-BSS-vecDC)
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Figure 4.2.: Example results from the BSS+ algorithm (left) and BCMS algo-
rithm (right) on selected sequence from dynamic renal scintigraphy.

of the uptake part of the sequence is a crucial step in DRF analysis and the
sensitivity to this selection is unacceptably high. Moreover, the usage of the
BCMS is strongly limited to the problems were all sources are activated at the
beginning of a sequence; otherwise, the BCMS algorithm provides results where
the activity of delayed sources are overestimated in the beginning or where these
sources are not separated. This issue is demonstrated in Figure 4.2 on a selected
sequence from dynamic renal scintigraphy. The representative results from the
BSS+ algorithm are shown on the left with the second source, pelvis, the part of
kidney with delayed activity. The results from the BCMS algorithm is given on
the right. See that each estimate of convolution kernel starts from the beginning
of the sequence which results in overestimated TAC in the second source, pelvis,
in comparison with the BSS+ results.
In sum, the BCMS algorithm is appropriate for specific tasks in dynamic med-

ical imaging; however, general usage is limited due to the strict parametrization
of the convolution kernels using prior piece-wise linear model.
The BCMS algorithm can be downloaded from http://www.utia.cz/AS/

softwaretools/image_sequences.

4.4. Sparse BSS and Deconvolution (S-BSS-vecDC)
Sparse blind source separation and deconvolution (S-BSS-vecDC) model [101,
108] is trying to suppress the disadvantages of parametrization in modeling of
source images in FAROI model, Section 4.2, and convolution kernels in BCMS
model, Section 4.3. The mixture model of pixels and the piece-wise linear pa-
rameterization of convolution kernels are replaced by the only assumption that
both, source images and convolution kernels, are most likely sparse. The spar-
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4. Blind Source Separation Methods

Algorithm 4.4 The sparse blind source separation and vectorized deconvolu-
tion (S-BSS-vecDC) algorithm.

1. Initialization:

a) Set prior parameters α0, β0, ϑ0, ρ0, φ0, ψ0, ζ0, η0.

b) Set initial values for Â, ÂTA, ξ̂i, û, ûTu, Υ̂, b̂, b̂Tb, ς̂ , ω̂.
c) Set the initial number of sources rmax.

2. Iterate until convergence is reached using computation of shaping param-
eters (and related moments) of:

a) Source images µai ,Σai and their variances φi,ψi ∀i using (3.48)–
(3.51).

b) Convolution kernels µu,Σu and their variances α,β using (3.120)–
(3.123).

c) Input function µb,Σb and its variance ζ, η using (3.84)–(3.87).
d) Variance of noise ϑ, ρ using (3.8)–(3.9).

3. Report estimates Â and X̂.

sity is modeled using the ARD principle introduced in Section 2.4 and applied
to the prior model of source images, Section 3.2.3, and the prior model of TACs,
Section 3.3.3.3. The S-BSS-vecDC algorithm is summarized in Algorithm 4.4.
The term ’vec’ refers to the version of the VB inference where the convolution
kernels are dependent (vectorized) as described in Section 3.3.3.3.

We will demonstrate the behavior of the S-BSS-vecDC algorithm on an ex-
ample run on the same data as in Section 4.3. The results of the S-BSS-vecDC
algorithm are given in Figure 4.3 using (from the left) pixels variances, source im-
ages, TACs, and convolution kernels. It can be seen that the resulting TACs do
not suffer from any imposed curve parametrization and delayed source (pelvis,
the second one) is correctly estimated with no activity in the beginning. An
artifact of the method is its tendency to estimate to non-smooth convolution
kernels in cases when the input function does not start from the beginning of
the sequence, see the first convolution kernel in Figure 4.3. This behavior and
its cause will be discussed in Section 4.5.3. However, this non-smoothness does
not propagate to TACs due to the convolution operation.

The S-BSS-vecDC algorithm can be downloaded from http://www.utia.cz/
AS/softwaretools/image_sequences.
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Figure 4.3.: Example results from the S-BSS-vecDC algorithm on selected se-
quence from dynamic renal scintigraphy.

4.5. Computational Aspects of the Proposed Algorithms

4.5.1. Initialization

The initialization step of all algorithms is crucial for reasonably fast conver-
gence as well as for convergence to biologically meaningful solution since the
VB methodology suffers from local minima.
One such possibility is to model several biological sources covering the pos-

sible varieties of TACs. The TACs can be selected directly; however, since we
adopted a convolution model, we propose initialization of the input function,
b, and the convolution kernels, U , from which TACs can be easily computed
for the algorithms without the convolution assumption. The initialization for
b is selected as exp

(
−1,...,n

3

)
to reach exponentially decreasing vector which is

close to the reality from our experience. The convolution kernels, vectors uk,
are selected as proposed in Figure 4.4. Here, the selection is motivated by dy-
namic renal scintigraphy following typical expected convolution kernels of: (1)
the blood, (2) the parenchyma, (3) the pelves, (4) the tissue background, (5) the
urinary bladder, and the rest of kernels are selected to cover various dynamics
of possible sources. The initial matrix X is then computed according to the
(3.113) as Xinit = BU .
Once we have a good guest of the matrix Xinit, the initial guess of the matrix

Ainit can be computed from the data matrix D using least squares as

Ainit = DXinit
(
XT

initXinit
)−1

. (4.2)
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Figure 4.4.: Initialization of the convolution kernels.

Initialization of the variance of the noise is computed according to [97] from
eigenvalues of the data matrix D ∈ Rp×n as

ωinit =
∣∣∣∣ p

min (λDTD)

∣∣∣∣ , (4.3)

where λDTD are eigenvalues of the matrix DTD.
The rest of the parameters are selected as ones and the prior parameters (sub-

scripted by 0) are chosen close to zeros such as 10−10 approaching uninformative
Jeffrey’s priors [54].

4.5.2. Estimation of the Number of Sources

The number of sources, r, can be manually preselected for the whole procedure
as a static parameter; however, the necessity of choosing the proper number of
sources often limits the use of an algorithm. In some algorithms such as BSS+,
FAROI, or BCMS, the number of sources was selected using the ARD principle
on the whole source images or TACs based on its relevance [76]. In the S-BSS-
vecDC algorithm, the ARD principle is used in both, pixel resolution and time-
domain resolution; hence, no such principle is used for the whole sources. The
ARD prior for the whole sources could be enforced by additional parametrization
which would further complicate the algorithm. To avoid this even more complex
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4.5. Computational Aspects of the Proposed Algorithms

modeling, we proposed an alternative: estimation of relevance of each source
based on the estimate of the precision parameter ω [108].
Specifically, the VB solution of the scalar version of the model (1.1), d = ax+e,

yields non-zero signal (i.e. âx̂ > 0) when d > 2
√
ω−1 [101]. Using this inference

bound, the sum of d2
i,j corresponding to a pixel from the kth source, should be

n times greater than the noise level:

xTk xk > 2nω−1. (4.4)

This observation will be used as a criterion for removal of weak sources within
the iterative procedure. Since removal of a source influence all others we disallow
further removal for the next 50 iterations of the algorithm and only one source
could be removed in one time-point. The algorithm starts from rmax sources and
terminates if all sources satisfy (4.4) or the minimum number of sources rmin is
reached. The interval [rmin, rmax] can be specified by an expert or heuristically.
Here, we propose heuristics based on differences of singular values σi of the data
matrix D. Specifically, when σ2

i+1 is less than 95% of σ2
i , then rmax = i. We

observed that this starting point for r overestimates significantly the true value
of r in medical image datasets. The same heuristics is used for selection of
rmin but the coefficient is set to 75%. This percentages are valid especially in
dynamic scintigraphy and should be carefully considered in other applications
of the algorithm.
In general, we recommend to slightly overestimate the number of rmax of

the relevant sources since the redundant source would be estimated to be weak
or removed by the automatic criteria (4.4). If rmax is chosen lower than the
true number of sources, the sources will be always mixed. Condition (4.4) may
remove even a valid signal if the number of non-zero elements in xk is much
lower than n. Removal of sources becomes more aggressive with growing n.
This principle could be used for all derived algorithms.

