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a b s t r a c t 

Estimation of response functions is an important task in dynamic medical imaging. This task arises for exam- 

ple in dynamic renal scintigraphy, where impulse response or retention functions are estimated, or in func- 

tional magnetic resonance imaging where hemodynamic response functions are required. These functions 

can not be observed directly and their estimation is complicated because the recorded images are subject to 

superposition of underlying signals. Therefore, the response functions are estimated via blind source separa- 

tion and deconvolution. Performance of this algorithm heavily depends on the used models of the response 

functions. Response functions in real image sequences are rather complicated and finding a suitable paramet- 

ric form is problematic. In this paper, we study estimation of the response functions using non-parametric 

Bayesian priors. These priors were designed to favor desirable properties of the functions, such as sparsity 

or smoothness. These assumptions are used within hierarchical priors of the blind source separation and de- 

convolution algorithm. Comparison of the resulting algorithms with these priors is performed on synthetic 

datasets as well as on real datasets from dynamic renal scintigraphy. It is shown that flexible non-parametric 

priors improve estimation of response functions in both cases. MATLAB implementation of the resulting al- 

gorithms is freely available for download. 

© 2015 Elsevier Inc. All rights reserved. 
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1. Introduction 

Computer analysis of dynamic image sequences offers an oppor-

tunity to obtain information about organ function without invasive

intervention. A typical example is replacement of invasive blood sam-

pling by computer analysis of dynamic images [1] . The unknown in-

put function can be obtained by deconvolution of the organ time

activity curve and organ response function. Typically, both the in-

put function and the response functions are unknown. Moreover, the

time-activity curves are also not directly observed since the recorded

images are observed as superposition of multiple signals. The super-

position arises e.g. from partial volume effect in dynamic positron

emission tomography [2] or dynamic and functional magnetic res-

onance imaging [3] or from projection of the volume into planar dy-

namic scintigraphy [4] . Analysis of the dynamic image sequences thus

requires to separate the original sources (source images, mean im-

ages of active components) and their weights over the time forming

the time-activity curves (TACs). The TACs are then decomposed into

input function and response functions. Success of the procedure is

dependent on the model of the image sequence. 
∗ Corresponding author. 
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The common model for dynamic image sequences is the factor

nalysis model [5] , which assumes linear combination of the source

mages and TACs. Another common model is that TAC arise as a con-

olution of common input function and source specific kernel [6,7] .

he common input function is typically the original signal from the

lood and the role of convolution kernels vary from application area:

mpulse response or retention function in dynamic renal scintigra-

hy [8] or hemodynamic response function in functional magnetic

esonance imaging [9] . In this paper, we will refer to the source ker-

els as the response functions, however other interpretations are also

ossible. 

Analysis of the dynamic image sequences can be done with su-

ervision of experienced physician or technician, who follows rec-

mmended guidelines and uses medical knowledge. However, we

im at fully automated approach where the analysis fully depends

n the used model. The most sensitive parameter of the analysis

s the model of the response functions (i.e. the convolution ker-

els). Many parametric models of response functions have been pro-

osed, including the exponential model [10] and the piece-wise lin-

ar model [11,12] . An obvious disadvantage of the approach is that

he real response function may differ from the assumed paramet-

ic models. Therefore, more flexible class of models based on non-

arametric ideas were proposed such as averaging over region [13] ,

emporal regularization using finite impulse response filters [14] , or

http://dx.doi.org/10.1016/j.cviu.2015.11.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2015.11.010&domain=pdf
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ree-form response functions using automatic relevance determina-

ion principle [15] . 

In this paper, we will study the probabilistic models of response

unctions using Bayesian methodology within the general blind

ource separation model [16] . The Bayesian approach was chosen for

ts inference flexibility and for its ability to incorporate prior infor-

ation of models [17,18] . We will formulate the prior model for gen-

ral blind source separation problem with deconvolution [15] where

he hierarchical structure of the model allow us to study various ver-

ions of prior models of response functions. Specifically, we design

ifferent prior models of the response functions with more parame-

ers then the number of points in the unknown response function.

he challenge is to regularize the estimation procedure such that

ll parameters are estimated from the observed data. We will use

he approximate Bayesian approach known as the Variational Bayes

ethod [19] . The resulting algorithms are tested on synthetic as well

s on real datasets and comparisons with parametric methods are

rovided. 

. Probabilistic blind source separation with deconvolution 

In this Section, we introduce a model of dynamic image se-

uences. Estimation of the model parameters yields an algorithm for

lind Source Separation and Deconvolution. Prior models of all pa-

ameters except for the response functions are described here while

he priors for the response functions will be studied in details in the

ext section. 

.1. Model of observation 

Each recorded image is stored as a column vector d j ∈ R 

p×1 , j =
 , . . . , n, where n is the total number of recorded images. Each vec-

or d j is supposed to be an observation of a superposition of r source

mages a k ∈ R 

p×1 , k = 1 , . . . , r, stored again columnwise. The source

mages are weighted by their specific activities in time j denoted as

 1 , j , . . . , x r, j ≡ x j ∈ R 

1 ×r . Formally, 

 j = a 1 x 1 , j + a 2 x 2 , j + · · · + a r x r, j + e j = A x 

T 
j + e j , (1)

here e j is the noise of the observation, A ∈ R 

p × r is the matrix com-

osed from source images as its columns A = [ a 1 , . . . , a r ] , and symbol

) T denotes transposition of a vector or a matrix in the whole paper.

he Eq. (1) can be rewritten in the matrix form. Suppose the obser-

ation matrix D = [ d 1 , . . . , d n ] ∈ R 

p×n and the matrix with TACs in its

olumns, X = [ x 
T 
1 , . . . , x 

T 
n ] 

