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! We analyse term structure of crude oil markets.
! New model for forecasting based on neural networks is proposed.
! We show that even basic architecture of neural models performs very well against benchmarking models.

a r t i c l e i n f o

Article history:
Received 31 August 2015
Received in revised form 23 November 2015
Accepted 28 November 2015

Keywords:
Term structure
Nelson–Siegel model
Dynamic neural networks
Crude oil futures

a b s t r a c t

The paper contributes to the limited literature modelling the term structure of crude oil markets. We
explain the term structure of crude oil prices using the dynamic Nelson–Siegel model and propose to
forecast oil prices using a generalized regression framework based on neural networks. The newly pro-
posed framework is empirically tested on 24 years of crude oil futures prices covering several important
recessions and crisis periods. We find 1-month-, 3-month-, 6-month- and 12-month-ahead forecasts
obtained from a focused time-delay neural network to be significantly more accurate than forecasts from
other benchmark models. The proposed forecasting strategy produces the lowest errors across all times
to maturity.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling and forecasting the term structures of commodity
markets is attractive from an academic perspective and valuable
for producers, speculators, and risk managers. Generally, the term
structure illustrates expectations of the future development of the
corresponding market. Notwithstanding the importance of the
subject, there are almost no relevant studies forecasting commod-
ity term structures. In this paper, we introduce a novel framework
for forecasting the term structure of crude oil futures prices. We
propose to couple dynamic neural networks with the
Nelson–Siegel model to obtain precise forecasts of crude oil futures
prices.

Crude oil is essential to the world’s economies from an indus-
trial perspective because it is a vital production input and its price
is driven by distinct demand and supply shocks. Shifts in the price
of oil are, to varying extents, driven by aggregate or precautionary
demand related to market anxieties concerning the availability of
future oil supplies. As the demand for crude oil, which is not as
dependent on price as it is on income [1], continues to rise and
supply is likely to decline (because crude oil is a limited resource),
the literature agrees that the future development of crude oil
prices will be highly volatile and hence uncertain future [2]. The
main reasons that the crude oil market is one of the most
volatile in the world are the growing demand for a supply that is
highly dependent on the behaviour of politically and economically
unstable countries, crude oil demand and production are highly
correlated with the occurrence of exogenous events such as
military conflicts and natural catastrophes, and the presence of
speculators [3].

As the crude oil futures market is one of the most developed
markets based on trading volume, understanding the behaviour
of its term structure is crucial. However, studies modelling and
forecasting the term structure of petroleum markets are scarce
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(see Lautier [4] for review), and most of researchers focus on
directly forecasting speculative prices [5] or researching the mar-
ket’s efficiency [6–8]. Similar to interest rate models, there are
two approaches to modelling the term structure of petroleum com-
modities. As a natural candidate for the state variable in a one-
factor model, the spot price is modelled as geometric Brownian
motion [9] or a mean-reverting process [10]. Subsequent contribu-
tions consider the convenience yield as a second state variable in a
two-factor model [10]. Alternatively, Gabillon [11] employs the
long-term price as the second state variable. While both of these
approaches assume a constant interest rate, which implies that
future spot prices and forward prices are the same, Cortazar and
Schwartz [12] proposes a three-factor model.

A relatively series of contributions to the literature explaining
commodity futures prices uses the approach of Diebold and Li
[13], originally applied to model yield curves. Motivated by simi-
larities in the stylized facts between commodity markets and inter-
est rate markets, the dynamic Nelson–Siegel model is a natural
candidate for this task. Among the relatively limited number of
contributions on the subject, Karstanje et al. [14] examine the
co-movement of factors driving commodity futures curves and
their shapes by adopting the framework of the dynamic
Nelson–Siegel model [13]. To study the joint dynamics of the fac-
tors driving commodity futures curves, Nomikos and Pouliasis
[15] uses a multiple-regime framework. Almansour [16] model
the futures term structure of crude oil and natural gas markets
with switching regimes, and Heidorn et al. [17] regress futures
curve factors extracted from the dynamic Nelson–Siegel model
on fundamental and financial traders. While the dynamic
Nelson–Siegel model explains the dynamics of factors underlying
the term structure of commodity prices, the extant literature offers
no suggestions for predicting future price developments, with the
only exception being Grønborg and Lunde [18]. In their original
work, Diebold and Li [13] propose the use of a simple autoregres-
sive time series model to successfully forecast the dynamics of
term structure factors and, hence, prices in the interest rate
market. We hypothesize that factors in commodity markets may
contain further nonlinear dependencies, which need to be mod-
elled to obtain precise forecasts. Therefore, it would be sensible
to apply more general methods that do not require restrictive
assumptions concerning the underlying structure of factors.

A natural candidate for the forecasting task are neural networks,
which can be understood as a generalized non-linear regression
tool. Concisely, neural networks are semi-parametric non-linear
models, which are able to approximate any reasonable function
[19,20]. While the number of models using machine learning is
growing rapidly in the academic literature, applications in energy
markets are rather limited. Among the few works from recent
increase in contributions to the literature, neural networks are
applied to predict fuel consumption [21] and day-ahead electricity
prices [22], model energy demand in the residential sector in the
United States [23], or quantify patterns in the co-movement
between futures and spot prices [24]. Several works use neural net-
works to forecast energy prices [25–32]. Contributing to this strand
of the literature, we are the first to employ this approach for fore-
casting term structures.

The contribution of this work is twofold. First, we contribute to
the rare literature studying the term structure of commodity prices
by providing new results from the application of the dynamic
Nelson–Siegel modelling strategy to crude oil futures markets for
long period 1990–2014. Second, we propose the use of a time-
delay neural network to forecast the term structure factors
identified by the dynamic Nelson–Siegel model. Using this frame-
work, we forecast the term structure of crude oil futures prices suc-
cessfully over the 1-month, 3-month, 6-month and 12-month
forecasting horizons.

2. Data

2.1. Raw data

The dataset consists of monthly closing prices of West Texas
Intermediate (WTI) futures contracts,1 traded on the New York
Mercantile Exchange (NYMEX). Each contract expires three trading
days prior the 25th calendar day of the month preceding the month
of delivery.2 In total, we analyse 396 monthly historical (already
delivered) and to-date undelivered contracts – 12 contracts per year
with delivery months in the period beginning in 1990. The undeliv-
ered contracts included in the dataset are contracts stipulating deliv-
ery in November and December 2014 and 24 contracts with delivery
in the two subsequent years (2015 and 2016).

The main reason for using data beginning in 1990 is that the
maximum time to maturity for contracts before this date was nine
months, while later during the period considered, this duration
increased to more than six years. Hence to avoid potentially large
risk and inaccuracies stemming from data extrapolation, we con-
sider only data after the year 1990. The choice of the monthly fre-
quency is primarily driven by the fact that contracts with longer
times to maturity were traded rather infrequently in the first half
of the studied period. In addition, Baumeister et al. [33] find
monthly data to have equal predictive power to that of daily data.

