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Abstract Detection of release of an atmospheric pollutant is a problem of interest in environmental
sciences. We are concerned with estimation of unknown source term of the release. Formally, the
problem is formulated as a linear model where measurements are explained using source-receptor-
sensitivity matrix obtained from atmospheric transport model and source term vector which has to be
estimated. Specifically, we estimate the release of radioactivity from measurements of gamma dose
rate (GDR). The problem of isolation of activity of individual nuclides is poorly conditioned. We propose
a probabilistic model with the prior information on intervals of nuclide ratios. The model parameters
are estimated using the Variational Bayes method. The proposed algorithm is tested on simulated
scenario with 16 nuclides and compared with state-of-the-art optimization approaches.
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1 INTRODUCTION

The task of determination of a source term of an atmospheric pollutant is important in many situations
such as radioactive release from nuclear power plants (Davoine and Bocquet [2007]), volcano erup-
tions (Kristiansen et al. [2010]), or emission of greenhouse gases (Stohl et al. [2009]). The source
term is the vector of amounts of the pollutant released in regularly sample time. The location of the
release is assumed to be known. Uncertainty in the source term is one of the largest source of errors
in modeling and prediction of the pollutant dispersion in the atmosphere, see e.g. Stohl et al. [2012],
hence, any improvement of the reliability of the source term estimation has significant impact.

The common approach for determination of the source term is to combine the data measured in the
environment (e.g., radionuclide concentrations) with an atmospheric transport model. The quality of
the estimated source term to a given measurements can be modeled and optimized using various
approaches including the Bayesian approach (Bocquet [2008]), maximum entropy principle (Bocquet
[2005]), or cost function optimization (Eckhardt et al. [2008]; Adam and Branda [2016]). Typically, the
problem is formulated as a linear regression. The vector of measurements is assumed to be a product
of a computed source-receptor-sensitivity (SRS) matrix determined using an atmospheric dispersion
model and an unknown source term vector.

Commonly, the vector of measurements contains separated concentrations of assumed radionuclides
in the case of radioactive releases. However, in this paper, we assumed the measurement in the form
of gamma dose rate (GDR) measurements. This means that our measurement vector contains bulk
GDR from a mixture of nuclides and not nuclide-specific concentration activity measurements. The
advantage of this approach is easier measurement than measurement of activity concentration and
much higher temporal resolution. The disadvantage of this approach is that the problem is ill posed
and some further assumption has to be used.
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One such approach is to reduce the SRS matrix by removing outlying measurements as in Martinez-
Camara et al. [2014] which may be misleading if the removed measurement is informative. Another
approach is to use some prior information. Particularly important are prior assumptions on nuclide
ratios which can be available, e.g., from physical analysis, reactor inventory, or measurement of taken
samples downwind of the release. Since exact nuclide ratios are hardly available, we aim to use
intervals of ratios as a prior information in the same spirit as Saunier et al. [2013].

To our knowledge, two approaches are suitable for this kind of constraints: constraint optimization and
Bayesian inference with restriction. For constraint optimization, we use CVX toolbox developed by
Grant and Boyd [2008, 2014] where constraints on ranges of nuclide ratios can be formulated together
with selected form of a regularization. As a regularization, we assume two common regularization
terms: Tikhonov regularization (Golub et al. [1999]) and least absolute shrinkage and selection oper-
ator (LASSO) regularization (Tibshirani [1996]). For Bayesian inference, we developed generalization
of approach by Tichý et al. [2016] where ranges of ratios are formulated as a restriction on covariance
matrix of the source term. The aim of this contribution is study the developed Bayesian inference and
to compare these approaches on data with simulated release of 16 nuclides measured using GDR
measurement with prior knowledge of possible intervals of nuclide ratios.

2 LINEAR INVERSE PROBLEM IN SOURCE TERM ESTIMATION

We deal with following linear inverse model:

y = Mx + e, (1)

where y is the measured vector with GDR measurement, M is known SRS matrix (Seibert and Frank
[2004]) accumulating uncertainties from the atmospheric transportation model and the metheorological
data, and x is the unknown source term vector which has to be estimated. We focus on the situation
when ordinary least square solution fails since the matrix M is ill-conditioned and some additional
information is necessary for suitable solution.

In this contribution, we aim to use approximate information about ratios of nuclides from which the
source term is consisted. Specifically, we assume the knowledge of the intervals in which lay ratios of
selected nuclides and a chosen reference nuclide. The similar assumption was used by Saunier et al.
[2013]. Assume that the interval with ratio for kth nuclide xk is

ak ≤
x1
xk
≤ bk , (2)

where x1 is the reference nuclide.