4.5.3. Numerical Issue with Inversion of Input Function Moments

The equations in Chapter 3 have a potential computational issue since it contains
inversions of matrices. We will use the moments for distribution of u (3.120)–
(3.123) from Section 3.3.3.3 as an example:

Σu =
(
ÂTA⊗ ω̂B̂TB + diag(vec(Υ̂))

)−1
, (4.5)

µu =Σu
(
ÂTA⊗ ω̂B̂TB

)
vec

(
B̂TB

−1
B̂TDT ÂÂTA

−1)
, (4.6)

where the moment B̂TB
−1

has to be used. This moment suffers from numerical
instability when the maximum of the input function, vector b, is not on the first
element. We will demonstrate this issue on the following example.
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Suppose that n = 5; hence, b ∈ R5×1. Consider two cases, the first with
maximum activity in the first element, b1, and the second in the second element,
b2:

b(1) =


1

0.2
0.1
0.1
0.1

 ,b(2) =


0.1
1

0.2
0.1
0.1

 . (4.7)

The matrix B is constructed according to (3.77) and resulting terms of interest,
BTB are as follow:

(
BTB

)(1)
=


1.07 0.24 0.13 0.12 0.1
0.24 1.06 0.23 0.12 0.1
0.13 0.23 1.05 0.22 0.1
0.12 0.12 0.22 1.06 0.2
0.1 0.1 0.1 0.2 1

 , (4.8)

(
BTB

)(2)
=


1.07 0.33 0.14 0.11 0.01
0.33 1.06 0.32 0.12 0.01
0.14 0.32 1.05 0.3 0.02
0.11 0.12 0.3 1.01 0.1
0.01 0.01 0.02 0.1 0.01

 . (4.9)

Now, we can compute the condition number κ2
(
BTB

)
for spectral norm and

symmetric positive matrices for each matrix according to the definition

κ2
(
BTB

)
=
λmax

(
BTB

)
λmin (BTB) , (4.10)

where λmax
(
BTB

)
and λmin

(
BTB

)
are the maximal and the minimal eigen-

values of the given matrix. Note that condition number κ2 remain the same for
inversion for symmetric positive matrices. The condition numbers in this case
are:

κ2

((
BTB

)(1)
)

=2.2404, (4.11)

κ2

((
BTB

)(2)
)

=1.5648 · 1010, (4.12)

hence, the computations with the b(1) are well-conditioned while the opera-
tions with b(2) are ill-conditioned. Therefore, the numerical operations such as
inversion with BTB are very sensitive in the second case.
This can cause a numerical instability in the S-BSS-vecDC algorithm; there-

fore, we will discuss possibilities how to restore numerical stability.
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4.5.3.1. Moore–Penrose Pseudoinverse

We can adopt the Moore–Penrose pseudoinverse [42] instead of the inverse to
restore the numerical stability. Specifically, we can discard singular values which
are smaller than selected percentage of the mean of all singular values; however,
it is very difficult and manual-dependent to selected this percentage. In this
work, we discard the singular values that are smaller than 10% of mean of all
singular values.

In our example, the condition number κ2

(((
BTB

)(2)
)+
)

declines to 2.7638

after use of the pseudoinverse.

4.5.3.2. Covariance Localization

The equations (4.5)–(4.6) can be seen as a solution of a set of linear equations
which is typically written as

µu = Σ−1
u c, (4.13)

where

Σ−1
u ≡ÂTA⊗ ω̂B̂TB + diag(vec(Υ̂)), (4.14)

c ≡
(
ÂTA⊗ ω̂B̂TB

)
vec

(
B̂TB

−1
B̂TDT ÂÂTA

−1)
. (4.15)

An approach called the covariance localization [36, 47] is used in atmospheric
environment research to improve the condition number of a matrix. Here, the
matrix L with dominant diagonal elements and decreasing sub-diagonal elements
is constructed in a way:

L =


1 0.9 0.8 0.8 0.8

0.9 1 0.9 0.8 0.8
0.8 0.9 1 0.9 0.8
0.8 0.8 0.9 1 0.9
0.8 0.8 0.8 0.9 1

 , (4.16)

where the length of the declining and lower bound of declining are selected
parameters. Then, the matrices B̂TB

−1
or Σ−1

u can be localized using the
matrix L such as

Σ−1
u,loc = Σ−1

u ◦ L. (4.17)

Σ−1
u,loc =Σ−1

u ◦ L, (4.18)

B̂TB
−1
loc =B̂TB

−1
◦ L. (4.19)

In our example, the condition number κ2

(((
BTB

)(2)
)−1

loc

)
declines to 3.5474·

108 after applying this methodology and this selected localization matrix L.
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4.5.3.3. Conjugate Gradients

With notation (4.14)–(4.15), the problem (4.5)–(4.6) can be generally written
as a set of linear equations,

Σuc = µu, (4.20)

which is a well studied problem in the literature [69] even in the case of low
stability of the matrix Σu. Specifically, we adopt the version of the conjugate
gradients (CG) method from MATLAB 2008a. The advantage is that the max-
imum number of iterations as well as tolerance precision of the method can be
specified. Initial guess of µu can be chosen from the previous VB iteration to
speedup the computation.
Specifically, the tolerance (residuum, RESCG) of the CG is computed accord-

ing to the estimated of precision parameter ω as

RESCG = nω−1, (4.21)

see [101] and Section 4.5.2 for more details. This sensitivity is the key advantage
over previous approaches since it allows to reflect the level of noise of the data.
Other numerical methods such as the generalized minimal residual method

(GMRES) or biconjugate gradient stabilized method (BiCGSTAB) can be used;
however, we do not observe any significant differences in the results from the
CG method.

4.5.3.4. Evaluation of Solutions

The example results of the S-BSS-vecDC algorithm versions on synthetic dataset
[108] is given in Figure 4.5. The simulated number of sources was 3 while
the expected number of sources was set to rmax = 4 in order to simulate real
conditions. The only modification of the used dataset (compared with [108]) is
that the delay in the simulated input function is simulated, b1 = 0.3, to study
the numerical effect in the moment B̂TB

−1
studied in this Section.

The results of different versions of the S-BSS-vecDC algorithm with different
method of evaluation of the unstable inversions as well as the result from the S-
BSS-DC algorithm (with conditionally independent convolution kernels, Remark
7) are given in Figure 4.5. None of the algorithms was able to correctly estimate
the number of sources. The Figure 4.5 also displays the corresponding mean
square errors (MSE) from the simulated data. The MSE is computed according
to

MSE =
r∑

k=1

1
n

n∑
j=1

(
x̂k,j − xgtk,j

)2
, (4.22)

where x̂k,j denotes elements of the kth estimated TAC and xgtk,j denotes the
kth simulated TAC. Note that by this dataset, the best and comparable results
are provided by the S-BSS-vecDC algorithm with the covariance localization
and with the conjugate gradients method. However, the chosen solution of
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Figure 4.5.: The results of different versions of S-BSS-vecDC algorithms and S-
BSS-DC algorithm, full blue lines, on synthetic dataset accompanied
with computed MSE from generated data, dashed black lines.

65



4. Blind Source Separation Methods

 Pixels Variances  Source Images

0 20 40 60
0

2000

4000

6000

 Time−activity Curves

0 20 40 60
0

0.05

0.1

0.15

 Convolution Kernels

0 20 40 60
0

2000

4000

6000

0 20 40 60
0

0.2

0.4

0.6

0 20 40 60
0

2000

4000

6000

0 20 40 60
0

0.1

0.2

0.3

Figure 4.6.: Example results from the S-BSS-vecDC algorithm with conjugate
gradients modification on selected sequence from dynamic renal
scintigraphy.

numerical issue with the moment B̂TB
−1

will be conjugate gradients method
since its performance is based on estimates of the precision parameter ω which
is more universal and flexible, especially on real datasets.
As an example, the same data as in Figure 4.3 were used to demonstrate the

performance of the S-BSS-vecDC algorithm with conjugate gradients modifica-
tion. The results are in Figure 4.6 where significantly smoother convolution
kernels are obtained.

Remark 8. In addition, the performance of the simplified S-BSS-DC method is
studied, Figure 4.5, bottom right. The result of the algorithm is not satisfactory
since it does not take into account the correlation of the sources and tends to
split the strongest source into different sources.

4.6. Other Algorithms for Blind Source Separation

4.6.1. Successive Nonnegative Projection Algorithm

Successive non-negative projection algorithm (SNPA) [40] for robust non-negative
blind source separation provides near-separable non-negative matrix factoriza-
tion. The non-negative matrix D ∈ Rp×n is near-separable if exists index set K
of the size r and non-negative matrix X of the size n× r such as

D ≈ D (:,K)XT + E, (4.23)
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where D (:,K) denotes matrix composed from K columns of the matrix D and
E is the noise matrix of the same size as the matrix D. Robustness of the
algorithm [40] is proven for any sufficiently small noise. The preselected number
of sources r is expected in the algorithm.
We conjecture that the assumption of clear source images in the sequence

is the main limitation of this algorithm since this condition is rarely met in
dynamic medical imaging analysis.