Table 1 presents an example of actual data to illustrate the
structure and dimension of the dataset. To associate each futures
price observation with its corresponding time to maturity, it is nec-
essary to first determine the exact expiry date of each contract.
Then, the difference between the expiry and observation dates pro-
vides us with the remaining days to maturity. Table 1 captures the
end-of-month futures prices of three different (in this case consec-
utive) contracts with delivery in August, September and October
2003. For example, at the end of February 2001, CLQ2003 and
CLU2003 contracts were traded. On February 28, 2001, it was pos-
sible to enter into a contract with delivery in August 2003 at a
futures price of USD 21.72 per barrel. The time to maturity in this
case (s) was 625 trading days.

2.2. Reorganized data

After combining the days to maturity with each observed
futures price quotation, the dataset should be formed into a matrix
with a number of rows equal to number of days included in anal-
ysis and a number of columns equal to number of analysed
maturities.

Time series captured in Table 2 are reorganized into constant-
maturity futures prices. WTI crude oil futures are delivered and
expire with one-month regularity; therefore, futures prices with
exactly 30, 60, or 90 days to maturity are not traded every day.
The literature suggests several approaches to interpolating the
prices to obtain the desired data format. Diebold and Li [13] use
linear interpolation for constant maturity, while Holton [34] pre-
fers cubic splines interpolation.3 In our work, we follow the
approach of Holton [34] and use cubic spline interpolation. Fig. 1
illustrates the reorganized constant-maturity futures prices we
employ, plotted against the daily evolution of the spot price.

Due to the long period we consider, which includes several tur-
bulent periods, we present the term structure in separate periods
to better highlight the rich dynamics (Fig. 2).

Fig. 2(a) illustrates the term structure dynamics in the period

1 Available at https://www.quandl.com/c/futures/cme-wti-crude-oil-futures.
2 Full specification of WTI futures contracts is available at http://www.

cmegroup.com/trading/energy/files/en-153_wti_brochure_sr.pdf.
3 For a detailed discussion of the interpolation methods for curve construction with

application to yield curve modelling, see Hagan and West [35].
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from 1990 to 2004. Prices are relatively steady with slight down-
ward shift during the Asian crisis of the 1990s with a dramatic
change after the year 2000 due to the energy crisis. Some authors
attribute the increase in futures prices to speculators and sudden
declines in oil reserves, whereas others disprove these arguments
[36,37]. The subsequent period begins with steady dynamics and
reflects a reasonable increase in futures prices across all maturities
beginning in 2005 (Fig. 2(b)). The calm period is interrupted by tur-
bulent period circa 2008, when crude oil prices exceeded USD 100
per barrel.

Fig. 2(c) provides a more detailed illustration of the rich dynam-
ics during the period of analysis. Military conflicts in Nigeria
(including attacks on oil pipelines) and tensions between Iran
and Israel and the consequent fear of an oil crisis accelerated the
increase in oil prices to unprecedented levels. Political unrest in
the Middle East combined with a sharp depreciation of the U.S.
Dollar resulted in further frequent and significant horizontal shifts
in the term structure. The global financial crisis drove theWTI term
structure back under USD 100 per barrel, and the data exhibit a
horizontal shift upwards at the end of 2009, driven by the compli-
cated political environment in the Middle East – conflicts in the
Gaza Strip.

Increasing, decreasing and humped shapes in the term structure
can be observed during the most recent five-year period, as illus-
trated in Fig. 2(d). The WTI term structure experienced a strong
upward horizontal shift during 2011 caused by political unrest in
Egypt and Libya combined with the weak U.S. Dollar. Another steep
upward shift in 2012 had also has a political explanation – the dan-
ger that Iran would close the Strait of Hormuz in response to sanc-
tions imposed on the country because of its nuclear programme.4

Finally, the Greek bailout and a Chinese economy stimulated by an
increased money supply contributed to rise of crude oil prices.

2.3. Stylized facts regarding the term structure

The above discussion reveals that the crude oil futures term
structure takes many shapes, which are essentially similar to the
yield curves of government bonds, although the data are funda-
mentally different. The similarities between the two are discussed

in detail by Grønborg and Lunde [18], who compare five stylized
facts concerning government bond yield curves [13] to the stylized
facts regarding crude oil term structures. The discussion is impor-
tant because we rely on the dynamic Nelson–Siegel approach [13]
to model the term structure.

The main stylized facts concerning the yield curves are: (1) on
average, the yield curve is increasing in time to maturity and
concave; (2) it exhibits various shapes over time – upward or
downward sloping, humped, and inverted humped; (3) the ‘‘near”
end of the yield curve is much more volatile than the ‘‘far” end; (4)
yield dynamics are persistent, while spread dynamics are much
less persistent; and (5) long rates are more persistent than short
rates.

Moreover, the term structure of crude oil is vulnerable to polit-
ical decisions and conflicts, and hence its shape often changes not
only in terms of horizontal shifts but also in actual shape. To doc-
ument its ability to exhibit a wide variety of shapes, we borrow
Fig. 6 from Section 3.1.2, documenting four days with different
shapes of the analysed curve as illustrative examples. At the end
of November 1990, we observe a smoothly decreasing term struc-
ture (Fig. 6(a)). In May 1999, the curve does not exhibit any
smoothness, and its behaviour is unclear. Fig. 6(c) depicts a clear
and increasing curve, and the most recent example (Fig. 6(d))
reveals that the data can exhibit humped curves.

Probably the most specific feature of crude oil future markets is
backwardation.5 Hotelling [38] postulates that the equilibrium price
of non-renewable resources such as crude oil, which is equal to net
marginal revenue, increases over time at the interest rate. However,
the key factor distinguishing Hotelling’s theory from theories of
backwardation on crude oil markets is uncertainty [39]. As Haubrich
et al. [40] argues, the market should exhibit the opposite situation –
contango. Crude oil futures prices should exceed crude oil spot
prices, as the opportunity cost is equal to the interest rate and stor-
age costs make crude oil stocks disadvantageous. The convenience
yield justifies the presence of backwardation in commodity markets.
Storing a commodity implies not only costs but also benefits. The
convenience yield can be understood as the ‘‘. . .flow of services that
accrues to an owner of the physical commodity but not to an owner
of a contract for future delivery of the commodity . . .” [9]. The dis-
counted marginal convenience yields the present value, thus entail-
ing equal backwardation appearing on the market, implying
exogenously determined backwardation. One can introduce oil
production as a call option to make it endogenous [39]. Lautier [4]
proposes an alternative explanation by making an analogy between
the convenience yield and coupons or dividends linked to bonds and

Table 1
Example of futures prices and corresponding maturities for contracts traded between
February 28, 2001 and May 31, 2001 for different contracts. CME product code CL is
used for a WTI futures contract, and the letters Q, U, and V denote delivery in August,
September and October, respectively.