T ∈ R 

n ×r . Note that we will use the bar sym-

ol, x k , to distinguish the k th row of matrix X , while x k will be used

o denote the k the column. Then, the Eq. (1) can be rewritten into the

atrix form as 

 = AX 

T + E. (2)

The tracer dynamics in each source is commonly described as con-

olution of common input function, vector b ∈ R 

n × 1 , and source spe-

ific response function (convolution kernel, mathematically), vector

 k ∈ R 

n ×1 , k = 1 , . . . , r [10,11,20] . Using convolution assumption, each

eight x k can be rewritten as 

 k = B u k , ∀ k = 1 , . . . , r, (3)

here the matrix B ∈ R 

n × n is composed from elements of input func-

ion b as 

 = 

⎛ ⎜ ⎝ 

b 1 0 0 0 

b 2 b 1 0 0 

. . . b 2 b 1 0 

b n . . . b 2 b 1 

⎞ ⎟ ⎠ 

. (4) 

uppose the aggregation of response functions U = [ u 1 , . . . , u r ] ∈
 

n ×r . Then, X = BU and the model (2) can be rewritten as 

 = AU 

T B 

T + E. (5)
The task of subsequent analysis is to estimate the matrices A and

 and the vector b from the data matrix D . 

.1.1. Noise model 

We assume that the noise has homogeneous Gaussian distribu-

ion with zero mean and unknown precision parameter ω, e i, j =
 (0 , ω 

−1 ) . Then, the data model (2) can be rewritten as 

f (D | A, X, ω) = 

n ∏ 

j=1 

N (A x j , ω 

−1 I p ) , (6)

here symbol N denotes Gaussian distribution and I p is identity ma-

rix of the size given in its subscript. Since all unknown parameters

ust have their prior distribution in the Variational Bayes methodol-

gy, the precision parameter ω has a conjugate prior in the form of

he Gamma distribution 

f (ω) = G(ϑ 0 , ρ0 ) , (7)

ith chosen constants ϑ0 , ρ0 . 

.2. Probabilistic model of source images 

The only assumption on source images is that they are sparse,

.e. only some pixels of source images are non-zeros. The sparsity

s achieved using prior model that favors sparse solution depending

n data [21] . We will employ the automatic relevance determination

ARD) principle [22] based on joint estimation of the parameter of

nterest together with its unknown precision. Specifically, each pixel

 i , k of each source image has Gaussian prior truncated to positive val-

es (see A.1 , denoted as tN in this paper) with unknown precision pa-

ameter ξ i , k which is supposed to have conjugate Gamma prior as 

f (a i,k | ξi,k ) = tN (0 , ξ−1 
i,k 

) , (8) 

f (ξi,k ) = G(φ0 , ψ 0 ) , (9) 

or ∀ i = 1 , . . . , p, ∀ k = 1 , . . . , r, and φ0 , ψ 0 are chosen constants. The

recisions ξ i , k form the matrix � of the same size as A . 

.3. Probabilistic model of input function 

The input function b is assumed to be a positive vector; hence, it

ill be modeled as truncated Gaussian distribution to positive values

ith scaling parameter ς ∈ R as 

f (b | ς ) = tN (0 n, 1 , ς 

−1 I n ) , (10) 

f (ς ) = G(ζ0 , η0 ) , (11) 

here 0 n , 1 denotes zeros matrix of the given size and ζ 0 , η0 are cho-

en constants. 

.4. Models of response functions 

So far, we have formulated the prior models for source images A

nd input function b from decomposition of the matrix D . The task

f this paper is to propose and study prior models for response func-

ions U as illustrated in Fig. 1 . Different choices of the priors on the

esponse functions have strong influence on the results of the analy-

is which will be studied in the next section. 
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Fig. 1. Hierarchical model for blind source separation with deconvolution problem. 
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3. Non-parametric prior models of response function 

Here, we will formulate several prior models of response func-

tions. Our purpose is not to impose any parametric form as it was

done, e.g., in [10,11] but model response function as a free-form

curve with only influence from their prior models. The motivation

is demonstrated in Fig. 2 , where a common parametric model [11]

is compared to an example of response function obtained from real

data. While the basic form of the response function is correct, exact

parametric form of the function would be very complex. Therefore,

we prefer to estimate each point on the response function individu-

ally. However, this leads to over-parameterization and poor estimates

would result without regularization. All models in this Section in-

troduce regularization of the non-parametric response function via

modeling of the covariance matrix of the response function. 

3.1. Orthogonal prior 

The first prior model assumes that each response function u k , k =
1 , . . . , r, is positive and each response function is weighted by its own

precision relevance parameter υk ∈ R which has a conjugate Gamma

prior: 

f (u k | υk ) = tN 

(
0 n, 1 , υ

−1 
k 

I n 
)
, (12)

f (υk ) = G(α0 , β0 ) , (13)

for ∀ k = 1 , . . . , r and where α0 , β0 are chosen constants. 

The precision parameters υk serve for suppression of weak re-

sponse functions during iterative computation and therefore as pa-

rameters responsible for estimation of number of relevant sources. 

3.2. Sparse prior 

The model with sparse response functions has been introduced in

[15] . The key assumption of this model is that the response functions

are most likely sparse which is modeled similarly as in case of source

images, Section 2.2 , using the ARD principle. Here, each element of

response function u k , j has its relevance parameter υk, j which is sup-

posed to be conjugate Gamma distributed. In vector notation, each

response function u k has its precision matrix ϒk = 

⎛ ⎝ 

υk, 1 0 0 

0 
. . . 0 

0 0 υk,n 

⎞⎠

Theoretical shape
of response function (by Kuruc)

am
pl

it
ud

e

time

Fig. 2. Example of theoretical shape of response function (by [11] ), left, 
ith precision parameters υk, j on its diagonal and zeros otherwise.

hen 

f (u k | ϒk ) = tN 

(
0 n, 1 , ϒ

−1 
k 

)
, (14)

f (υk, j ) = G(α0 , β0 ) , ∀ j = 1 , . . . , n, (15)

here α0 , β0 are chosen constants. 