4.6.2. Non-negative Matrix Factorization
Non-negative matrix factorization (NMF) [68, 52, 17] solves the following prob-
lem (in notation of [68]): given the data in the form of a non-negative matrix
D ∈ Rp×n, find non-negative matrices A and X approximating the data V as

D ≈ AXT , (4.24)

so that factors A ∈ Rp×r and X ∈ Rn×r are also non-negative.
The algorithm for NMF [68] is based on iterative calculation of matrices A

and X using the multiplying the current values by a factor depending on quality
of approximation (4.24). This quality depends on a chosen cost function. We
consider the version of the NMF algorithm [17] with the Euclidean distance
between the matrices D and AXT defined as

||D −AXT ||2 =
∑
i,j

(
Dij − (AXT )ij

)2
, (4.25)

which is naturally bounded by zero and the convergence to a local optimum is
guaranteed [68].
The number of sources r has to be preselected.

4.6.3. Convex Analysis of Mixtures - Compartment Modeling
Algorithm

Interpretation of the superposed signal as a mixture model is used in the Convex
analysis of mixtures - compartment modeling (CAM-CM) method [24, 23]. Here,
the signal at the ith pixel and at time t, d(i, t), of the tracer concentration is
expressed as a non-negative linear combination of compartment-specific TACs
xj(t) weighted by the relative tissue type proportions Aj(i) at this pixel. Hence,
pixel activity is described as

d(i, t) = x1(t)A1(i) + · · ·+ xJ(t)AJ(i), (4.26)

where J is the number of compartments [49]. A convex set can be defined using
these parameters as

X =


J∑
j=1

xjAj(i)
∣∣∣Aj(i) ≥ 0,

J∑
j=1

Aj(i) = 1, i = 1, . . . , N

 , (4.27)
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where xj is vector of Aj(t) over time. It is shown that the corner points of the
convex hull H(X ) of pixel time-series correspond to pure-volume pixels for each
tissue compartments [118]. Then, pharmacokinetic parameters are estimated
using compartment modeling for pure-volume pixel time series. The TACs re-
sults from convolution between a common input function (tracer concentration
in plasma) and exponential tissue-specific kernels. Although the study on esti-
mation of number of sources is presented [24], the number of sources J has to
be preselected.

4.7. Experiment with Synthetic Phantom Study
The performance of the described methods will be tested on a synthetic phan-
tom sequence generated according to the convolution model (3.79); hence, D =
AUTBT +E. The spatial resolution of the sequence is 50× 50 and the number
of simulated time points is 50. We simulate 3 sources, see Figure 4.7, top row,
where source images and source TACs are given. The homogeneous Gaussian
noise for this particular sequence is generated with standard deviation 0.3 of the
signal strength. The number of sources is set as r = 3 for all tested algorithms.
The results of all mentioned methods are given in Figure 4.7, rows 2–7. The

estimated source images are displayed in the first three columns and the esti-
mated TACs are displayed in the second three columns as solid blue lines while
the ground truth simulated sources are dashed red lines. Note that all estimated
TACs are normalized between 0 and 1 in order to compare them with the ground
truth data.
Algorithms BSS+ (the second row), FAROI (the third row), S-BSS-vecDC

(the fifth row), and NMF (the seventh row) were able to estimate correct source
images and correct TACs. Results of the BCMS algorithm (the forth row) suffer
from application-specific model assumption of piece-wise linear convolution ker-
nels with activity from the beginning which can be clearly seen by all estimated
TACs from the BCMS algorithm. Results of the SNPA algorithm (the sixth
row) suffer from the assumption of at least one clear image of each source in the
sequence which is not valid here. Results of the CAM-CM algorithm (the eighth
row) suffer from noise presented in estimated TACs while the source images are
estimated correctly.
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Figure 4.7.: Results of all described algorithms on a synthetic phantom study,
rows 2–7, and the ground truth data, row 1. Source images are in
the first three columns and related TACs are in the second three
columns. The ground truth TACs are displayed using dashed red
lines while the estimated TACs are displayed using solid blue lines.
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5. Experiments with Dynamic Renal
Scintigraphy

If prior opinions can differ from one researcher to the next,
what happens to scientific objectivity in data analysis?

(Leonard Jimmie Savage)

Several methods for blind source separation of dynamic medical data were
derived or described in Chapter 4, namely: BSS+ [76], FAROI [100], BCMS
[113], S-BSS-vecDC [108], NMF [17], SNPA [40], and CAM-CM [24] algorithms.
In this chapter, we will study performance of the algorithms on clinical data
from dynamic renal scintigraphy.
Images in the real sequence may not fit into the assumptions of the model,

due to movement of the patient or elastic deformation of the tissues. These
phenomena can be mitigated by by preprocessing using image registration and
motion correction [129, 55]. For the purpose of this work, we assume that the
data were already preprocessed and the model of superposition, (1.1) is valid.

5.1. Dynamic Renal Scintigraphy
Dynamic renal scintigraphy [29, 10, 19] is a nuclear medicine method based on
application of a radiopharmaceuticals into the body. The spatial distribution of
the radiopharmaceuticals can be measured at given time-frames and a sequence
of images is obtained, see Figure 5.1 as an example. The task is to separate the
original sources (tissues) while they can overlap with other sources and the whole
sequence is typically degraded by strong noise. The noise is Poisson distributed
in renal scintigraphy; hence, the assumption of homogeneous noise (3.4) can
be too restrictive. We perform scaling of the scintigraphy data Dorig using the
correspondence analysis [10]:

dij = dij,orig√∑p
i=1 dij,orig

∑n
j=1 dij,orig

. (5.1)

This scaling transform the noise to be asymptotically independent normal dis-
tributed with identical variance modeled using ω−1 in (3.3). When this opera-
tion is performed, inverse scaling needs to be applied to the estimates of source
images and source TACs for their presentation in the original scale. The scaling
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(5.1) is only asymptotically optimal for Poisson noise, and may introduce bias
for low count scenarios.
The anatomy of a physiological kidney is important for understanding the

results. A healthy kidney is composed of parenchyma, a spongy tissue covering
the whole kidney, and pelvis, a small structure serving to drain the urine from
the kidney. Biologically, the parenchyma is activated directly from the blood
while the pelvis is activated from the parenchyma with delay approximately
100− 180 seconds [32]. This delay is known as the uptake time.
The task of medical examination is to compute medical coefficients such as

the differential renal function (DRF) which serve to diagnostics. For example,
DRF [16, 87] is a percentage of function of the left kidney and the right kid-
ney. The DRF is estimated from the sum of activity in the left (L) and in the
right (R) parenchyma during the uptake time. Then, DRFL = L

L+R × 100 %
and DRFR can be computed analogically, both weighted by their time activity
curves. Historically, the activity is taken only from the uptake time. Generally,
these coefficients serve as quantification of a specific aspect of the sequence and
are mainly used in investigation of diseases such as urinary obstruction, renal
artery stenosis, renovascular hypertension [95], pelvi-uretric junction [85], renal
transplantation etc.
In the following experiments, we will study the quality of estimation of TACs

of sources as well as DRF estimation and theirs validation in comparison to the
estimates obtained by an expert physician.

5.2. Qualitative Experiments with Selected Sequences
Here, we will show and discuss results from the algorithms on selected sequences.
The sequences are chosen from database [1] where one typical study and two
problematic ones are selected in order to demonstrate several aspect of the
studied algorithms.
In all cases, we will not analyze the whole sequence but only selected regions

of interest as shown in Figure 5.5, middle. This choice is motivated by clinical
practice and suppresses the influence of sources such as heart, lungs, and urinary
bladder. Each sequence consists of 180 images taken after each 10 seconds. The
size of the regions of interest of the selected kidneys are 37× 47 pixels.