Contract date CLQ2003 CLU2003 CLV2003

Settle s Settle s Settle s

February 28, 2001 21.72 625 21.62 646 – –
March 31, 2001 22.76 602 22.70 623 – –
April 30, 2001 23.46 582 23.35 603 – –
May 31, 2001 23.57 559 23.45 580 23.33 603

Table 2
Example of a dataset reorganized to exhibit constant time to maturity.

Date Days to maturity (s)

30 60 90 120 150 180 210 . . .

February 28, 2001 27.48 27.36 26.99 26.60 26.21 25.84 25.48 . . .

March 31, 2001 26.50 26.59 26.43 26.20 25.94 25.68 25.43 . . .

April 30, 2001 28.74 28.89 28.53 28.07 27.60 27.19 26.78 . . .

May 31, 2001 28.49 28.42 28.14 27.78 27.38 27.00 26.59 . . .

Fig. 1. Reorganized dataset: monthly term structures of crude oil futures prices
plotted against daily spot prices for the period 1990–2014.

4 Approximately 20% of the crude oil traded worldwide passes through the Strait
according to the U.S. Energy Information Administration; see http://www.
eia.gov/countries/analysisbriefs/World_Oil_Transit_Chokepoints/wotc.pdf. 5 Backwardation is a situation in which future prices are lower than spot prices.

368 J. Baruník, B. Malinská / Applied Energy 164 (2016) 366–379

http://www.eia.gov/countries/analysisbriefs/World_Oil_Transit_Chokepoints/wotc.pdf
http://www.eia.gov/countries/analysisbriefs/World_Oil_Transit_Chokepoints/wotc.pdf


stocks, respectively.

3. Modelling the term structure

As motivated by the previous analysis, the crude oil term struc-
ture is similar to fixed income securities, and hence a common
modelling approach can employed for both markets.6 The most
successful approach used in the recent literature to model and fore-
cast yield curves is that of Diebold and Li [13]. This model is a
dynamic representation of the Nelson–Siegel model [41], and in a
recent contribution, is successfully applied to crude oil markets by
Grønborg and Lunde [18]. In contrast to affine general equilibrium
models, which assume a concrete functional relationship for the
yield curve, this class of models does not stem from any theoretical
assumptions and is based solely on the parameterization of curve
shapes. Generally, curve-fitting models using standard statistical
methods perform better in curve fitting and forecasting relative to
affine models [42].

3.1. Dynamic Nelson–Siegel model

To model the term structure of crude oil futures prices, we use
the dynamic Nelson–Siegel model [13]. The adoption of this frame-
work is motivated by several considerations. First, other classes of
models, such as no-arbitrage or affine general equilibrium models,
fail when applied to forecasting. As Sarker et al. [43] notes, no-
arbitrage models focus on a cross-sectional fitting of the yield
curve at particular point in time, which implies that the model fails
to capture yield curve dynamics. Affine models capture time-series
dynamics but omit proper cross-sectional fit at a given time.
Second, the functional specification of yield curves provided by

Nelson and Siegel [41] is able to model the diverse shapes
observable in extant markets. Third, the model provides intuitive
parameters, which are straightforward to explain and interpret.
Further, Bliss [44] demonstrates that the Nelson–Siegel model out-
performs other methods in yield curve estimation, and Diebold and
Li [13] show that the Nelson–Siegel model is able to replicate styl-
ized facts regarding yield curves. Conversely, Duffle and Kan [45]
concludes that yield curves estimated by affine general equilibrium
models, such as Vasicek or Cox-Ingersoll-Ross mode, do not con-
form to the behaviour observed in markets.

Diebold and Li [13] propose forecasting the yield curve using
the time series of three yield curve components formulated in
the Nelson–Siegel model. In this framework, the dynamics of the
term structure of crude oil futures prices are described by the fol-
lowing equation:

ptðsÞ ¼ b0t þ b1t
1& e&kts

kts

! "
þ b2t

1& e&kts

kts
& e&kts

! "
ð1Þ

where ptðsÞ is the price of crude oil futures at time t ¼ 1; . . . ; T with
time to maturity s ¼ 30;60;90; . . . ;720, and b0t;b1t , and b2t are
interpreted as the coefficients on the level, slope and curvature fac-
tors, respectively. The level factor is a long-term component, as the
values of the factor are constant over the entire period and at all
maturities. The slope factor is a short-term component, as long as
it decays exponentially at rate kt . Finally, the curvature factor is
regarded as a medium-term component, as it increases for
medium-term maturities and then decays over the longest
maturities.

Fig. 3 presents estimated loadings of the factors as a function of
time to maturity. The plot uses a fixed decay kt ¼ k ¼ 0:0058 that is
empirically determined in the next section.

The level factor on b0t is constant for all the maturities and,
hence, impacts equally futures prices at all maturities. A change
in the level factor entails a horizontal shift in the term structure
and thus will affect prices at all maturities in the same way. The

Fig. 2. Term structure of WTI futures prices for the period (a) 1990–2004, (b) 2005–2009, (c) 2008–2009, and (d) 2010–2014. Dates, days to maturity, and futures prices are
on the corresponding fx; y; zg axes.

6 There are simplifying assumptions for the crude oil term structure models – there
are no frictions, taxes, or transaction costs on the market, trading is continuous,
lending and borrowing rates are equal, short sales are unconstrained and markets are
complete [4].
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loading on the slope factor is decreasing from one (zero time to
maturity) to zero as maturity goes to infinity. Note that Fig. 3 plots
maturities beginning with 30 days. Compared with the curvature
factor, the slope factor is higher for shorter maturities, which con-
firms that b1t is a rather short-term factor, i.e., affects prices asso-
ciated with shorter maturities to a greater extent. Conversely, the
curvature factor converges to zero as time to maturity approaches
zero, and infinity, while b2t has highest loadings for mediummatu-
rities with maximum at time to maturity equal to 1=k.

3.1.1. Decay parameter
The most important element in the Nelson–Siegel class of mod-

els is the parameter kt , which determines the exponential decay.
Low values of the parameter imply a slower decay of the resulting
curve and vice versa. Empirically, the choice of the value of kt rep-
resents a trade-off between fitting the near and far ends of the
term structure. Higher values of the parameter result in a better
fit of the functional form in the case of short maturities.
Conversely, lower values improve the fit for longer maturities
[13]. The decay parameter also defines the maturity at which the
loading on the medium-term curvature factor b2t is maximized.