This model is extended version of the model (12) –(13) where only

ne common precision parameter is assumed for each response func-

ion. Here, each element of each response function has its own pre-

ision parameter which is called ARD principle. The employed ARD

rinciple should suppress the noisy parts of response functions which

hould lead to clearer response functions and subsequently to clearer

ACs. 

.3. Sparse differences prior 

Modeling of only sparsity in response functions could possibly

ead to arbitrary solution such as very non-smooth curve. The model

f differences in response functions allow us to formulate the model

avoring smooth response functions which is biologically reasonable

equirement. Let us suppose the model of differences of response

unction u k , ∇u k , where the difference matrix ∇ is defined as 

 = 

⎛ ⎜ ⎜ ⎜ ⎝ 

1 −1 0 0 

0 1 

. . . 0 

0 0 

. . . −1 

0 0 0 1 

⎞ ⎟ ⎟ ⎟ ⎠ 

, (16)

ith ARD prior on each difference using precision parameter υk, j 

orming again precision matrix Y k ; however, with precisions of dif-

erences on its diagonal. Formally, the model of differences is 

f (∇u k | ϒk ) = N 

(
0 n, 1 , ϒ

−1 
k 

)
. (17)

e can reformulate the Eq. (17) directly for the response function u k 

s 

f (u k | ϒk ) = N 

(∇ 0 n, 1 , ∇ 

−1 ϒ−1 
k 

∇ 

−T 
)
, (18)

here symbol () −T denotes transpose and inversion of matrix. In

odel of differences of response function (17) , no positivity of re-

ponse functions could be ensured. However, the direct model of re-

ponse function (18) has potential benefit since we can a priori as-

ume that the elements of u k are positive using truncated normal

istribution as 

f (u k | ϒk ) = tN 

(
0 n, 1 , ∇ 

−1 ϒ−1 
k 

∇ 

−T 
)
. (19)

he prior model (19) is accompanied by prior model for precisions in

he same way as in (15) : 

f (u k, j ) = G(α0 , β0 ) , ∀ j = 1 , . . . , n, (20)

here α0 , β0 are chosen constants. 
Real−world shape
of response function

time

am
pl

it
ud

e

and corresponding real-world shape of convolution kernels, right. 
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Fig. 3. The used localization matrix L for the first two diagonals. The black pixels de- 

note ones and the white pixels denote zeros. This example is given for n = 15 and r = 3 . 
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Algorithm 1 Bayesian blind source separation algorithm with decon- 

volution using selected models. 

1. Initialization: 

(a) Set prior parameters α0 , β0 , ϑ 0 , ρ0 , φ0 , ψ 0 , ζ0 , η0 to non- 

informative values 10 −10 or 10 +10 . 

(b) Set initial values for ̂  �, ̂  u , ̂ u 

T u , ̂  ϒ, ̂  b , ̂  b 

T b , ̂  ς , ̂  ω . 

(c) Set the initial number of sources r max . 

2. Iterate until convergence is reached using computation of shap- 

ingparameters and moments from Appendix B : 

(a) Shaping parameters of source images μa i 
, �a i 

and their vari- 

ances ψ i , φi ∀ i using (B.1) –(B.4) and moments ̂  A , ̂  A 

T A using ?? . 

(b) Response functions μu using Eq. (B.10) and �u using 

�u = 

(̂ A 

T A ⊗ ̂ ω ̂

 B 

T B + R u 

)−1 
, (28) 

where regularization matrix R u and hyper- 

parametersaggregated in the estimate ̂ ϒ depends on version 

ofthe prior: 

i. Orthogonal: R u = I n ⊗ ̂ ϒ , ̂ ϒk,k = 

α0 + n 2 

β0 + 1 2 
tr 
(
u k u 

T 
k 

) , k = 1 , . . . , r, 

ii. Sparse: R u = diag ( vec ( ̂  ϒ)) , ̂ ϒ = diag 

(
α0 + 1 2 

β0 + 1 2 
diag ( ̂  uu T ) 

)
, 

iii. Sparse Differences: R u = (I r ⊗ ∇) ̂  ϒ(I r ⊗ ∇ 

T ) , 

̂ ϒ = diag 

( 

α0 + 1 2 

β0 + 1 2 
diag 

(
∇ 

T ̂ uu T ∇ 

)
) 

, 

iv. Wishart: R u = 

̂ ϒ , ̂ ϒ = (β0 + 1) 
( ̂ uu 

T + (α0 I nr ) −1 
)−1 

, 

v. Wishart with localization: R u = 

̂ ϒ ◦ L , ̂ ϒ = (β0 + 1) 
( ̂ uu 

T + (α0 I nr ) −1 
)−1 

, 

Moments ̂  u , ̂ uu 

T are computed from μu , �u using Appendix 

A.2 . 

(c) Shaping parameters of the input function μb , �b and its vari- 

ance ζ , η using (B.5) –(B.7) and moments ̂ b using Appendix 

A.2 . 

(d) Shaping parameters of the variance of noise ϑ, ρ using (B.8) –

(B.9) . 

3. Report estimates of source images ̂  A , response functions ̂  U ,and in- 

put function ̂

 b . 