5.2.1. Typical Study
The first sequence serves as a demonstration of typically observed source im-
ages and TACs as described in Section 5.1 as well as demonstration of results
from all mentioned algorithms. The source sequence is shown in Figure 5.1 for
illustration and the results are shown in Figure 5.2. The estimated source im-
ages are in the first four columns and the estimated TACs are in the second
four columns while each row is related to the associated algorithm. The first
column is recognized as the parenchyma, the second column as the pelvis, the
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third column as the tissue background, and the fourth column is either noise or
another tissue background.
The main differences between the results of different algorithms can be ob-

served in the first and the second sources, i.e. the parenchyma and pelvis. The
BSS+, S-BSS-vecDC, NMF, and CAM-CM algorithms provided the expected
source image and TAC of the parenchyma while the results of FAROI and BCMS
algorithms suffers from mixed images of parenchyma and pelvis. Moreover, the
expected zero activity at the beginning of the pelvis TAC, see Figure 5.2, the
sixth column, is not respected in the case of BCMS due to the unrealistic piece-
wise linear model of the convolution kernels. The SNPA algorithm suffer from
its assumption of presence of a clear source image in the sequence resulting in
peaks and zeros in each TACs.
Overall, the results of separations using the BSS+, S-BSS-vecDC, and NMF

algorithms can be taken as an examples of the desired separation of the scintig-
raphy sequence.

5.2.2. Study with Low Signal and Non-physiological Shapes

The second sequence is selected to show a more demanding case and ambiguity
in its analysis. The results are shown in Figure 5.3 in the same layout as in
Section 5.2.1.
First, note that the activity in this sequence is significantly lower than in

the sequence in Figure 5.1. Second, the shapes of parenchyma and pelvis are
non-typical and it is very difficult to distinguish between them for a non-trained
person. One such clue could be the TACs of the estimated source; however, only
the S-BSS-vecDC and NMF algorithms were able to separate the parenchyma
and pelvis correctly which is demonstrated by the typical zero activity region
at the beginning of the pelvis TAC (source TAC 2).

5.2.3. Study with Non-typical Separation Results

The third sequence is selected to show another possible ambiguity in separation
and interpretation of the results. The results of separation are shown on Figure
5.4 for all tested algorithms.
The main issue with this sequence is that majority of the algorithms, all except

CAM-CM, found the parenchyma divided into two structures: outer part, the
first source, and the inner part, the third source. We conjecture that the outer
part could be probably the blood activity in the kidney due to early signal
activation in the related TAC, while the inner part could be nephrons and renal
pyramids with slightly delayed activity than the blood. However, the automatic
classification of this results is difficult and ambiguous since it does not fit in the
expected form. These two structures could be considered as the substructures of
the parenchyma and we could add them together to obtain whole parenchyma
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5. Experiments with Dynamic Renal Scintigraphy

Figure 5.5.: Regions of interest separating left and right kidney. Left: anatom-
ically motivated ROIs of the left and the right kidney. Middle:
heuristic rectangular ROI of the left kidney. Right: ROI of the left
kidney with excluded rectangular region of the right kidney.

or we could treat these structures separately. Further analysis of this type of
results is still an open question.

5.2.4. Classification of Estimated Sources
For quantitative evaluation and comparison of the results presented, e.g., in
Sections 5.2.1 – 5.2.3, we need to classify the results. This means to recognize
the following structures: the heart or blood tissue, parenchyma, pelves, and
urinary bladder. However, this is very difficult task because of huge variance
in the shapes of their images and in their TACs as demonstrated in Figure 5.3
where non-typical shapes of parenchyma and pelvis are observed. In addition,
location of a kidney can also vary a lot.
For automated classification and further evaluation, we proposed the follow-

ing manual-based classification procedure for the heart and parenchyma, here
refereed to as tissues:

1. we have manually drawn a region with the tissue and stored a mask with
ones and zeros, see example in Figure 5.5, left,

2. for all separated sources of a given sequence, we compute the correlation
between the mask and the source images,

3. the source image with the highest correlation is assumed to represent the
corresponding tissue.

We are aware that this procedure in not flawless; however, it is the best way for
automated analysis of large datasets to the best of our knowledge and we will
use this procedure in the following quantitative evaluations.

5.3. Quantitative Evaluation of Large Datasets
In Section 5.2, we provided example results of the studied algorithms on selected
sequences in order to demonstrate their performance and some issues of further
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analysis of these results. In this section, we provide statistical evaluation of the
results on large amount of data, on two datasets with 18 and 99 patients.

5.3.1. Dataset18

The Dataset18 consists of 18 sequences from dynamic renal scintigraphy. These
data were chosen from a large set of anonymous data considered to be included
into the database [1] by its author. The criterion of choice was clear visibility of
dynamic structures. Each sequence has spatial resolution 128 × 128 pixels and
the number of images vary from 100 to 180 taken with the sampling period of 10
seconds. In those data, we do not know the ground true solution in contrast to
the synthetic phantom. Hence, we will validate the methods by comparing the
automatically obtained results with those obtained by an experienced physician.
While different physicians may reach different conclusion [18], we still consider
this measure to be valid since the expert considers also anatomical knowledge
and clinical experience.
This data are accompanied with the TACs of the left and right parenchyma

and the heart extracted by an experienced physician. The ROIs of these tis-
sues were defined manually on a computer screen with the best anatomical and
physiological knowledge while recommended procedures were used for suppress-
ing tissue and vascular backgrounds. Mutual overlap of all tissues is resolved
iteratively following the best practice procedure [43]. These manually extracted
TACs are, of course, not the ground truth; however, they are the best way how
to evaluate the results of automated algorithms in clinical data in our opinion.

5.3.1.1. Experiment on Data with Manual Reference Curves

Since the TACs of the parenchyma and heart from the physician are available,
we will compare them with the estimated TACs using methods described in
Chapter 4. The task of our analysis is to recover the TAC of the parenchyma
structure of each kidney while it has to be separated from the pelvis, vascu-
lar and tissue background. As a first step for automatic analysis, we need to
separate the left and the right kidney regions and solve each region as an inde-
pendent source separation problem. Heuristics has been designed for automatic
selection of the rectangular region of the kidneys, Figure 5.5 middle. The data
used for automatic analysis of the kidney of interest are composed from the full
image with excluded rectangular region of the second kidney and urinary blad-
der, Figure 5.5 right. The advantage of this choice is that it preserves enough
information about vascular and tissue background.
We use algorithms: BSS+, FAROI, BCMS, S-BSS-vecDC, NMF, and SNPA.

We do not use the CAM-CM algorithm for these data since it has computational
issues on such a large data. The algorithms will be applied to both kidneys, using
ROI from Figure 5.5 right. Hence, 38 sequences will be analyzed. The estimates
related to the medically relevant sources, i.e. the parenchyma (outer part of the
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Figure 5.6.: Estimates of the sources of interest, parenchyma and blood tissues,
are displayed for all tested algorithms. The solid blue line denotes
the estimated TACs and the dashed black line denotes the TACs
from the physician.
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Table 5.1.: Statistical comparison of proximity of the estimated parenchyma
TACs to those obtained by the expert physician for 38 data sets
in terms of MSE and MAE.

38 parenchyma curves
algorithm µpar

MSE ± σ
par
MSE pS-BSS-vecDC

MSE µpar
MAE ± σ

par
MAE pS-BSS-vecDC

MAE
BSS+ 0.0349±0.0271 0.0005 0.1225±0.0552 0.0005
FAROI 0.0426±0.0323 <0.0001 0.1382±0.0620 <0.0001
BCMS 0.0764±0.0930 0.0006 0.1799±0.1316 0.0002

S-BSS-vecDC 0.0184±0.0161 - 0.0880±0.0429 -
SNPA 0.0286±0.0207 0.0129 0.0998±0.0478 0.1975 (h=0)
NMF 0.0548±0.0421 <0.0001 0.1675±0.0685 <0.0001

CAM-CM N/A N/A N/A N/A

Table 5.2.: Statistical comparison of proximity of the estimated blood TACs to
those obtained by the expert physician for 38 data sets in terms of
MSE and MAE.