In addition, kt governs the actual nature of above-defined rela-
tionship. If we allow kt to evolve dynamically over time, we obtain
a nonlinear problem, which is computationally much more
demanding. While authors in the yield curve literature often regard
2- or 3-year times to maturity as medium-term maturity and use
this assumption to fix kt ¼ k for all times t ¼ 1; . . . ; T , it is infeasible
in case of crude oil futures. The literature on the crude oil term
structure does not provide any well reasoned suggestions regard-
ing medium-term maturities on oil markets, and there is almost
no reference for the proper choice of k, as modelling the term
structure of crude oil markets using the Nelson–Siegel family of
models is not fully explored in the literature.

A different approach employs nonlinear least squares estima-
tion of all four parameters in Eq. (1), i.e., b0t ; b1t ; b2t and kt for all
t. The main problemwith such an approach is that kt may be unsta-
ble due to unexpected jumps. While the model will fit the data
very well, its predictive power deteriorates [46].

We find the optimal values of kt by minimizing the sum of
squared errors of Nelson–Siegel approximations of the WTI futures
term structure for each observed point in time. Fig. 4 illustrates the
estimates. To facilitate optimization, we restrict the values to cor-
respond to maturities between 0 and 1000 days. While k determi-
nes the reciprocal value for the number of days to maturity at
which the medium-term (i.e., curvature) factor is maximized,
searching for the optimal 1=kt outside this interval is superfluous.

We observe that kt is unstable for the crude oil futures data and
exhibits no clear pattern. Consequently, allowing for a dynamic kt
means that successful predictions are hardly possible. Therefore,
we find a single optimal value of k by minimizing sum of squared

errors of the Nelson–Siegel approximation of the WTI term struc-
ture over the whole period as follows:

k' ¼ argmin
k2H

X289

t¼1

X24

i¼1

ptðsiÞ & bptðsi;b0t ;b1t; b2t; kÞ
# $2 ð2Þ

where 289 is total number of observed points in time, and 24 is
number of analysed constant maturities (from 30 to 720 days).
The resulting value of k' ¼ 0:0058, implying a reciprocal value of
1=k' equal to 173.4551, thereby yielding an acceptable value of
medium term maturity.7 The optimization result is in line with
the literature. Grønborg and Lunde [18], who analyses oil futures
(albeit in a different period) arrived at a k equal to 0.005.

3.1.2. Level, slope, and curvature estimates
Having set the optimal value of k', we proceed with in-sample

estimation of the set of bt coefficients on latent factors. For all
times t, the parameters are obtained from ordinary least squares
(OLS) fit across maturities as follows:

min
b0 ;b1 ;b2

X24

i¼1

ptðsiÞ & b0 & b1
1& e&k'si

k'si

! "
& b2

1& e&k'si

k'si
& e&k'si

! "! "2

ð3Þ

where ptðsiÞ is the WTI futures price at time t with time to maturity
si. This procedure yields a time series of three b-coefficients, with a
length of 289 values.

Estimates of the bt coefficients are plotted in Fig. 5. At first
glance, the behaviour of b0t – the level coefficient – attracts
attention. An increase in the level coefficient over full period of
observation corresponds to a general increase in crude oil prices.
The slope and curvature coefficients seem to generally be more
stable. The slope factor fluctuates around zero in the first part of
the sample and then becomes positive until 2008, meaning that
the resulting term structure is downward sloping. After 2008, the
slope coefficient jumps to large negative values and remains nega-
tive for the following two years, implying an upward-sloping term
structure. The most recent period beginning in 2011 is character-
ized by positive values, which implies a decreasing term structure.
Diebold and Li [13] propose forecasting the factor loadings using
autoregressive and vector-autoregressive models, with a random
walk as the benchmark. One of the directly observable features
of the factor loadings is their non-stationarity. Stationarity is
rejected for the level factor, and the two remaining factors are on
the border. Whereas this makes further autoregressive analysis
problematic, it forms part of our motivation for the use of neural

Level
Slope
Curvature

Fig. 3. Loadings of Nelson–Siegel latent factors of the term structure.
Fig. 4. Time series of kt .

7 The maximum observed time to maturity in our period reached less than
2000 days = approx. 6 years, which is much less compared with the 30 years in the
case of the U.S. yield curve. In such a case, authors tend to regard 2–3 years as
medium maturity.
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networks, which do not require the assumption stationary time
series. In addition, the factors can contain nonlinearities, which
are not captured by simple linear time series analysis.

Before we turn to the main part of the analysis, forecasting, we
illustrate the fit of the dynamic Nelson–Siegel model to crude oil
futures in Fig. 6. The term structures are generally fitted with a
high degree of accuracy for all curve shapes. Similar to Diebold
and Li [13], in the case of a term structure with multiple local
extremes (as during May 1999), the approximation is not as
accurate.

4. Forecasting the term structure with neural networks

To obtain the future term structure forecasts from the dynamic
Nelson–Siegel model, Diebold and Li [13] propose forecasting indi-
vidual bt coefficients using linear autoregressive (AR) and Vector
AR (VAR) models. In this work, we propose to forecast the individ-

ual coefficients on factor loadings using artificial neural networks.
The motivation is straightforward, as the bt coefficients are not sta-
tionary for crude oil futures and may further contain nonlinear
dependence. Linear models are not able to capture these features
well, and hence we hypothesize that our proposed approach will
yield more accurate forecasts. Similarly to Diebold and Li [13], a
forecast of futures price at forecast horizon h will be calculated
as follows:

bptþhðsÞ ¼ bb0;tþh þ bb1;tþh
1& e&k's

k's

! "

þ bb2;tþh
1& e&k's

k's & e&k's
! "

; ð4Þ

where bbi;tþh are coefficients to be predicted. Both the AR and VAR
models that Diebold and Li [13] use for prediction are developed
to capture linear features of the time series. Hence, in using them
to forecast coefficients on factor loadings, one assumes that they
are generated by linear processes. This is not the case for artificial
neural networks (ANNs), as ANNs do not require any assumptions
regarding the statistical properties of the underlying series for their
proper application. ANNs may be understood as a generalization of
these classical approaches, which allow us to model different types
of nonlinearities in the data.

Although neural networks, which imitate neural processing in
brain activation, are primarily associated with biological systems
and have ben successfully applied in numerous fields, such as pat-
tern recognition and medical diagnostics, many econometricians
argue that the approach is a black box. This, combined with the fact
that one must make arbitrary decisions concerning the implemen-
tation of the network, e.g., the number of hidden layers, the choice
of transformation functions, the number of neurons, neural net-
works are not commonly used for financial time series modelling,
and we are pioneering their use in term structure forecasting.

Level
Slope
Curvature

_

Fig. 5. Estimated coefficients from the dynamic Nelson–Siegel model of crude oil
futures for the period 1990–2014. Level – b0t , slope – b1t , and curvature – b2t .