3

 

l  

b  

w  

l  

r

w  

T  

b  

e  
.4. Wishart prior 

So far, we have modeled only the first or the second diagonal of

he precision matrix Y k . Each of these approaches have its advantages

hich we would like to generalize into estimation of several diago-

als of the prior covariance matrix. However, this is difficult to solve

nalytically. Instead, we note that it is possible to create the model for

he full prior covariance matrix of the response functions as well as

heir mutual interactions. For this task, we use vectorized form of re-

ponse functions denoted as u ∈ R 

nr × 1 , u = vec (U) = 

[
u 

T 
1 
, . . . , u 

T 
r 

]T 
.

his rearranging allow us to model mutual correlation between re-

ponse functions. The full covariance matrix Y ∈ R 

nr × nr can be mod-

led using Wishart distribution, see A.3 , as 

f (u | ϒ) = tN 

(
0 nr, 1 , ϒ

−1 
)
, (21) 

f (ϒ) = W ( α0 I nr , β0 ) , (22) 

ith scalar prior parameters α0 , β0 . 

The advantage of this parametrization is obvious, the full covari-

nce matrix is estimated. The disadvantage is this model is that for

stimation nr parameters in vector u , we need to estimate n 2 r 2 addi-

ional parameters in covariance structure. The problem is regularized

y the prior on Y, (22) , which is relatively weak regularization with

otential side effects. We try to suppress these side effects in the next

ection. 

.5. Wishart prior with localization 

Since restriction of the covariance structure to several diagonals is

nfeasible in the considered dimensions, we apply an alternative ap-

roach known as localization. This techniques originates in data as-

imilation of atmospheric models [23] . The basic idea of the method

s that the most information is localized on the first two diagonals

f the matrix Y and its sub-matrices. Hence, we can use Hadamard

roduct, known also as element-wise product, of the original esti-

ates Y and localization matrix L of the same size as the matrix Y.

he localization matrix used in this paper for the first two diagonals

s illustrated in Fig. 3 . 

After localization, the model of response functions is the same as

n Section 3.4 , (21) –(22) , however, the estimate of Y, ̂  ϒ, is replaced by

̂ 

new 

= 

̂ ϒ ◦ L, (23) 

here symbol ◦ denotes the Hadamard product. We will show that

his localization is a soft version of smoothing of the Wishart model

rom Section 3.4 ; however, not so strict as modeling of differences in

ection 3.3 . 

Theoretically, we could employ any conceivable localization as

ell as smoother version of localization using smooth transitions be-

ween ones and zeros; however, this is out of scope of this paper. 
.6. Variational Bayes approximate solution 

The whole probabilistic model is formed by Eqs. (6) –(11) , and se-

ected response functions model from Sections 3.1 –3.5 . The proba-

ilistic model is solved using Variational Bayes (VB) method [16,19]

hich seeks posterior in the conditionally independent form. We fol-

ow methodology described in [19] and identify the following poste-

ior distributions denoted as ˜ f : 

˜ f ( a i | D ) = tN (μa i 
, �a i 

) , ˜ f ( ξi | D ) = G( φi , ψ i ) , (24) 

˜ f (b | ς ) = tN (μb , �b ) , ˜ f (ς | D ) = G(ζ , η) , (25) 

˜ f (u | D ) = tN (μu , �u ) , ˜ f (ϒ | D ) = G( α, β) or W(�ϒ, β) , (26) 

˜ f (ω| D ) = G(ϑ, ρ) , (27) 

here shaping moments of these posteriors are given in Appendix B .

he shaping parameters together with the moments of the distri-

utions (24) –(27) form a set of implicit equations that is solved it-

ratively. The final algorithm is summarized in Algorithm 1 with

sec:Shaping-Parameters
eq:img_ard1
eq:img_ard2
eq:mu_u_all
sub:Multivariate-Truncated-Normal
eq:param_b1
eq:param_b2
sub:Multivariate-Truncated-Normal
eq:omega_1
eq:omega_2
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branches for different prior models. The algorithm is proven to con-

verge to local optima. Thus the choice of initial value is critically im-

portant. 

3.6.1. Algorithm initialization 

Convergence of general matrix factorization was studied in [19] ,

where the initialization was random and the only local optima were

observed for different choice of initial values of ̂  ω . However, the con-

volution model represents another degree of freedom that yields pos-

sible local extrema. Specifically, the most important initial value is

that of the input function ̂

 b . Random generation of this value yields

significantly different results. 

However, in the considered application we have an underlying as-

sumption that the input function is unimodal with highest value at

the beginning of the sequence. Therefore, we choose its initial value

as an exponential ̂ b j = exp (− j 
3 ) . The exact value of the decrease is

not important, the algorithms yields consistent results even for very

high values. The initial shapes of the response functions are chosen

as as pulses with different lengths in order to cover various dynamics

of the sources. 

Similarly to the simple matrix factorization, the initial value of the

variance of the noise has influence especially on the ability of the al-

gorithm to suppress irrelevant sources. Since the application domain

is renal scintigraphy where the noise level is very high, we can reli-

ably estimate the initial noise level using principal component analy-

sis [19] as ̂  ω = abs ( p 

min ( eig (D T D )) 
) where abs() denotes absolute value

and eig() denotes eigenvalue vector of given matrix. 

All prior parameters in step 1a) of the Algorithm can be chosen to

yield non-informative prior, i.e. to extreme numerical values 10 −10 or

10 +10 . 

3.6.2. Convergence issues 

For the above described initialization, the proposed algorithms

converge monotonically to the final solution. The only exception is

a situation when the input function has peak at different element

than the first one. Then, the inverse of the covariance matrix �u is

poorly conditioned yielding numerical instability. The most sensitive

algorithm to this issue is the algorithm with sparse prior. Stable con-

vergence is restored when the inversion in (B.13) is replaced by pseu-

doinverse or conjugate gradient approximation. While it is possible

to use stopping rule, we run the algorithm for a fixed number of it-

erations, typically 300. In our experience the results of the algorithm

do not change significantly after more iterations. 