38 heart curves
algorithm µblood

MSE ± σblood
MSE pS-BSS-vecDC

MSE µblood
MAE ± σblood

MAE pS-BSS-vecDC
MAE

BSS+ 0.0120±0.0146 0.0082 0.0765±0.0394 0.0025
FAROI 0.0144±0.0147 <0.0001 0.0870±0.0381 <0.0001
BCMS 0.0169±0.0396 0.2653 (h=0) 0.0731±0.0794 0.4911 (h=0)

S-BSS-vecDC 0.0090±0.0126 - 0.0626±0.0336 -
SNPA 0.0156±0.0163 <0.0001 0.0878±0.0374 <0.0001
NMF 0.0146±0.0102 0.0061 0.0907±0.0332 <0.0001

CAM-CM N/A N/A N/A N/A

kidney) and to the heart tissue, will be studied since these were provided by
the physician. The physician provided only the TACs of these tissues, without
the tissue images. Therefore, we compare only the shapes of the TAC and
not their scale. Comparison of the scales will be done in Section 5.3.2.1. In
this experiment, we scale each estimated TAC of match the peak of the expert
chosen TAC and compute statistics of their deviations. The maximum number
of tissue is set to 5, i.e. rmax = 5, in order to ensure the same conditions for each
method. The parenchyma and the heart tissues are automatically selected using
correlation of the estimated tissue images with the manually obtained ROIs of
parenchyma and heart, Section 5.2.4.
Results of all tested algorithms for a particular sequence are displayed in Fig-

ure 5.6. The parenchyma images are in the first column, the parenchyma TACs
are in the second column, the blood tissue images are in the third column, and
the blood tissue TACs are in the fourth column. The solid blue line denotes the
estimated TACs and the dashed black line denotes the TACs from the physician.
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5. Experiments with Dynamic Renal Scintigraphy

Statistical comparison of all 38 kidneys is given in Table 5.1 where mean MSE,
denoted as µMSE, with standard deviation, denoted as σMSE, are computed
according to

µpar
MSE = 1

38

38∑
l=1

 1
n

n∑
j=1

(
x̂

(l)
j,par − x

(l),gt
j,par

)2
 , (5.2)

σpar
MSE =

√√√√ 1
38− 1

38∑
l=1

(
µpar

MSE,l − µ
par
MSE

)2
(5.3)

where x̂(l)
par denotes the estimated parenchyma TAC for the lth sequence and

x(l),gt
par denotes the corresponding estimate from the physician. The pS-BSS-vecDC

MSE
denotes the p-value of the statistical paired sample two-tailed t-test of MSEs
from the S-BSS-vecDC method and from other methods, demonstrating that the
improvement of the S-BSS-vecDC is statistically significant. Statistics for the
blood tissue and the corresponding mean absolute error (MAE) are evaluated
analogically and summarized in Table 5.2.
We conclude that the S-BSS-vecDC algorithm outperforms all other algo-

rithms in proximity of shapes of the estimated TACs to those obtained by the
physician for both tissues. The improvement was found statistically significant
in most cases. The only statistically insignificant cases are:

1. MAE of SNPA algorithm in the case of parenchyma curves,

2. Both, MSE and MAE, of the BCMS algorithm in the case of heart curves
(blood tissue).

However, the S-BSS-vecDC algorithm is found to be systematically better than
any other tested algorithm.

5.3.2. Dataset99
The Dataset99 consists of 99 sequences from dynamic renal scintigraphy dataset
publicly available on [1]. Originally, this dataset consists of 107 sequences;
however, we excluded 8 sequences since they do not contain two kidneys. Each
sequence has spatial resolution 128 × 128 pixels and the number of images is
180 taken with sampling period 10 seconds. For detailed clinical description see
[1, 94].
For the purposes of evaluation, each sequence is accompanied by a manually

computed differential renal function (DRF) [43] provided by an experienced
physician using standard clinical procedures. Basically, the DRF is a percentual
performance of each kidney, hence, it is a relative number. Once again, it is a
subjective value since the resulting DRF may differ from physician to physician
depending on the used technique and analyzing procedures. However, it allows
us to quantitatively compare performance of all methods based on proximity of
the estimated DRF to the values from the physician.
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Table 5.3.: The number of results which differ from physician’s results less than
3%, less than 5%, less than 10%, and more or equal than 10% com-
puted for all 99 patients.

algorithm <3% <5% <10% =10%
BSS+ 38 57 78 21
FAROI 43 58 83 16
BCMS 42 59 82 17

S-BSS-vecDC 46 68 86 13
SNPA 25 41 72 27
NMF 40 52 81 18

CAM-CM 30 48 63 36

5.3.2.1. Differential Renal Function Estimation

As the first step for automatic analysis, we need to separate the left and the
right kidney regions and solve each region as an independent source separation
problem. Heuristics has been designed for automatic selection of the rectangular
region of the kidneys, see Figure 5.5 middle.
The estimated TACs of parenchyma are used to obtain the DRF coefficient:

DRFL = Pl
Pl + Pr

× 100%, (5.4)

where DRFL is DRF coefficient of the left kidney, Pl is the total activity of the
left parenchyma, and Pr is the total activity of the right parenchyma. Total
activity of the kth source is the sum Pk =

∑n
j=1

∑p
i=1 ai,kxj,k.

The ROI in Figure 5.5, middle, ensures no influence of other tissue except
those surrounding the kidney. The number of tissues is assumed to be 2, r = 2,
since we expect separation of only the parenchyma and the background. All
mentioned algorithms are capable to separate these sequences; hence, algorithms
BSS+, FAROI, BCMS, S-BSS-vecDC, NMF, SNPA, and CAM-CM are used in
this experiment.
For each sequence we compute the DRF using all competing methods and

compare it with the reference value from the expert denoted as DRFgtL . The re-
sults are summarized in Table 5.3 using the number of tested sequences for which
difference |DRFL − DRFgtL | is lower than 3%, lower than 5%, lower than 10%,
and more or equal to 10%. Once again, the S-BSS-vecDC algorithm provides the
closest results to those from the physician. Note that even for this method, the
estimated DRF on 13 sequences differ from that of the physicians by more than
10%. This difference can be caused by: (i) great ambiguity of the estimation
due to low signal to noise ratio which happens for seriously harmed kidney, (ii)
background tissues may have TAC very similar to that of the parenchyma; in
that case the blind source separation methods do not separate the background
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and the activity of the parenchyma is overestimated, (iii) the estimate of the
DRF from the expert may be biased.

5.3.2.2. Input Function Estimation

The proposed experiment with the Database99 is an extended version of that
published in [113]. Two proposed algorithms, the BCMS and S-BSS-vecDC, are
using convolution models and are capable to estimate the input function (IF)
as their output. However, we do not have any ground truth data of the input
function (IF), i.e. measurement of the tracer activity after its application, that
could be used for comparison with the estimates of the algorithms. Hence, we
proposed an indirect verification of the consistency of the IF estimates.
First, we compute the IFs for both left and right ROIs of kidneys separately.

Note that we take only the first 50 images from each sequence. Second, we
compare the estimated IFs. If the assumption of the common IF valid, the
estimated IFs should be close to each other. Since we compare only shapes and
not amplitudes of the estimated IFs, each IF will be normalized as follows

bl = bl

max
([

bl∑n

j=1 b
l
j

, br∑n

j=1 b
r
j

]) . (5.5)

This choice of normalization ensures independence on scale (with maximum 1)
and comparability of all IF as well as between different algorithms. For each
sequence and each algorithm, we compute an area of differences (AOD) defined
as

AOD =
n∑
j

∣∣∣blj − brj ∣∣∣ . (5.6)

As an example, the estimated IFs for both algorithms are displayed in Figure
5.7. Here, the plot with IFs from the BCMS are in the top and the plot with
IFs from the S-BSS-vecDC algorithm are in the bottom, both accompanied with
the computed AOD for illustration. The solid blue lines are the estimated IFs
from the ROI with the left kidney and the dashed black lines are the estimated
IFs from the ROI with the right kidney.
The results from both algorithms are displayed in Figure 5.8 via cumulative

histograms of the computed AODs. The Figure 5.8 could suggest that the S-
BSS-vecDC algorithm outperforms the BCMS algorithm in proximity of left and
right estimated IFs. However, we conjecture that estimates of the IF from the S-
BSS-vecDC algorithm has limited potential in physiological interpretation of its
IF estimates, see Figure 5.7, bottom, as an example. Most of its IF estimates
are formed from shifted pulse with relatively low activity elsewhere since the
model of convolution kernels in the S-BSS-vecDC algorithm is very unrestricted
and the resulting TACs do not need common IF. On the other hand, the BCMS
algorithm has a very restricted piece-wise model of the convolution kernels;
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Figure 5.7.: Examples of estimated input functions from the BCMS algorithm,
top, and the S-BSS-vecDC algorithm, bottom. The computed AOD
is displayed in the title.
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Figure 5.8.: The histogram with computed area of differences of the left and the
right input function for the BCMS and S-BSS-vecDC algorithms.

hence, the shape of the TAC is much more important. Therefore, we consider
the resulting estimates to be closer to the realistic input function.