Fig. 6. Examples of the term structures of futures contracts on crude oil (indicated by () fitted by the Dynamic Nelson–Siegel model (indicated by solid line): (a) November
30, 1990, (b) May 31, 1999, (c) December 31, 2008, and (d) March 31, 2012.
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Abandoning these concerns, we use the neural network as a
generalized nonlinear regression, which is able to describe the
complex patterns in the time series of curvature parameters. As
in other linear or nonlinear methods, a neural network relates a
set of input variables, say lags of time series, to output – in our case
the forecast. The only difference between network and other mod-
els is that the approximating function uses one or more so-called
hidden layers, in which the input variables are squashed or trans-
formed by a special function.

The most widely used ANN in financial applications with one
hidden layer [20] is the feed-forward neural network. The general
feed-forward or multi-layered perceptron (MLP) network we use
for forecasting the bbtþh coefficient can be described by the follow-
ing equations:

bbtþh ¼ c0 þ
Xk'

k¼1

ckKðnk;tÞ ð5Þ

Kðnk;tÞ ¼
1

1þ e&nk;t
ð6Þ

nk;t ¼ xk;0 þ
Xmþ1

i¼0

xk;i
bbt&i ð7Þ

with k' neurons nk;t and xk;i representing a coefficient vector or
weights vector to be identified. The variable nk;t , consisting of
mþ 1 lags of the time series being forecast, is squashed by the
hyperbolic tangent transfer function and becomes a neuron
Kðnk;tÞ. Next, the set of k' neurons are combined linearly with the

vector of coefficients fckg
k'

k¼1 to form the final output, which is the

forecast of the bbtþh coefficient on factor loadings from the dynamic
Nelson–Siegel model. The general feed-forward network is the
workhorse of the neural network modelling approach in the finance
industry, as nearly all researchers begin with this network as the
first alternative to linear models.

Note that AR is a simple special case within this framework if
the transformation Kðnk;tÞ is skipped (i.e., Kðnk;tÞ ¼ nt;k) and one
neuron that contains a linear approximation function is used.
Therefore, in addition to classical linear models, there are neurons
that process the inputs to improve the predictions.

To be able to approximate the target function, the neural net-
work must be able to ‘‘learn”. The process of learning is defined
as the adjustment of weights using a learning algorithm. The main
goal of the learning process is to minimize the sum of the predic-
tion errors for all training examples. The training phase is thus
an unconstrained nonlinear optimization problem, where the goal
is to find the optimal set of parameter weights by solving the fol-
lowing minimization problem:

minfWðxÞ : x 2 Rng; ð8Þ

where W : Rn ! Rn is a continuously differentiable error function.
There are several ways of minimizing WðxÞ, but in essence, we
are searching for the gradient G ¼ rWðxÞ of function W, which is
the vector of the first partial derivative of the error function WðxÞ
with respect to the weight vector x. Furthermore, the gradient
specifies the direction that produces the steepest increase in W.
The negative of this vector thus provides us with the direction of
the steepest decrease.

However, traditional gradient descent algorithms often fail to
efficiently learn intricate patterns in the data due to the numerous
possible initial settings. One of the efficient methods for learning
the patterns in feed-forward neural networks, which we use, is
the Levenberg–Marquardt back-propagation.

4.1. Focused time-delay neural network

To be able to fully explore the time dependence in the time ser-
ies, we use a simple extension of the feed-forward framework, as
dynamic neural networks are capable of more effectively learning
the dynamics of time series relationships. The time-delay neural
Network is a feed-forward network with a tapped delay line at
the input. It is similar to a multilayer perceptron, as all connections
feed forward. In addition, the inputs to any node consist of the out-
puts of earlier nodes from previous time steps. This is generally
implemented using tap-delay lines.

The most straightforward general dynamic neural networks are
of the class known as focused time-delay neural networks, which
have delays only on the input units [47]. These models consist of
a set of feed-forward networks with a tapped delay line capturing
the autoregressive property of the inspected series. We propose
the use of the focused time-delay neural network (FTDNN) for fore-
casting bt loadings. The delay D is introduced into Eq. (7) as
follows:

nk;t ¼ xk;0 þ
Xmþ1

i¼0

xk;i
bbt&ði&1ÞD ð9Þ

To forecast the three time series of bt coefficients estimated by
the Nelson–Siegel model, we will naturally use three separate net-
works. To prevent over-fitting, we use cross-validation over time
with a fixed window. The best model is always chosen based on
the cross-validation scheme. In-sample (training and validation)
and out-of-sample (testing) datasets are chosen in usual ratio of
60%, 20%, and 20% for training, validation, and testing, respectively.
In terms of the out-of-sample forecast period, we begin to forecast
the futures prices in 2010. The same period is also used for fore-
casts from competing models defined in the next section.

The input layer consists of the m lags relevant for the forecast,
where m can be determined by inspecting the respective sample
autocorrelation function. To maintain the comparability of forecast
results with AR(1) and VAR(1) models, we use one lag. A simple
network with one hidden layer consisting of up to 20 hidden neu-
rons is considered. An output neuron is the lth step-ahead forecast
of a particular bt coefficient: 1-month, 3-month-, 6-month- and
12-month-ahead forecasts have been examined. The final decision
regarding the network structure is made based on the Hannan–
Quinn information criterion,
8 as it punishes networks with an excessive number of parameters.

5. Out-of-sample forecasting performance

5.1. Competing models

The main interest of this work is to assess the out-of-sample
forecasting performance of neural networks in forecasting the term
structure of crude oil futures. Naturally, we assess their perfor-
mance in comparison with competing models used in the litera-
ture. The first competing model we consider is a simple AR(1)
process for all three bbi;tþh coefficients i ¼ f1;2;3g:

bbi;tþh ¼ bci þ bci
bbit; ð10Þ

where coefficients bci and bci are obtained by regressing bbi;t on bbi;t&h

and an intercept. Factor loadings bbi;tþh may generally contain unit
root, which will result in poor forecasts due to large possible biases
in estimates. Nevertheless, the model is used in the literature mod-
elling yield curves and term structures.

8 HQIC ¼ ln
PN

t¼1
ðbt&b̂t Þ

2

N

! "% &
þ kðlnðlnðNÞÞÞ

N .
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The second benchmark model for forecasting the term structure
that we consider is the VAR:

bbtþh ¼ bc þ bCbbt ; ð11Þ

with bc and bC representing coefficients to be estimated. In autore-
gressive models, issues implied by the potential presence of a unit
root in one of the series are not particularly severe. However,
unrestricted VAR models perform quite poorly in forecasting tasks.
This poor performance is primarily due by danger of over-
parameterization because of the large number of parameters.
Diebold and Li [13] also note that the factors do not share a cross-
correlation structure, and hence we should not expect the VAR(1)
model to produce superior forecasts. The situation is different for
term structures, as the coefficients share interaction to be modelled.

As a final benchmark model, we consider a random walk, where
the expected forecast is the previous lag:

bbi;tþh ¼ bit: ð12Þ

All four models are used to forecast the term structure of crude
oil futures, both in one-step-ahead and multi-step-ahead predic-
tions (we consider 1, 3, 6, and 12 months ahead).