3.6.3. Estimation of the number of sources 

The Variational Bayes solution with orthogonal prior has the abil-

ity to suppress redundant sources [22] . This is a consequence of

the prior form, known as automatic relevance determination [21] . In

practice, the algorithms estimates a preselected number of sources

r max and if some sources are redundant, their posterior mean con-

verges to zero. 

Other priors have also the tendency to suppress the redundant

sources but no so strongly as the orthogonal prior from Section 3.1 .

Heuristic algorithms were designed to detect if the weak signal is rel-

evant or not [15] , however, this topic is out of scope of this paper. We

will discuss this property on simulated data. 

4. Experiments and discussion 

We proposed five models of non-parametric response func-

tions within the model of probabilistic blind source separation in

Sections 3.1 –3.5 . The proposed algorithms are denoted using the

name of their prior. The proposed algorithms are tested on simu-

lated phantom studies as well as on clinical data from dynamic renal

scintigraphy. The comparison with other algorithms for blind source

separation with deconvolution is given. 
.1. Algorithms used in comparison 

The proposed Algorithms will be tested with other methods that

olve the blind source separation and deconvolution problem. The

ompeting methods with parametric forms of either input function

r response function are briefly reviewed now. 

.1.1. Blind compartment model separation 

The blind compartment model separation (BCMS) method, [12] ,

dopts convolution assumption (3) . In addition, the convolution ker-

els are encouraged to follow a piecewise linear prior model [11] . The

rior is composed of a constant plateau from the beginning, followed

y a linear slope down to zero. Sparsity of the tissue images is not

ncorporated in the BCMS model; however, the number of sources is

etermined by an unknown scalar variance for each tissue image. 

.1.2. Convex analysis of mixtures - compartment modeling algorithm 

Interpretation of the superposed signal as a mixture model is used

n the Convex analysis of mixtures - compartment modeling (CAM-

M) method [10] . Here, the signal is also modeled as in (5) while the

hapes of response functions are assumed to have exponential shape

xp 

(
−k ep , j t 

)
, where k ep, j is the flux rate in source j and t denotes

ime index. The algorithm is based on identifying pure-volume pixels

f each source and clustering pixel time series around them. 

.1.3. Non-negative matrix factor deconvolution 

Non-negative matrix Factor Deconvolution (NMFD) [24] is ex-

ended version of the classical NMF algorithm [25] where factoriza-

ion in the form D ≈ AX 

T is seek with positivity constraints on both,

 and X . However, NMF does not take into account relative positions

f each spectrum and subsequently discards temporal information. In

MFD, the factorization is seek in the form D ≈ ∑ n −1 
t=0 A t X 

t→ , where

perator () t → shifts the columns of its argument by t spots to the

ight. 

.2. Synthetic datasets 

We first study performance of the methods on simulated data

ince we can compare the estimates with the simulated values. 

.2.1. Toy example 

Performance of the proposed models of response functions is first

tudied on a synthetic dataset generated according to the model (5) .

he size of each image is 50 × 50 pixels and the number of simulated

ime points is n = 50 . We simulate 3 sources in the dataset which

re given in Fig. 4 , top row, using their source images and response

unctions together with generated input function b (top row, right).

e generate homogeneous Gaussian noise with standard deviation

.3 of the signal strength. 

The results of the five proposed models are given in Fig. 4 in

he row-wise schema. All algorithms run with the initial number of

ources r max = 4 in order to study behaviors of the algorithm under

ondition of overestimated number of sources. It can be seen that all

ethods estimated the source images correctly except the method

ith sparse prior where the overlap of the first and the third source

s estimated as the forth source. The activities in the redundant forth

ource obtained by the other methods are negligible. Thus, a heuristic

rocedure in the sense of [15] could be designed to remove them. 

The proposed algorithms provide comparable estimate of the

ource images, however, the estimates of the response function dif-

er, the fifth to the eighth columns, as well as the estimated input

unction, the ninth column. Note that only the first prior, orthogonal,

as not able to respect the sparse character of the modeled response

unctions, all other priors were able to do so. The visual results are

ccompanied by the corresponding mean square errors (MSE) sum-

arized in 
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Fig. 4. The results of the five studied methods on synthetic dataset (the first row). The red lines are generated data while the blue lines are estimated results from the respected 

methods. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Computed mean square errors (MSE) from the simulated data. 

Prior model of the response function Total MSE on U MSE on b 

Orthogonal, Section 3.1 27 .34 3 .39 

Sparse, Section 3.2 10 .47 2 .20 

Sparse differences, Section 3.3 23 .56 7 .26 

Wishart, Section 3.4 26 .15 2 .71 

Wishart with localization, Section 3.5 1 .70 0 .28 
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Table 1 . Here, the MSE is computed between the estimated re-

ponse functions and their simulated values as well as between the

stimated input functions and its simulated value for each method.

he Wishart prior with localization outperforms the other ones in es-

imation of both, response functions and input function. 

The effect of localization on the algorithm with the Wishart prior

s illustrated in Fig. 5 via sensitivity study of the prior parameter α0 

n the resulting MSE of the response functions. The prior parameter

0 is selected as 10 −10 for all cases. For large values of α0 the results

re comparable, however the localized version is improving with de-

reasing α0 . For values of α0 < 1, the results of the localized version

tabilize and become insensitive to the exact value of α0 . 