5.3.2.3. Subjective Evaluation of Separation Quality

Although we do not have the ground truth source images and the related TACs,
we can still try to evaluate the quality of separation in the same way as dis-
cussed in Section 5.2. We can set several conditions and subjectively evaluate if
these conditions are met. We choose three main conditions indicating that the
sequences are properly separated in the case of selected ROI (denoted here as
ROI0) of kidney, Figure 5.5, middle:

1. There have to be at least three main separated sources: parenchyma,
pelvis, and tissue background.

2. The parenchyma image should be cleared from tissue and vascular back-
grounds.

3. The pelvis tissue has a typical initial delay, its activity starts approxi-
mately near the peak of the parenchyma activity.

If all the conditions are met, the result of separation is marked as correct; if at
least one is not met, the result of separation is considered as incorrect.
Another possible indication of correctness is non-sensitivity of the result to

small variations in the selected ROI. For this experiment, we design 5 ROIs for
each kidney. When the ROI0 is given, Figure 5.5, middle, ROI1, . . . , ROI4 arise
from the ROI0 as follows: the ROIs arises from the ROI0 using addition of s
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Figure 5.9.: Example of the ROI0 of the left kidney, solid line, and its extention
to ROIs, dashed line.

Table 5.4.: The number of correctly separated sequences, Ntotal, and the num-
ber of sequences where correct separation were observed for all ROIs,
NallROI, are displayed for the BSS+, FAROI, and S-BSS-vecDC
algorithms.

quality of separation
algorithm Ntotal(from 990) NallROI(from 198)
BSS+ 426 68
FAROI 493 81

S-BSS-vecDC 633 99

pixels to the outer side and s pixels upwards, see Figure 5.9, dashed line. As a
result, we obtain 198 sequences (99 sequences with 2 kidneys each) with 5 ROIs
to be analyzed; hence, 990 sequences in total. This experiment was conducted
only for the BSS+, FAROI, and S-BSS-vecDC algorithms.
The subjective evaluation of the quality of separation allow us to study the

performance of algorithms in two ways: (i) the total number of correctly sep-
arated sequences from total number of 990 sequences, denoted as Ntotal, and
(ii) the number of sequences where correct separation is observed for all ROIs,
ROI0, . . . , ROI4, from total 198 sequences, denoted as NallROI.
The results are summarized in Table 5.4 using computed Ntotal and NallROI

for each algorithm. It is clearly seen that the S-BSS-vecDC algorithm out-
perform simpler models in the number of correct separation. Moreover, Figure
5.10 shows the histograms of sequences where {0, 1, 2, 3, 4, 5} correct separations
were observed for each algorithm. This show a tendency of the S-BSS-vecDC
algorithm to correctly separate tissues more often than other algorithms.
We conclude that these results validate the assumptions of the S-BSS-vecDC

algorithm (i.e. sparsity of source images and the convolution model of TACs)
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Figure 5.10.: Histograms with the number of sequences with the total number
of correct separation 0 to 5 are displayed for the BSS+, FAROI,
and S-BSS-vecDC algorithms.

on real data.
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6. Experiments with Other Imaging
Modalities

Far better an approximate answer to the right question, ...
than an exact answer to the wrong question.

(John Tukey)

The experiments conducted in Chapter 5 were possible due to large publicly
available dataset and thanks to the expert provided solutions that were accom-
panied with the dataset. In other imaging modalities, there are no such dataset
available as far as we know. However, we provide experiments on two stud-
ies, dynamic positron emission tomography and functional magnetic resonance
imaging respectively. Here, the superposition or partial volume effect of un-
derlaying structures is also observed and the proposed blind source separation
algorithms can be directly applied on these data.
In addition, we conduct an experiment with hyper-spectral images in order

to demonstrate the variability of the proposed models on data from other area
but with the same data model.

6.1. Dynamic Positron Emission Tomography

Positron emission tomography (PET) [45] is another example where medical
image sequences arise and can be described using superposition model (1.1).
In practice, the analysis of dynamic PET is often based on input function

(IF), i.e. blood curve, knowledge [81]. This can be achieved using arterial
blood sampling [44] which is very invasive and sensitive to errors. A number of
methods has been proposed to lower invasiveness of measurement [26] or derive
the IF directly from the dynamic PET images [127]. In some cases, blood
structure can be directly observed on the images. In this cases, a region of
interest (ROI) can be manually placed on vascular structures and its related
time-activity curve (TAC) can be obtained [38]. Manual selection of the ROIs
may suffer from subjectivity. This issues has been addressed using automatic
clustering methods [70].
We will demonstrate the separation ability of the compared algorithms on a

real brain data from dynamic PET [70]. In this study, 18F -altanserin was applied
to a patient and scanned with an 18-ring GE-Advance scanner (General Electric
Medical System, Milwaukee, WI, USA) which is able to record 3D scans. Each
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6. Experiments with Other Imaging Modalities

Figure 6.1.: The source image for slice number 9 is displayed on the left image.
The manually selected ROIs of arterial veins are displayed on the
right image.

scan consists of 35 image slices with an interslice distance 4.25 mm. The data
were reconstructed into a sequence of 128×128×35 voxel matrices, 2×2×4.25
mm each voxel, using software provided by the manufacturer. The sequence
consists of 40 voxel matrices, n = 40.
The aim of this experiment [107] is to compare the methodology for the BSS

on data with easy-to-find TAC of the blood. We analyze data from dynamic
PET of brain where structures with arterial blood are obvious and thus this
data can be used as the simplest possible benchmark of separation methods. At
first, we will study the separation on one selected slice. At second, we will study
the separation performance for the whole volume.

6.1.1. Analysis of One Slice

For simplification and demonstration, we selected the 10th slice to be analyzed.
For this slice, we placed the ROI of the arterial veins on the tested sequence,
see Figure 6.1. We run all tested methods with preselected number of sources
as r = 4 except CAM-CM algorithm which has computational issue with this
data. From the results given in Figure 6.2, we selected the blood sources and
compared them with the arterial TAC obtained manually. Note that the results
from the BCMS algorithm are not displayed in Figure 6.2 since the assumptions
of this algorithm do not hold for this data and the results are not satisfactory;
nevertheless, we add the blood source to the comparison for illustration.
The comparison of the manually obtained blood TAC with TACs obtained

using automatic method is given in Figure 6.3. It can be observed that the
S-BSS-vecDC provides far closer blood TAC than other competing methods.
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6.1. Dynamic Positron Emission Tomography
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6. Experiments with Other Imaging Modalities
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Figure 6.3.: TACs of blood tissues from all comparing methods on slice 10 are
shown.

6.1.2. Analysis of Whole Volume

The goal of this experiment is to estimate input function from the whole mea-
sured volume. Again, we will not use the CAM-CM algorithm in this experiment
since it has computational issue with this data. All remaining methods are now
being compared.
Firstly, we created a manual ROI in several slices in the same sense as in Figure

6.1. We obtained a manually derived TAC of blood using this approach. This
TAC will be used for comparison with the blood estimates from the compared
BSS algorithms. Secondly, we ran the BSS algorithms on the whole volume and
the blood curves were selected from each result. The estimates of the blood
source are displayed in Figure 6.4. The curves are compared with manually
obtained blood TAC, the red line.
All estimates of the blood tissue is similar to those obtained using only one

slice, Figure 6.3, with the S-BSS-vecDC algorithm being the closest. However,
all blind source separation algorithms provide slightly lower estimates of the
blood TAC than the manual method which could be caused by additional back-
ground tissue activity in manually selected blood ROI.

6.2. Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) data are the third type of data
for testing of algorithms from Chapter 4. Here, the signal is based on blood-
level-oxygenation contrast (BOLD) where fMRI detects local increases in blood
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6.2. Functional Magnetic Resonance Imaging

Figure 6.4.: Resulted blood source from all tested algorithms from analysis of
the whole volume of the PET data.
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6. Experiments with Other Imaging Modalities

oxygenation that is probably consequence of neurotransmitter action [72].
In this experiment, the data are provided by the Hvidovre Universitets Hos-

pital, Denmark, available online [84]. A flickering checkerboard were shown in
front of eyes of a human subject. Each flash of the checkerboard lasted for 50
frames of the sequence while one frame in the sequence is equal to 0.333 sec-
ond. The data consist of 280 two-dimensional images of the brain covering the
visual cortex with spatial resolution 78× 57 pixels. The task of this experiment
is to find the visual cortex and to study the activity of it and its relation to
the activation of the checkerboard. The sampling period is fast; hence, a delay
between the measured signal and the activity of the checkerboard is expected.
The initialization of input function in case of all algorithms with convolution is
slightly different from those in dynamic scintigraphy and dynamic PET. Here,
we do not have any premise for input function shape; hence, we initialize it as
a constant curve as

binit = 1280,1. (6.1)

The results are shown in Figure 6.5. The CAM-CM algorithm was not able to
handle such a large dataset; hence, only results from algorithms BSS+, FAROI,
BCMS, S-BSS-vecDC, SNPA, and NMF are provided in rows. Source images
are in the first three columns and related TACs are in the second three columns.
Here, the amplitude of the signal is unnecessary; hence, the resulting TACs are
normalized. The blue lines are estimated normalized TACs while the red doted
lines symbolically represent flashes of the checkerboard.
The results in Figure 6.5 suggest that the BSS+, FAROI, and S-BSS-vecDC

algorithms are capable to clearly estimate the activity in visual cortex in accor-
dance with the flashing of the checkerboard and with assumption of the delay
in the measured signal. The BCMS and NMF algorithms estimate recognizable
visual cortex; however, the related estimated TACs are very noisy degrading
the possibility of evaluation. The SNPA algorithm was not able to estimate any
significant signal in these data.