5.2. Evaluation of the forecasts

To statistically compare the accuracy of the forecasts from dif-
ferent models, we employ two common loss functions, namely
the root mean square error (RMSE) and the mean absolute error
(MAE). The measures are calculated for the t ¼ 1; . . . ; T forecasts
as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XT

i¼1
bptþi & ptþi

# $2
r

ð13Þ

MAE ¼ 1
N

XT

i¼1

bptþi & ptþi

(( (( ð14Þ

As Nomikos and Pouliasis [48] note, these metrics do not pro-
vide information on the asymmetry of the errors. While asymmet-
ric errors are commonly found in the volatility literature, it may
also be worthwhile to determine whether the models do not sys-
tematically over-, or under-predict the term structures. For exam-
ple, Nomikos and Pouliasis [48], Wang and Wu [49], and Baruník
and Křehlík [30] report that the majority of forecasting models
over-predict the volatility on petroleum markets. This bias then
translates into direct economic losses. Hence, as Nomikos and Pou-
liasis [48] suggest, we employ two additional mean mixed error
(MME) loss functions [50] to assess the forecasts. These functions
employ a mixture of positive and negative forecast errors with dif-
ferent weights, thereby allowing us to discover the cases in which
the model tends to over- or under-predict:

MMEðOÞ ¼ 1
N

X

i2U

bptþi & ptþi

(( ((þ
X

i2O

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bptþi & ptþi

(( ((
q !

; ð15Þ

MMEðUÞ ¼ 1
N

X

i2U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bptþi & ptþi

(( ((
q

þ
X

i2O

bptþi & ptþi

(( ((
 !

; ð16Þ

where U is the set containing under-predictions and O is the set
containing over-predictions.

Recently, considerable effort has been devoted to the develop-
ment of testing procedures for situations in which several models
are considered. While the influential work of Diebold and Mariano
[51] allows us to statistically compare two models, the Reality
Check of White [52], or Superior Predictive Ability (SPA) test of
Hansen [53] propose multiple-testing procedures. Among the
new developments, the Model Confidence Set (MCS) of Hansen
et al. [54] consists of a sequence of statistic tests that permits

one to construct a set of superior models, where the null hypothe-
sis of equal predictive power is not rejected at a certain confidence
level. To test significant differences in the loss functions of compet-
ing models, we use the MCS of Hansen et al. [54]. Given a set of
forecasting models M0 we identify the model confidence set
cM'

1&a ) M0, which is the set of models that contain the ‘‘best”
forecasting model at a given level of confidence a. For a given
model i 2 M0, the p-value is the threshold confidence level. Model
i belongs to the MCS only if bpi P a. The MSC methodology repeat-
edly tests the null hypothesis of equal forecasting accuracy

H0;M : E½Li;t & Lj;t+ ¼ 0; for all i; j 2 M

with Li;t being an appropriate loss function of the ith model. Start-
ing with the full set of modelsM ¼ M0, this procedure sequentially
eliminates the worst performing model from M when the null is
rejected. The surviving set of models then belongs to the model con-
fidence set cM'

1&a. Following Hansen et al. [54], we implement the
MCS using a stationary bootstrap with an average block length of
20 days.9

5.3. Discussion of the results

Four models – focused time-delay neural network (FTDNN), AR
(1), VAR(1) and random walk (RW) – are used to forecast the term
structure of crude oil futures, both in one-step-ahead and multi-
step-ahead predictions. We begin with a discussion of the
aggregate results. The average forecast error over all maturities,
captured by RMSE loss function in Table 3, reveals that FTDNN pro-
duces forecasts with the lowest errors for all forecasting horizons
considered. The second-best forecasting model is the AR(1) model,
confirming the conclusions of Diebold and Li [13] regarding the
yield curves data that the AR(1) model outperforms both VAR(1)
and RW.

While the average results provide us with the first indication of
how the models perform against one another, a rigorous statistical
comparison is provided by Tables 4 and 5 in Appendix A, which
present a summary of forecast performance results for individual
maturities. For clarify the results, we report RMSE and MAE rela-
tive to the respective statistics from the random walk model as
the benchmark. A simple ratio tells us, conveniently, how the
model under evaluation compares with the benchmark random
walk. Moreover, the model confidence set is found across all mod-
els for all times to maturity and multi-step-ahead forecasts.

In the case of the one-month-ahead forecast, FTDNN yields the
lowest RMSE and MAE of the models. FTDNN is the only model in
the MCS for maturities lower than 630 days according to RMSE.
For longer maturities considered, specifically 660, 690, and 720,
AR(1), and RW belong to the MCS, while VAR(1) is rejected in
all cases. Regarding the MAE, the situation is very similar, with
the only difference being that for maturities longer than 420,
the FTDNN, AR(1), and RW models produce statistically
indistinguishable forecasts, while FTDNN produces the lowest

Table 3
The average root mean square error (RMSE) across all constant maturities. The lowest
RMSE is highlighted in bold.

Horizon FTDNN AR(1) VAR(1) RW

1month 4.398 4.708 4.971 4.772
3 months 6.077 7.572 8.060 7.952
6 months 6.425 8.868 10.362 10.140
12 months 7.881 7.947 11.487 9.841

9 We considered different block lengths, including ones depending on the
forecasting horizons, to assess the robustness of the results, without any change in
the final results. These results are available from the authors upon request.
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Table 4
The table reports RMSE from model forecasts relative to the RMSE of the RW model. The competing model has lower error than RW if the ratio is lower than one, and vice versa. We consider multiple-step-ahead forecasts of 1, 3, 6, and
12 months for individual maturities using four competing models: FTDNN, AR(1), VAR(1), and RW. The model confidence set (MSC) is used to compare the errors across the four competing models. The ratio is bold in case of the model
belonging to the cM'

10% .

RMSE Time to maturity

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720

FTDNN
1 M 0.81 0.81 0.80 0.80 0.80 0.79 0.79 0.79 0.78 0.78 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.78 0.79 0.80 0.83
3 M 0.73 0.73 0.73 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.73 0.73 0.73 0.74 0.74 0.74 0.75 0.75 0.76 0.77 0.78
6 M 0.59 0.59 0.58 0.58 0.58 0.58 0.58 0.59 0.59 0.60 0.61 0.61 0.62 0.62 0.63 0.64 0.64 0.65 0.66 0.66 0.67 0.67 0.68 0.69
12 M 0.74 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.75

AR(1)
1 M 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.02
3 M 0.93 0.94 0.95 0.95 0.95 0.95 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.98
6 M 0.87 0.87 0.87 0.87 0.87 0.86 0.86 0.86 0.86 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.88 0.88 0.89 0.89 0.89 0.90 0.90 0.90
12 M 0.87 0.87 0.85 0.84 0.83 0.81 0.80 0.79 0.78 0.78 0.77 0.77 0.77 0.77 0.78 0.78 0.78 0.79 0.80 0.81 0.82 0.82 0.83 0.83