.2.2. Realistic Monte Carlo phantom from dynamic renal scintigraphy 

The algorithms are tested with Monte Carlo simulated anthropo-

orphic phantom of dynamic renal study [26] . The sequence consists

f 120 images. The data are expected to contain three main sources

f activity: (i) parenchyma, the outer part of a kidney where the

racer is accumulated at the first, (ii) pelvis, the inner part of a kid-

ey where the accumulation has physiological delay, and (iii) back-
round tissues which is typically active at the beginning of the se-

uence. However, the data were generated from physiological mod-

ls which does not generate the curves expected by the simpli-

ed linear model. Nevertheless, it provides an additional image se-

uence with the right kidney without tissue background, attenuation

nd noise. From this additional sequence, the reference time-activity

urve (TAC) of parenchyma can be extracted easily without interfer-

nce of the contaminating structures. This TAC will be used for com-

arison of the blind source separation methods. 

The results from all five proposed methods as well as those of the

ompeting methods BCMS, CAM-CM, and NMFD algorithms are given

n Fig. 6 in row-wise scheme while all algorithms have preselected

 max = 4 . Note that TACs for each method are displayed instead of re-

ponse functions since ground truth is given as TAC of parenchyma

irectly. Estimated source images of parenchyma can be found in the

rst column accompanied by estimated TACs of parenchyma in the

fth column, blue line, while the ground truth is displayed using red

ine. We conclude that the estimate of the method with Wishart prior

ith localization fits to the ground truth better than other methods

hile the worst estimate is provided by NMFD algorithm which is

learly not able to cope with such a noisy data. Estimates of the source

isplayed in the second column can be interpreted as estimated ac-

ivity of the pelvis and those in the third column as those of the tissue

ackground. The corresponding TACs are displayed in the same order,

ig. 6 . Note that the CAM-CM algorithm was not able to separate these

ources while other algorithms were. On this data, the best results are

hose of the the method with Wishart prior with localization. More-

ver, they are closer to physiological expectation then results from

ther methods since the TAC of the pelvis is realistic (although it can

ot be validated without ground truth data). 
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Fig. 6. Estimated source images (columns 1–4) and time-activity curves (columns 5–8) using priors: Orthogonal, Sparse, Sparse differences, Wishart, Wishart with localization and 

state-of-the-art algorithms: BCMS, CAM-CM, and NMFD. 
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Fig. 7. Estimated source images (columns 1–3), response functions (columns 4–6), and input functions (column 7) using priors: Orthogonal, Sparse, Sparse differences, Wishart, 

Wishart with localization. 

4

 

1  

s  

t  

[  

p  

s  

c  

a

d

T

 

t  

e  

S  

t  

s

4

 

e  

a  

t  

c

T  

t  

s  

f  

u  

l  

f  

p  

p  

t  

p  

o  

p  

m  

W  

T  

i  

m  

p

 

s  

n  

t

4

 

.3. Dynamic renal scintigraphy dataset 

A database with clinical data is publicly available 1 consisting of

07 sequences from dynamic renal scintigraphy. Each sequence has

patial resolution 128 × 128 pixels and the number of images is 180

aken with sampling period 10 s. For detailed clinical description see

27] . These data are assumed to be suitable for analysis by the pro-

osed model. The only difference in model of the noise which is Pois-

on distributed. The assumption of homogeneous Gaussian noise (6)

an be achieved by asymptotic scaling known as the correspondence

nalysis [28] which transforms the original data D orig as 

 i j = 

d i j,orig √ ∑ p 
i =1 

d i j,orig 

∑ n 
j=1 d i j,orig 

. (29) 

he proposed methods are applied to the scaled data. 

Validation of the methods on this dataset is very challenging since

he only provided results of analysis is the relative renal function co-

fficient which is estimated manually by an experienced physician.

ince we do not have ground truth data for the source images and

ime-activity-curves, we first discuss qualitative differences of the

eparation on a selected sequence. 

.3.1. Example dataset from dynamic renal scintigraphy 

In general, the proposed methods may provide very similar results

specially when the data are informative, i.e. the organs have strong

ctivity with only minor overlap. The most visible differences be-

ween the methods are on data with very poor signal-to-noise ratio.
1 Database of dynamic renal scintigraphy, http://www.dynamicrenalstudy.org (ac- 

essed: 1st December 2014). 

o  

v  

d  

n  
hese data are obtained when the kidney is malfunctioning and are

hus most important from clinical point of view. As an example, we

how results of analysis of 50 frames of dataset number 42 where dif-

erent methods yield distinct results. The results are shown in Fig. 7

sing the estimated source images (columns 1–3), the estimated re-

ated response functions (columns 4–6), and the estimated input

unction (column 7). Note that the sparse and the sparse differences

riors were not able to separate the pelvis which is mixed with the

arenchyma in the first column while the orthogonal prior estimated

he source images reasonably; however, the response functions of the

arenchyma and the pelvis are clearly mixed. The Wishart-based pri-

rs, Wishart and Wishart with localization, were able to separate the

arenchyma and the pelvis correctly together with meaningful esti-

ates of their response functions. The main difference between the

ishart and the Wishart with localization priors is in smoothness.

he estimated response functions from the Wishart prior with local-

zation better matches the physiological expectations than the esti-

ates from the Wishart model. In this case, the use of more complex

rior models significantly outperform the simpler models. 

Naturally it is possible to find sequences where other methods

eems to correspond better with biological expectations, hence it is

ot possible to conclude that one prior is systematically better than

he other. 

.3.2. Differential renal function estimation 

The database contains the result of manual analysis in the form

f diagnostic parameter called differential renal function (DRF) pro-

ided by an experienced physician using standard clinical proce-

ures. Basically, the DRF is a percentual performance of each kid-

ey, hence, it is a relative number. It is a subjective value since the

http://www.dynamicrenalstudy.org
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Table 2 

The number of results which differ from physician’s results less than 5%, 

less than 10%, and more or equal than 10% computed for all 99 patients. 