6.3. Analysis of Hyper-spectral Images

Hyper-spectral image arise when more than three channels of images is captured,
e.g. in hyper-spectral digital imagery collection experiment (HYDICE) [90],
where set of images of the same scenery is taken with different wavelengths. The
task is to classify or recognize pixels with similar bands [88]. The problem can
be considered as a dimensionality reduction and spectral classification. General
algorithms such as independent component analysis (ICA) have been studied;
however, suitability of these methods for hyperspectral imaging is limited since
e.g. assumption of independence of sources in ICA is not valid for hyperspectral
images [80]. Another issue of BSS methods is assuming that all pixels of a
potential source contribute the to source activity equally [7] while the sparsity
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Figure 6.5.: Results of all tested algorithm on fMRI brain data with visual cortex
activation. Source images are in the first three columns and related
TACs are in the second three columns. The blue lines are estimated
normalized activity while the red doted lines symbolically represent
flashes of checkerboard.
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Figure 6.6.: Source images from hyperspectral image data estimated using com-
pared methods (in rows).
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6.3. Analysis of Hyper-spectral Images

of each source image and source spectrum seems to be a natural assumption in
hyperspectral image analysis [111].
The measured data are stored columnwise in the matrix D where each spec-

trum corresponds to one column. The decomposition (1.1) provides the matrix
A with decomposed images in gray scale, i.e. intensities, and the matrix X with
mean band activities for related images (reflectance or spectra). The example
of hyper-spectral image separation are given in Figure 6.6 on Urban dataset1

accompanied with estimated spectra in Figure 6.7. Here, the hyper-spectral im-
age of the size 307× 307 pixels with 210 bands is analyzed using 5 algorithms:
(i) the BSS+ algorithm, Section 4.1, (ii) sparse model of images using ARD
while the model of spectra remain isotropic, i.e. Sections 3.2.3 and 3.3.1, (iii)
the NMF algorithm, Section 4.6.2, (iv) sparse model using ARD of both, im-
ages and spectral weights, i.e. Sections 3.2.3 and 3.3.2, (v) the SNPA algorithm,
Section 4.6.1, however, SNPA performance is very poor with noisy data and the
noisy bands need to be removed manually to obtain comparable results; hence,
we removed these results from comparison. Convolution models are not tested
since no convolution on the spectral bands is expected.
It can be seen that all algorithms distinguish between vegetation (the third

column), metal object such as roofs (the second image), and roads or dirts (the
first column). The remaining images represent the noise presented in original
sequence and well separated here from meaningful results.
We conjecture that the best results are provided by the algorithm with sparse

ARD priors on both, images and spectra. In estimated images, Figure 6.6, it
reaches better contrast in comparison with other methods. In estimated spectra,
Figure 6.7, the sparsity on weights are beneficial since the suppression of noisy
observations, e.g. bands 104–109 or 139–151, are far better using methods with
sparse priors. All methods are used directly without any parameters tunning.

1http://www.agc.army.mil/
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7. Conclusion
I beseech you, in the bowels of Christ, think it possible you

may be mistaken.
(Oliver Cromwell)

The aim of this thesis was to study and to extend methods of blind source
separation for analysis of dynamic medical image sequences where the images
arise as superposition of underlaying sources weighted by their time-activity
curves. We have studied the general stochastic superposition model (Section 3.1)
and existing prior models of its parameters. We proposed novel prior models for
parameters representing both, the source images and the source time-activity
curves. The variational Bayes method was used to derive posterior distributions
for selected combinations of the prior models (Chapter 4).
Performance of the derived algorithms is heavily influenced by their initializa-

tion or numerical stability of internal steps. These issues were studied in detail
to show that the derived algorithms are easy to use without any “tunning”
parameters with the exception of the maximum number of sources.
We have tested all derived algorithms together with the state of the art algo-

rithms (Section 4.6) on real data from dynamic medical imaging. Specifically,
data from dynamic renal scintigraphy, dynamic brain positron emission tomog-
raphy, and dynamic brain magnetic resonance imaging were used. We have
shown that the proposed S-BSS-vecDC algorithm which is based on the use of
sparse priors provides the best estimates from all tested algorithms.
MATLAB implementations of all derived algorithms are freely available for

download.

7.1. Key Contributions of the Thesis

The key contributions of this thesis are summarized in the following list:

Chapter 2: Methods for approximation of Bayesian posterior distributions
were reviewed with emphasis on the Variational Bayes approximation. In addi-
tion, we have shown that the automatic relevance determination (ARD) prin-
ciple within the VB method impose sparse solution more aggressively than the
classical VB solution in two cases, on unrestricted support and on positive sup-
port.
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Chapter 3: After reviewing isotropic priors of the source images and time-
activity curves (TACs) and priors for isotropic Gaussian noise within the blind
source separation model, we proposed:

• sparse prior models of source images using a mixture model and using the
ARD model, and sparse prior of TACs using the ARD model,

• deconvolution model of TACs with two prior models of convolution kernels:
the piece-wise linear model and sparse model using the ARD principle.

Chapter 4: We have proposed several algorithms based on prior models from
Chapter 3. We have used the advantage of the VB approximation where the
posterior estimates of one parameter are computed using only posterior moments
of the other parameters. This allows us

• to arbitrary combine the prior models of source images and TACs to obtain
a specific algorithm.

In addition,

• we have studied various aspects common to all derived algorithms such as
initialization, number of sources estimation, or numerical stability.

The behavior of the derived algorithms together with the state of the arts al-
gorithms is studied on synthetic phantom study where the ground truth can be
compared with their estimates.

Chapter 5: We applied the proposed and the state of the art algorithms on
data from dynamic renal scintigraphy. Three selected sequences are studied
to demonstrate typical issues of the analysis of medical image sequences. Key
results are quantitative results on large dataset. Namely:

• comparison of estimated TACs of the heart and the parenchyma with TACs
derived manually by physician is given for 19 sequences. The advantage
of the proposed S-BSS-vecDC algorithm over other algorithms is proven
with statistical significance,

• differential renal functions (DRF) are computed for 99 sequences. The re-
sults of the proposed S-BSS-vecDC algorithm are closest to those obtained
by an expert physician.

In addition, we proposed evaluation of the estimated input function from con-
volution models and experiment with subjective evaluation of results.
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Chapter 6: We have tested all algorithms on other problems where mixture of
sources arise:

• dynamic positron emission tomography (PET) brain data and functional
magnetic resonance imaging (fMRI) brain slices with visual cortex have
been analyzed,

• hyperspectral image data have been analyzed,

with promising results.

7.2. Future Research
We summarize some of possible directions of future research and open questions.

7.2.1. Integration in Variational Bayes Approximation

The VB approximation was chosen as a compromise between accurate model-
ing and computational feasibility; however, it is not statistically optimal [96].
The VB approximation is based on factorization over latent variable and model
parameters. One possibility of improvement in the VB approximation is to inte-
grate the model parameters exactly, leaving only the latent variables for the VB
approximation procedure. This technique is described for conjugate-exponential
family models and called Latent-Space VB (LSVB) [103].

7.2.2. Prior Model Improvements

There are various possibilities in modeling improvements, we will mention three
of them which we have in various states of completion.