VAR(1)
1 M 1.01 1.01 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.04 1.04 1.04 1.05 1.05 1.06 1.07 1.07 1.07 1.08 1.08 1.09 1.12
3 M 0.99 1.00 1.00 1.00 1.00 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.01 1.01 1.02 1.02 1.03 1.04 1.04 1.05 1.05 1.05 1.06 1.08
6 M 1.08 1.07 1.06 1.05 1.03 1.02 1.02 1.01 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02 1.03
12 M 1.21 1.20 1.19 1.18 1.16 1.15 1.14 1.13 1.13 1.13 1.13 1.13 1.13 1.14 1.14 1.15 1.16 1.17 1.18 1.20 1.21 1.22 1.22 1.23

RW
1 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 5
The table reports MAE from model forecasts relative to the MAE of RW model. The competing model has lower error than RW if the ratio is lower than one, and vice versa. We consider multiple-step-ahead forecasts of 1, 3, 6, and
12 months for individual maturities using four competing models: FTDNN, AR(1), VAR(1), and RW. The model confidence set (MSC) is used to compare the errors across the four competing models. The ratio is bold if the model belongs to
the cM'

10% .

MAE Time to maturity

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720

FTDNN
1 M 0.79 0.80 0.81 0.81 0.83 0.83 0.83 0.83 0.83 0.84 0.83 0.83 0.83 0.83 0.84 0.84 0.84 0.83 0.84 0.83 0.84 0.85 0.85 0.88
3 M 0.73 0.71 0.70 0.69 0.68 0.68 0.68 0.68 0.69 0.68 0.69 0.68 0.68 0.68 0.68 0.70 0.71 0.72 0.72 0.73 0.74 0.75 0.77 0.77
6 M 0.61 0.62 0.63 0.63 0.63 0.64 0.65 0.65 0.66 0.66 0.67 0.67 0.67 0.68 0.68 0.69 0.69 0.70 0.70 0.70 0.70 0.71 0.72 0.74
12 M 0.68 0.69 0.70 0.71 0.72 0.72 0.72 0.72 0.71 0.71 0.70 0.70 0.69 0.69 0.68 0.68 0.67 0.67 0.66 0.66 0.66 0.65 0.65 0.64

AR(1)
1 M 0.95 0.96 0.97 0.98 0.99 0.99 0.99 1.00 1.00 1.01 0.99 1.00 0.99 1.00 1.01 1.01 1.01 0.99 0.99 0.99 0.99 0.99 0.98 1.02
3 M 0.98 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.95 0.96 0.96 0.96 0.96 0.96 0.97
6 M 0.92 0.93 0.94 0.95 0.95 0.94 0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.90 0.90 0.89 0.89 0.89 0.88 0.88 0.87 0.87 0.88
12 M 0.83 0.84 0.85 0.85 0.84 0.84 0.82 0.81 0.78 0.77 0.74 0.73 0.73 0.72 0.72 0.71 0.71 0.71 0.72 0.73 0.75 0.76 0.77 0.77

VAR(1)
1 M 1.02 1.02 1.03 1.03 1.04 1.04 1.05 1.05 1.06 1.07 1.07 1.08 1.09 1.09 1.11 1.12 1.12 1.12 1.12 1.12 1.13 1.14 1.14 1.17
3 M 1.02 1.03 1.03 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.01 1.02 1.02 1.02 1.03 1.04 1.04 1.05 1.05 1.06 1.07 1.08 1.09 1.12
6 M 1.14 1.14 1.13 1.12 1.10 1.07 1.05 1.03 1.02 1.00 0.98 0.97 0.96 0.96 0.96 0.97 0.97 0.98 0.98 0.98 0.99 1.00 1.01 1.03
12 M 1.17 1.16 1.16 1.16 1.16 1.16 1.15 1.14 1.14 1.14 1.14 1.14 1.16 1.17 1.19 1.20 1.21 1.22 1.25 1.26 1.27 1.28 1.28 1.28

RW
1 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 6
The table reports the average number of cases in which the error in the forecasts of four competing models, FTDNN, AR(1), VAR(1), and RW, are negative. The higher the number than 0.5, the more under-predictions the model yields. We
consider multiple-step-ahead forecasts of 1, 3, 6, and 12 months for individual maturities. The model confidence set (MSC) is used to compare the MME(U) errors across the four competing models. The ratio is bold when the model
belongs to the cM'

10% .

MME(U) Time to maturity

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720

FTDNN
1 M 0.53 0.56 0.60 0.61 0.61 0.58 0.58 0.58 0.56 0.60 0.56 0.56 0.58 0.60 0.60 0.60 0.58 0.54 0.58 0.56 0.56 0.58 0.54 0.54
3 M 0.55 0.53 0.55 0.56 0.56 0.56 0.53 0.53 0.51 0.51 0.51 0.49 0.49 0.47 0.47 0.45 0.44 0.44 0.42 0.40 0.40 0.40 0.40 0.38
6 M 0.40 0.44 0.42 0.44 0.46 0.46 0.46 0.42 0.40 0.40 0.40 0.40 0.40 0.40 0.38 0.37 0.37 0.37 0.37 0.33 0.33 0.33 0.31 0.31
12 M 0.74 0.72 0.72 0.70 0.72 0.74 0.72 0.74 0.72 0.72 0.67 0.63 0.61 0.61 0.61 0.59 0.59 0.61 0.61 0.61 0.61 0.61 0.61 0.59

AR(1)
1 M 0.51 0.51 0.53 0.53 0.54 0.54 0.54 0.56 0.56 0.61 0.60 0.60 0.60 0.63 0.61 0.63 0.61 0.60 0.61 0.60 0.60 0.60 0.58 0.60
3 M 0.60 0.60 0.60 0.62 0.62 0.64 0.62 0.60 0.60 0.60 0.60 0.58 0.60 0.58 0.58 0.58 0.58 0.55 0.53 0.53 0.53 0.53 0.53 0.53
6 M 0.69 0.67 0.65 0.67 0.67 0.67 0.67 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.58 0.58 0.58 0.56 0.56 0.54
12 M 0.83 0.83 0.83 0.83 0.78 0.78 0.78 0.78 0.78 0.74 0.72 0.65 0.61 0.59 0.59 0.59 0.52 0.48 0.50 0.43 0.39 0.37 0.33 0.33