Algorithm < 5% < 10% � 10% 

Orthogonal, Section 3.1 68 88 11 

Sparse, Section 3.2 70 90 9 

Sparse differences, Section 3.3 71 89 10 

Wishart, Section 3.4 62 87 12 

Wishart with localization, Section 3.5 71 88 11 

BCMS 59 82 17 

CAM-CM 48 63 36 

NMFD 46 76 23 
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resulting DRF may differ from physician to physician depending on

the used technique and analyzing procedures; however, it allows us

to quantitatively compare performance of all methods based on prox-

imity of the estimated DRF to the values from the physician. 

The same ROIs as in Section 4.3.1 were placed on the left and

on the right kidney and DRF of the left kidney were computed ac-

cording to DRF L = 

P l 
P l + P r × 100% , where P l is the total activity of the

left parenchyma, and P r is the total activity of the right parenchyma.

Therefore, only sequences with both kidneys were taken into account,

i.e. 99 sequences. Historically, the DRF is computed only from the

initial phase of sequence where only parenchyma is activated, this

phase is selected manually in our experiment. The number of sources

is set to 2 for all algorithms since we expect separation of only the

parenchyma and the background. 

For each sequence we compute the DRF using all competing meth-

ods and compare it with the reference value from the database de-

noted as DRF 
gt 
L 

. The results are summarized in Table 2 using the num-

ber of tested sequences for which the difference | DRF L − DRF 
gt 
L 
| is

lower than 5%, lower than 10%, and more or equal to 10%. 

The results suggest that the methods with non-parametric model

of response functions have significantly better performance than

those with parametric model on this specific task. We conclude that

the differences between non-parametric models are under statistical

significance. 

This improvement was achieved at the prize of higher computa-

tion time. Analysis of one sequence takes approximately 20 seconds

on standard PC for the proposed methods. In comparison, analysis of

the same sequence by the CAM-CM or NMFD takes only few seconds.

5. Conclusion 

A common model in functional analysis of dynamic image se-

quences assumes that the observed images arise from superposition

of the original source images weighted by their time-activity curves.

Each time-activity curve is assumed to be a result of common in-

put function and source-specific response function, both unknown.

Estimation of the model parameters yields an algorithm for blind

source separation and deconvolution. The focus of this study is the

prior model of the response functions while the models of the source

images and the input function are the same. We propose five prior

models of the response functions. The first three prior models are

based on automatic relevance determination principle on the whole

response functions, on each element of the response function, and

on the differences between elements of the response functions, re-

spectively. The forth model is based on full model of covariance ma-

trix using Wishart distribution while the fifth model is based on the

same prior; however, with additional localization within the decon-

volution algorithm. The advantage of all five models is their flexibility

in estimation of various shapes of response functions since we do not

impose any parametric form of them. The formulated probabilistic

models in the form of hierarchical priors are solved using the Varia-

tional Bayes methodology. 
The performance of the proposed methods is tested on simulated

atasets as well as on real datasets from dynamic renal scintigra-

hy. On the simulated data, the model with Wishart prior with lo-

alization provides the best results in the sense of mean square er-

or from the simulated values. However, evaluation on real clinical

ata is more complex since no ground truth values are available. The

ethod with Wishart prior with localization have subjectively better

esults on sequences with weak signal-to-noise ratio. However, on

arge comparison with 99 studies the results of all proposed methods

ith no-parametric priors are comparable. In this study, all proposed

on-parametric methods provide better results than any other para-

etric methods. Notably, the proposed methods have no domain-

pecific assumptions; hence, they can be used in other tasks in dy-

amic medical imaging. The MATLAB implementation of all methods

s available for download in http://www.utia.cz/bss _ rf _ priors/ . 
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ppendix A. Required probability distributions 

.1. Truncated normal distribution 

Truncated normal distribution, denoted as tN , of a scalar variable

 on interval [ a ; b ] is defined as 

N (μ, σ, [ a, b ] ) = 

√ 

2 exp ((x − μ) 2 ) √ 

πσ (er f (β) − er f (α)) 
χ[ a,b ] (x ) , (A.1)

here α = 

a −μ√ 

2 σ
, β = 

b−μ√ 

2 σ
, function χ [ a , b ] ( x ) is a characteristic func-

ion of interval [ a , b ] defined as χ[ a,b ] (x ) = 1 if x ∈ [ a , b ] and

[ a,b ] (x ) = 0 otherwise. erf() is the error function defined as erf (t) =
2 √ 

π

∫ t 
0 e 

−u 2 d u . 

The moments of truncated normal distribution are 

 

 = μ − √ 

σ

√ 

2 [ exp (−β2 ) − exp (−α2 )] √ 

π( erf (β) − erf (α)) 
, (A.2)

̂ 

 

2 = σ + μ̂ x − √ 

σ

√ 

2 [ b exp (−β2 ) − a exp (−α2 )] √ 

π( erf (β) − erf (α)) 
. (A.3)

.2. Multivariate truncated normal distribution 

Truncation of the multivariate Normal distribution of the vector

 , x ∼ tN ( μ, �x , [ a, b] ) , is formally simple, however, analytically in-

ractable. Hence, we approximate the moments of the vector x of the

runcated Normal distribution using moments of 

˜ 
 ∼ tN ( μ, diag ( σx ) , [ a, b] ) , (A.4)

here σx is a vector of diagonal elements of �x corresponding to the

pproximation of the posterior by a product of marginals (A.1) with

ean value ̂  x with elements given by (A.2) and 

̂ xx T = ̂

 x ̂  x T + diag ( ̂  σ) ,

here ˆ σi = 

̂ x 2 
i 

− ˆ x i ̂  x i . However, it may be too coarse approximation

ince it ignores covariance of the elements. An alternative is to ap-

roximate ̂ x 

T = ̂

 x ̂

 x 

T + diag (o )�x diag (o ) , (A.5)

here o is a vector of elements o i = ˆ σ 1 / 2 
i 

σ−1 / 2 
i 

. Heuristics (A.5) is

otivated by the observation that for a Normal distribution with the

ain mass far from the truncation lines, o i → 1 and (A.5) becomes

quivalent to the moment of the non-truncated Normal distribution. 