In following sections, we will formulate two approaches how to incorporate this information.

2.1 Optimization Approach

The problem (1) can be formalized as an optimization problem. As the first try, ordinary least square
solution with positivity constraints and constraints (2) can be used:

x∗ = arg min
x∈X

{
||y −Mx||22

}
, subject to x ≥ 0, ak ≤

x1
xk
≤ bk , ∀k, (3)

where ||x||2 = xTx denotes quadratic norm of the vector x. However, ill-conditioned matrix M implies
pure quality and reliability of the solution. Thus, regularization term is typically employed as

x∗ = arg min
x∈X

{
||y −Mx||22 + αg(x)

}
, subject to x ≥ 0, ak ≤

x1
xk
≤ bk , ∀k, (4)
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where α > 0 is the weight of the regularization term g(x). An examples of regularization terms are
Tikhonov regularization, see Golub et al. [1999], or LASSO regularization, see Tibshirani [1996]:

gTikhonov(x) =||x||22, (5)
gLASSO(x) =||x||1, (6)

where ||x||1 =
∑

i |xi | denotes l1-norm of the vector x. Note that the solution strongly depends on the
selection of the parameter α. This parameter will be manually selected to achieve the best solution in
the forthcoming experiments.

We use the CVX toolbox from Grant and Boyd [2008, 2014] for convex optimization to obtain solution
of the formulated optimization problem. Here, limitations of the nuclides ratios (2) can be directly taken
into the account since they for a convex constraints.

2.2 Variational Bayes Inference

The Bayesian approach is based on calculation of the posterior distribution from the likelihood of the
of the measurements and prior distribution of the unknown variable. The prior distribution serves
as regularization of the problem Šmídl and Quinn [2006]. Evaluation of the posterior distribution is
typically intractable, hence we seek for approximate solution in the form of conditionally independent
distributions that minimize the Kullback-Leibler divergence to the true posterior which is known as the
Variational Bayes method Miskin [2000]; Šmídl and Quinn [2006]. The Variational Bayes inference for
the formulated problem (1)–(2) is similar to this by Tichý et al. [2016]; however, with further modeling
of a covariance matrix of the vector x.

The observation model of linear inverse problem (1) with isotropic Gaussian noise is

p(y|x,ω) = Ny

(
Mx,ω−1Ip

)
, (7)

where symbol N denotes Gaussian probability distribution, Ip is identity matrix of the given size, and ω
is unknown precision of noise with Gamma prior which needs to be also estimated from the data.

The source term vector x is also model as Gaussian; however, truncated to positive values as an anal-
ogy to “subject to x ≥ 0” in (3), see Appendix A, with notation tN for truncated Gaussian distribution
with given support:

p(x|Ω) = tNx

(
0, Ω−1, [0, +∞]

)
. (8)

Here, Ω is unknown precision matrix of the vector x. Since our aim is to model ratios between nuclides
in vector x, we use Ω in the specific form of modified Cholesky decomposition Ω = LΥLT where Υ is
diagonal matrix with Gamma prior on diagonal elements and L is lower triangular matrix with diagonal
elements equal to one. The non-zero off-diagonal elements of L forming vectors lk are then equal to
(2) as − xk

x1
and the prior model for each modeled ratio between x1 and xk is

p(lk |ψk) = tNlk

(
0,ψ−1k , [ak , bk ]

)
, (9)

where ψk is diagonal matrix with unknown precision parameters with Gamma priors which are also
estimated from the data.

The minimization of the Kullback-Leibler divergence leads to a set of implicit equations which have
to be solved iteratively and convergence to local minima is guaranteed. Note that in opposite to the
optimization approaches and their α in (4), the proposed method has no direct tunning parameter. The
algorithm is called the least square with the prior adaptive covariance with interval ratios restrictions
(LS-APCi) algorithm.

3 EXPERIMENT

In this experiment, we consider a simulated release of a mixture of 16 nuclides: Cs-136, Cs-134, Cs-
137, I-133, I-131, I-135, I-132, I-134, Kr-85m, Kr-88, Kr-87, Sr-90, Sr-89, Te-132, Xe-135, Xe-133.
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Figure 1. Gamma dose rate from the cloud shine and deposition 12 hours after start of the release.

We use the Lagrangian particle dispersion model FLEXPART (Seibert and Frank [2004]) with ECMWF
Era-Interim meteorological fields with horizontal resolution 0.5 deg in the case of SRS matrix and 0.25
deg in the case of measurements. The spatial resolution of a model output is approximately 10 × 10
km. The Czech nuclear power plant Temelin is assumed to be the location of the release. The topology
of the Austrian radiation monitoring network comprising of more than 300 receptors (Figure 1) is used
in simulation of hypothetical GDR measurements with the temporal resolution one hour.