7.2.2.1. Full Prior Model of Convolution Kernels

We conjecture that the ARD priors of the convolution kernels are so far the best
choice in many cases in dynamic medical image data analysis. For this model,
the matrix of TACs, X, is modeled as (3.113), X = BU , where the matrix
B is composed from input function (3.77) and the matrix U stores convolution
kernels in columns, or in a single vector u = vec(U). In the ARD case, we model
only the main diagonal of the covariance matrix, see (3.114)–(3.115). However,
it is possible to model the full covariance matrix using Wishart distribution

f(u|Υ) =tNu
(
0nr,1,Υ−1

)
, (7.1)

f(Υ) =WΥ (α0Inr, β0) , (7.2)

where W(., .) denotes the Wishart distribution of the covariance matrix Υ with
prior parameters α0, β0, see Appendix A.5. We pioneered this approach in [110]
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and we shown that this approach should has advantages in modeling of smooth-
ness of convolution kernels, especially in connection with matrix localization
[47].
Similar approach can be used directly for the matrix X [109].

7.2.2.2. Model of Input Function

The only influence on input function (IF) b, defined in Section 3.3, is in initial-
ization. Within the iterations, the estimate of IF can have any possible shape.
Depending on application, we could use another model for the IF. For exam-

ple, a parametric model for IF such as exponential with possible delay can be
used in scintigraphy, or bi-exponential [48] or sum of three gamma function [56]
can be used in in modalities with fast sampling period.

7.2.2.3. Prior Image Knowledge Incorporation

In all considered models, we assumed zero mean value of the prior models of
each pixel of each source image, i.e. all elements of the matrix A. However, in
specific areas such as in dynamic renal scintigraphy, typical or average images of
specific source could be observed. The advantage of probabilistic models is that
we can use this average images for initialization or as a prior mean value. As
an example, we extracted average images of left and right parenchyma, heart,
and urinary bladder from results of the BSS+ algorithm on database of 99
scintigraphic sequences taken from [1]. We run the BSS+ algorithm for each
sequence and manually label the source of interest. The labeled sources are
averaged and the pixels with less than 35% of maximum activity of respected
image is cropped to 0. The resulting source images are given in Figure 7.1.
Using this information as an initialization is straightforward. Incorporation

of this information into the model cloud be as follows:

f (ak) = tNak (pak , Ip) , (7.3)

where pak is the kth prior source image stored in vector columnwise.
The same approach could be used for TACs as well.
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Left Parenchyma Right Parenchyma

Heart Urinary Bladder

Figure 7.1.: Average images of left and right parenchyma, heart, and urinary
bladder.
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A. Required Probability Distribution

A.1. Normal Distribution
A.1.1. Multivariate Normal Distribution
Let the vector x ∈ Rn×1. Then, the multivariate normal distribution of the
vector x with mean vector µx ∈ Rn×1 and symmetric positive definite covariance
matrix Σx ∈ Rn×n is

Nx(µx,Σx) = 1
(2π)

n
2 |Σx|

1
2

exp
(
−1

2 (x− µx)T Σ−1
x (x− µx)

)
. (A.1)

The moments of the multivariate normal distribution (A.1) are

x̂ =µx, (A.2)

x̂xT =Σx + µxµ
T
x , (A.3)

x̂Tx =tr (Σx) + µTxµx. (A.4)

For real matrix C ∈ Rn×n holds

Cx ∼ N (Cµx, CΣxC
T ). (A.5)

A.1.2. Matrix Normal Distribution
Let the matrix X ∈ Rn×p. The matrix normal distribution of the matrix X is
defined as

NX(µX ,Σn ⊗ Φp) = 1
(2π)

np
2 |Σn|

p
2 |Φp|

n
2
×

× exp
(
−1

2tr
[
Σ−1
n (X − µX)(Φ−1

p )T (X − µX)T
])
, (A.6)

where matrices Σn ∈ Rn×n and Φp ∈ Rp×p are symmetric positive definite
matrices. The moments of normal matrix distribution (A.6) are

X̂ =µX , (A.7)

X̂XT =tr(Φp)Σn + µXµ
T
X , (A.8)

X̂TX =tr(Σn)Φp + µTXµX . (A.9)
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For real matrices C ∈ Rn×n and D ∈ Rp×p holds

CXD ∼N
(
CµXD,CΣnC

T ⊗DTΦpD
)
, (A.10)

X̂TDX =tr(ΣnD)Φp + µTXDµX , (A.11)

X̂CXT =tr(CΦp)Σn + µXCµ
T
X . (A.12)

A.1.3. Truncated Scalar Normal Distribution

Truncated normal distribution, denoted as tN , of a scalar variable x on interval
[a; b] is defined as

tN (µ, σ, [a, b]) =

√
2 exp

(
− 1

2σ (x− µ)2
)

√
πσ(erf(β)− erf(α))χ[a,b](x), (A.13)

where α = a−µ√
2σ , β = b−µ√

2σ , function χ[a,b](x) is a characteristic function of interval
[a, b] defined as χ[a,b](x) = 1 if x ∈ [a, b] and χ[a,b](x) = 0 otherwise. erf() is the
error function defined as erf(t) = 2√

π

´ t
0 e
−u2du.

The moments of truncated normal distribution are

x̂ = µ−
√
σ

√
2[exp(−β2)− exp(−α2)]√

π(erf(β)− erf(α)) , (A.14)

x̂2 = σ + µx̂−
√
σ

√
2[b exp(−β2)− a exp(−α2)]√

π(erf(β)− erf(α)) . (A.15)

A.1.4. Truncation in Matrix Normal Distribution

Assume the matrixX ∈ Rn×r and matrix normal distribution f(X) = NX(µX ,Σn⊗
Φr) defined using equation (A.6). The truncation to given support NX(µX ,Σn⊗
Φr, [a, b]) is computed according to the scalar truncated normal distribution as

f(X) = f(x) ≈
np∏
l=1

tNxl (µxl , σxl , [a, b]) , (A.16)

where x = vec(X), µx = vec(µX) σx = diag(Σn ⊗ Φr)−1. The moments of the
matrix normal distribution with truncated support are computed as

x̂ =µx −
1
√
σx
◦
√

2[exp(−β2)− exp(−α2)]√
π(erf(β)− erf(α)) , (A.17)

x̂ ◦ x =σx + µx ◦ x̂− 1
√
σx
◦
√

2[b exp(−β2)− a exp(−α2)]√
π(erf(β)− erf(α)) , (A.18)
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A.2. Gamma Distribution

where α, β, and function erf() are defined in Section A.1.3. The matrix-shape
moments are

X̂ =
[
x̂1:n, . . . , x̂(nr−n):(nr)

]
, (A.19)

X̂TX =diag
([

x̂ ◦ x1:n, . . . , x̂ ◦ x(nr−n):(nr)
]T

1n,1
)

+ (1r,r − Ir)
(
X̂T X̂

)
,

(A.20)

where subscript i : j denotes selection of elements from i to j from respective
vector.
The whole procedure is denoted using functions

X̂ =MtN
1 (µX ,ΣX , a, b) , (A.21)

X̂TX =MtN
2

(
X̂, µX ,ΣX , a, b

)
, (A.22)

where ΣX = Σn ⊗ Φr.

A.2. Gamma Distribution
The gamma distribution of a random scalar variable x is defined as

Gx(α, β) = 1
Γ(α)

1
β−α

xα−1e−xβ (A.23)

for x, α, β > 0 and Γ(x) =
∞́

0
tx−1 exp(−t)dt for x > 0.

Moments of the gamma distribution are given as

x̂ =α

β
, (A.24)

x̂2 = α

β2 . (A.25)

A.3. Truncated Exponential Distribution
The truncated exponential distribution of a random scalar variable x on the
interval (a, b] is defined as

tExpx (λ, (a, b]) = 1
exp(λb)− exp(λa) exp(−λx)χ(a,b](x), (A.26)

where χ(a,b](x) is characteristic function of the interval defined in Section A.1.3.
The moment of the truncated exponential distribution is

x̂ = exp(λb)(1− λb)− exp(λa)(1− λa)
λ(exp(λa)− exp(λb)) . (A.27)
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A.4. Uniform Distribution

The uniform distribution of a random scalar variable x on the interval (a, b) is
defined as

Ux ((a, b)) = 1
b− a

χ(a,b)(x), (A.28)

where χ(a,b](x) is characteristic function of the interval defined in Section A.1.3.

The moment of the truncated exponential distribution is

x̂ = a+ b

2 . (A.29)

A.5. Wishart Distribution

Wishart distribution W of the positive-definite matrix X ∈ Rp×p is defined as

Wp(Σ, ν) = |X|
ν−p−1

2 2−
νp
2 |Σ|−

ν
2 Γ−1

p

(
ν

2

)
exp

(
−1

2tr
(
Σ−1X

))
, (A.30)

where Γp
(
ν
2
)
is the gamma function. The required moment is:

X̂ =νΣ. (A.31)
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