http://www.utia.cz/bss_rf_priors/
http://dx.doi.org/10.13039/501100001824
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.3. Wishart distribution 

Wishart distribution W of the positive-definite matrix X ∈ R 

p × p is

efined as 

 p (�, ν) = | X | ν−p−1 
2 2 

− νp 
2 | �| − ν

2 �−1 
p 

(
ν

2 

)
exp 

(
−1 

2 

tr 
(
�−1 X 

))
, 

(A.6) 

here �p 

(
ν
2 

)
is the gamma function. The required moment is: 

̂ 

 = ν�. (A.7) 

ppendix B. Shaping parameters of posteriors 

Shaping parameters of posterior distributions are given as: 

a i 
= 

( 

̂ ω 

n ∑ 

j=1 

( 
̂ 

x 

T 
j x j ) + diag ( ̂  ξi ) 

) −1 

, (B.1) 

a i 
= �a i ̂

 ω 

n ∑ 

j=1 

( ̂  x j d i, j ) , (B.2) 

i = φ0 + 

1 

2 

1 r, 1 , (B.3) 

 i = ψ 0 + 

1 

2 

diag 

( ̂ 

a 
T 
i a i 

)
, (B.4) 

b = 

( 

̂ ς I n + ̂

 ω 

r ∑ 

i, j=1 

( ̂
 

a 
T 
i a j ) 

( 

n −1 ∑ 

k,l=0 

�T 
k �l ̂ u k +1 , j u l+1 ,i 

) ) −1 

, (B.5) 

b = �b ̂  ω 

r ∑ 

k =1 

( 

n −1 ∑ 

j=0 

� j ̂ u j+1 ,k 

) T 

D 

T ̂ a k , (B.6) 

= ζ0 + 

n 

2 

, η = η0 + 

1 

2 

tr 
(̂ b 

T b 

)
, (B.7) 

 = ϑ 0 + 

np 

2 

, (B.8) 

= ρ0 + 

1 

2 

tr 
(
DD 

T − ̂ A ̂

 X 

T D 

T − D ̂

 X ̂

 A 

T 
)

+ 

1 

2 

tr 
(̂ A 

T A ̂

 X 

T X 

)
. (B.9) 

Here, ̂  x denotes a moment of respective distribution, tr() denotes

 trace of argument, diag() denotes a square matrix with argument

ector on diagonal and zeros otherwise or a vector composed from

iagonal element of argument matrix, 1 n , 1 denotes the matrix of

nes of dimension n × 1, the auxiliary matrix �k ∈ R 

n ×n is defined

s (�k ) i, j = 

{1 , if i − j= k, 

0 , otherwise , 
, and standard moments of required proba-

ility distributions are given A.1 and A.3 and, e.g., in the appendix of

19] . 

The shaping parameters for response functions are given in fol-

owing subsections while the parameter μu is common for all meth-

ds as 

u = �u 

(̂ A 

T A ⊗ ̂ ω ̂

 B 

T B 

)
vec 

(̂ B 

T B 

−1 ̂ B 

T D 

T ̂ A ̂

 A 

T A 

−1 
)
. (B.10) 
.1. Shaping parameters for orthogonal prior 

u = 

(̂ A 

T A ⊗ ̂ ω ̂

 B 

T B + I n ⊗ ̂ ϒ
)−1 

, (B.11) 

k = α0 + 

n 

2 

, βk = β0 + 

1 

2 

tr 

(
̂ u k u 

T 
k 

)
, ̂ ϒ = diag 

(
α

β

)
, (B.12) 

.2. Shaping parameters for sparse prior 

u = 

(̂ A 

T A ⊗ ̂ ω ̂

 B 

T B + ̂

 ϒ
)−1 

, (B.13) 

= α0 + 

1 

2 

1 nr, 1 , β = β0 + 

1 

2 

diag 
( ̂ uu 

T 
)
, ̂ ϒ = diag 

(
α

β

)
, (B.14) 

.3. Shaping parameters for sparse differences prior 

u = 

(̂ A 

T A ⊗ ̂ ω ̂

 B 

T B + (I r ⊗ ∇) ̂  ϒ(I r ⊗ ∇ 

T ) 
)−1 

, (B.15) 

= α0 + 1 n, 1 
1 

2 

, β = β0 + 

1 

2 

diag 
(∇ 

T ̂ uu 

T ∇ 

)
, ̂ ϒ = diag 

(
α

β

)
, 

(B.16) 

.4. Shaping parameters for Wishart prior 

u = 

(̂ A 

T A ⊗ ̂ ω ̂

 B 

T B + ̂

 ϒ
)−1 

, (B.17) 

ϒ = 

( ̂ uu 

T + (α0 I nr ) 
−1 

)−1 
, β = β0 + 1 , ̂ ϒ = β�ϒ, (B.18) 

.5. Shaping parameters for Wishart prior with localization 

u = 

(̂ A 

T A ⊗ ̂ ω ̂

 B 

T B + ̂

 ϒ ◦ L 
)−1 

, (B.19) 

ϒ = 

( ̂ uu 

T + (α0 I nr ) 
−1 

)−1 
, β = β0 + 1 , ̂ ϒ = β�ϒ. (B.20) 
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