We emphasize that the measurements are in the form of the bulk of GDR so there is no distinction
between contributions of single radionuclides. The effects such as different half-life or different at-
mospheric transportation properties reflected in the computed SRS matrix are extremely low and the
problem of separation of the nuclides is highly ill-posed.

In this experiment, y ∈ R6720×1 and the total time of measurement is 14 hours, thus, the length of
the vector x is 224 implying M ∈ R6720×224. The simulated release started 4 hours after start of the
experiment and lasted for 6 hours followed by another 4 hours with no release. The original releases
for each nuclide can be seen in Figures 2 and 3 using red dashed lines. The ranges of nuclide ratios
are selected according to the expert opinion with true ratios laying inside the intervals.

The estimated source term of the LS-APCi algorithm is displayed in Figure 2 using solid blue lines for
each nuclide. Note that the estimated source term well corresponds to the true release and the main
peaks in the estimate correspond to the peaks in true release. For comparison, we selected the best
estimate from optimization approaches, CVX optimization with Tikhonov regularization, see Figure 3.
The tuning parameter α was selected manually as the one providing best results. In spite of this, the
estimated source term has a poor quality in comparison with the estimate from the LS-APCi algorithm
since even peaks of the estimated source term do not agree with the true source term. The result from
the CVX optimization with LASSO regularization is comparable with this in Figure 3 and the result from
the CVX optimization with no regularization are significantly worse then this in Figure 3.

All results from the four methods are compared using computed mean absolute error (MAE) for each
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Figure 2. The results of the LS-APCi algorithm for the GDR data containing 16 nuclides. The dashed
red lines are true source terms and the solid blue lines are estimated source term by the algorithm.

nuclide between the estimates and the true source term. The results are shown in Figure 4. It is shown
that estimates of all nuclides provided by the LS-APCi algorithm are systematically better or compara-
ble to optimization-based methods with one exception, Sr-90. It is also shown that the regularization in
optimization problem is necessary for feasible solution since the result from the CVX optimization with
no regularization provides results of poor quality. Notably, all methods were able to fit the measurement
very well, see Figure 5. This agrees with the assumption that the matrix M are poorly conditioned and
the measurement can be explained using many possible source terms, hence, some regularization
and further prior information are crucial for source term determination from GDR measurement.

4 CONCLUSION

In this paper, we study the problem of source term determination of atmospheric release from gamma
dose rate (GDR) measurement where contribution from a mixture of radionuclides is observed. Since
the problem is poorly conditioned, further regularization or prior information is necessary to obtain
feasible solution. In this case, we employ approximate knowledge about nuclide ratios in the form of
intervals. We formulate two approaches, optimization and Bayesian. For optimization approach, we
employ CVX toolbox and formulate the problem as the constrained optimization problem with selected
regularizations. For Bayesian approach, we formulate probabilistic model with restricted covariance
matrix of the source term using truncated Gaussian distribution.

We compared these methods on data with simulated release composed of 16 radionuclides. We have
shown that the Bayesian LS-APCi algorithm outperforms optimization methods in the sense of proxim-
ity of estimated source term to the true source term. Notably, no tunning parameters are necessary in
the LS-APCi algorithm since all model parameters are estimated from data.
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Figure 3. The results of the CVX optimization with Tikhonov regularization for the GDR data containing
16 nuclides. The dashed red lines are true source terms and the solid blue lines are estimated source
term by the algorithm.
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A TRUNCATED GAUSSIAN DISTRIBUTION

Truncated Gaussian distribution, denoted as tN , of a scalar variable x on interval [a; b] is defined as

tNx(µ,σ, [a, b]) =

√
2 exp

(
1
2σ (x − µ)2

)
√
πσ(erf (β)− erf (α))

χ[a,b](x), (10)

where α = a−µ√
2σ

, β = b−µ√
2σ

, function χ[a,b](x) is a characteristic function of interval [a, b] defined as
χ[a,b](x) = 1 if x ∈ [a, b] and χ[a,b](x) = 0 otherwise. erf() is the error function defined as erf(t) =
2√
π

´ t
0
e−u

2

du.

The moments of truncated Gaussian distribution are

〈x〉 = µ−
√
σ

√
2[exp(−β2)− exp(−α2)]√

π(erf(β)− erf(α))
, (11)

〈
x2
〉

= σ + µx̂ −
√
σ

√
2[b exp(−β2)− a exp(−α2)]√

π(erf(β)− erf(α))
. (12)

For multivariate case, see Šmídl and Tichý [2013].

References

Adam, L. and M. Branda. Sparse optimization for inverse problems in atmospheric modelling. Envi-
ronmental Modelling & Software, 79:256 – 266, 2016.

Bocquet, M. Reconstruction of an atmospheric tracer source using the principle of maximum entropy.
i: Theory. Quarterly Journal of the Royal Meteorological Society, 131(610):2191–2208, 2005.

Bocquet, M. Inverse modelling of atmospheric tracers: Non-gaussian methods and second-order
sensitivity analysis. Nonlinear Processes in Geophysics, 15(1):127–143, 2008.

Davoine, X. and M. Bocquet. Inverse modelling-based reconstruction of the chernobyl source term
available for long-range transport. Atmospheric Chemistry and Physics, 7(6):1549–1564, 2007.

Eckhardt, S., A. Prata, P. Seibert, K. Stebel, and A. Stohl. Estimation of the vertical profile of sulfur
dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements
and inverse transport modeling. Atmospheric Chemistry and Physics, 8(14):3881–3897, 2008.



O. Tichý et al. / Bayesian Estimation of Source Term of Atmospheric Radiation Release with Interval Prior

Golub, G., P. Hansen, and D. O’Leary. Tikhonov regularization and total least squares. SIAM Journal
on Matrix Analysis and Applications, 21(1):185–194, 1999.

Grant, M. and S. Boyd. Graph implementations for nonsmooth convex programs. In Blondel, V.,
S. Boyd, and H. Kimura, editors, Recent Advances in Learning and Control, Lecture Notes in Control
and Information Sciences, pages 95–110. Springer-Verlag Limited, 2008.

Grant, M. and S. Boyd. CVX: Matlab software for disciplined convex programming, version 2.1,
http://cvxr.com/cvx. 2014.

Kristiansen, N., A. Stohl, A. Prata, A. Richter, S. Eckhardt, P. Seibert, A. Hoffmann, C. Ritter, L. Bitar,
T. Duck, et al. Remote sensing and inverse transport modeling of the kasatochi eruption sulfur
dioxide cloud. Journal of Geophysical Research: Atmospheres (1984–2012), 115(D2), 2010.

Martinez-Camara, M., B. Béjar Haro, A. Stohl, and M. Vetterli. A robust method for inverse transport
modeling of atmospheric emissions using blind outlier detection. Geoscientific Model Development,
7(5):2303–2311, 2014.

Miskin, J. Ensemble learning for independent component analysis. PhD thesis, University of Cam-
bridge, 2000.

Saunier, O., A. Mathieu, D. Didier, M. Tombette, D. Quélo, V. Winiarek, and M. Bocquet. An inverse
modeling method to assess the source term of the Fukushima nuclear power plant accident using
gamma dose rate observations. Atmospheric Chemistry and Physics, 13(22):11403–11421, 2013.

Seibert, P. and A. Frank. Source-receptor matrix calculation with a lagrangian particle dispersion model
in backward mode. Atmospheric Chemistry and Physics, 4(1):51–63, 2004.

Šmídl, V. and A. Quinn. The Variational Bayes Method in Signal Processing. Springer, 2006.

Šmídl, V. and O. Tichý. Sparsity in Bayesian Blind Source Separation and Deconvolution. In Block-
eel et al., H., editor, Machine Learning and Knowledge Discovery in Databases (ECML/PKDD 2013),
volume 8189 of Lecture Notes in Computer Science, pages 548–563. Springer Berlin Heidelberg,
2013.

Stohl, A., P. Seibert, J. Arduini, S. Eckhardt, P. Fraser, B. Greally, C. Lunder, M. Maione, J. Mühle,
S. O’doherty, et al. An analytical inversion method for determining regional and global emissions of
greenhouse gases: Sensitivity studies and application to halocarbons. Atmospheric Chemistry and
Physics, 9(5):1597–1620, 2009.

Stohl, A., P. Seibert, G. Wotawa, D. Arnold, J. Burkhart, S. Eckhardt, C. Tapia, A. Vargas, and T. Ya-
sunari. Xenon-133 and caesium-137 releases into the atmosphere from the fukushima dai-ichi
nuclear power plant: determination of the source term, atmospheric dispersion, and deposition.
Atmospheric Chemistry and Physics, 12(5):2313–2343, 2012.

Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), pages 267–288, 1996.

Tichý, O., V. Šmídl, R. Hofman, and A. Stohl. A tuning-free method for the linear inverse problem and
its application to source term determination. Geoscientific Model Development Discussion, 2016.
(doi:10.5194/gmd-2016-5).