VAR(1)
1 M 0.53 0.53 0.54 0.54 0.54 0.53 0.54 0.54 0.51 0.47 0.47 0.47 0.47 0.47 0.47 0.46 0.46 0.46 0.44 0.44 0.44 0.44 0.44 0.44
3 M 0.62 0.65 0.65 0.60 0.58 0.58 0.58 0.58 0.56 0.55 0.55 0.53 0.49 0.49 0.47 0.45 0.45 0.44 0.44 0.42 0.42 0.38 0.36 0.38
6 M 0.75 0.75 0.75 0.75 0.73 0.73 0.69 0.67 0.67 0.67 0.63 0.60 0.60 0.56 0.52 0.54 0.56 0.54 0.52 0.50 0.48 0.46 0.46 0.42
12 M 0.78 0.78 0.76 0.76 0.74 0.72 0.72 0.65 0.61 0.59 0.57 0.50 0.50 0.48 0.46 0.46 0.43 0.43 0.43 0.41 0.39 0.35 0.35 0.35

RW
1 M 0.53 0.54 0.54 0.51 0.51 0.51 0.53 0.53 0.53 0.51 0.53 0.53 0.51 0.51 0.47 0.47 0.51 0.49 0.51 0.51 0.51 0.49 0.49 0.47
3 M 0.53 0.51 0.51 0.53 0.53 0.53 0.53 0.51 0.51 0.51 0.51 0.49 0.51 0.55 0.55 0.53 0.51 0.53 0.53 0.51 0.51 0.51 0.51 0.51
6 M 0.60 0.60 0.58 0.54 0.50 0.50 0.50 0.48 0.48 0.48 0.48 0.48 0.46 0.46 0.42 0.42 0.42 0.42 0.42 0.40 0.40 0.40 0.40 0.40
12 M 0.59 0.59 0.59 0.59 0.57 0.57 0.50 0.50 0.46 0.43 0.41 0.37 0.37 0.39 0.39 0.39 0.37 0.37 0.37 0.37 0.33 0.30 0.30 0.30
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Table 7
The table reports the average number of cases in which the error in the forecasts of four competing models, FTDNN, AR(1), VAR(1), and RW, are positive. The higher the number is than 0.5, the more over-predictions the model yields. We
consider multiple-step-ahead forecasts of 1, 3, 6, and 12 months for individual maturities. The model confidence set (MSC) is used to compare the MME(O) errors across the four competing models. The ratio is bold when the model
belongs to the cM'

10% .

MME(O) Time to maturity

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720

FTDNN
1 M 0.47 0.44 0.40 0.39 0.39 0.42 0.42 0.42 0.44 0.40 0.44 0.44 0.42 0.40 0.40 0.40 0.42 0.46 0.42 0.44 0.44 0.42 0.46 0.46
3 M 0.45 0.47 0.45 0.44 0.44 0.44 0.47 0.47 0.49 0.49 0.49 0.51 0.51 0.53 0.53 0.55 0.56 0.56 0.58 0.60 0.60 0.60 0.60 0.62
6 M 0.60 0.56 0.58 0.56 0.54 0.54 0.54 0.58 0.60 0.60 0.60 0.60 0.60 0.60 0.62 0.63 0.63 0.63 0.63 0.67 0.67 0.67 0.69 0.69
12 M 0.26 0.28 0.28 0.30 0.28 0.26 0.28 0.26 0.28 0.28 0.33 0.37 0.39 0.39 0.39 0.41 0.41 0.39 0.39 0.39 0.39 0.39 0.39 0.41

AR(1)
1 M 0.49 0.49 0.47 0.47 0.46 0.46 0.46 0.44 0.44 0.39 0.40 0.40 0.40 0.37 0.39 0.37 0.39 0.40 0.39 0.40 0.40 0.40 0.42 0.40
3 M 0.40 0.40 0.40 0.38 0.38 0.36 0.38 0.40 0.40 0.40 0.40 0.42 0.40 0.42 0.42 0.42 0.42 0.45 0.47 0.47 0.47 0.47 0.47 0.47
6 M 0.31 0.33 0.35 0.33 0.33 0.33 0.33 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.42 0.42 0.42 0.44 0.44 0.46
12 M 0.17 0.17 0.17 0.17 0.22 0.22 0.22 0.22 0.22 0.26 0.28 0.35 0.39 0.41 0.41 0.41 0.48 0.52 0.50 0.57 0.61 0.63 0.67 0.67

VAR(1)
1 M 0.47 0.47 0.46 0.46 0.46 0.47 0.46 0.46 0.49 0.53 0.53 0.53 0.53 0.53 0.53 0.54 0.54 0.54 0.56 0.56 0.56 0.56 0.56 0.56
3 M 0.38 0.35 0.35 0.40 0.42 0.42 0.42 0.42 0.44 0.45 0.45 0.47 0.51 0.51 0.53 0.55 0.55 0.56 0.56 0.58 0.58 0.62 0.64 0.62
6 M 0.25 0.25 0.25 0.25 0.27 0.27 0.31 0.33 0.33 0.33 0.37 0.40 0.40 0.44 0.48 0.46 0.44 0.46 0.48 0.50 0.52 0.54 0.54 0.58
12 M 0.22 0.22 0.24 0.24 0.26 0.28 0.28 0.35 0.39 0.41 0.43 0.50 0.50 0.52 0.54 0.54 0.57 0.57 0.57 0.59 0.61 0.65 0.65 0.65

RW
1 M 0.47 0.46 0.46 0.49 0.49 0.49 0.47 0.47 0.47 0.49 0.47 0.47 0.49 0.49 0.53 0.53 0.49 0.51 0.49 0.49 0.49 0.51 0.51 0.53
3 M 0.47 0.49 0.49 0.47 0.47 0.47 0.47 0.49 0.49 0.49 0.49 0.51 0.49 0.45 0.45 0.47 0.49 0.47 0.47 0.49 0.49 0.49 0.49 0.49
6 M 0.40 0.40 0.42 0.46 0.50 0.50 0.50 0.52 0.52 0.52 0.52 0.52 0.54 0.54 0.58 0.58 0.58 0.58 0.58 0.60 0.60 0.60 0.60 0.60
12 M 0.41 0.41 0.41 0.41 0.43 0.43 0.50 0.50 0.54 0.57 0.59 0.63 0.63 0.61 0.61 0.61 0.63 0.63 0.63 0.63 0.67 0.70 0.70 0.70
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average statistics.
The difference between FTDNN and all other models is even

more pronounced when forecasting 3 months ahead, where the
forecasts from FTDNN are the only ones that are included in
the set of best forecasts using MCS for all times to maturity. The
FTDNN hence decisively produces significantly better forecasts
than all other models at all maturities.

Longer forecasts for 6 months ahead show that FTDNN produces
even greater improvements in terms of RMSE and MAE than at
shorter horizons, where it is the only model belonging to the
MCS. The longer the horizon, the lower the gains from the FTDNN
against all other models are. While FTDNN produces the lowest
average RMSE and MAE, none of the models can be rejected from
the MCS for maturities longer than 300 days. This means that all
models produce statistically similar 6-month-ahead forecasts for
longer horizons.

The longest horizon forecasts of one year show similar results to
the 6-month forecast, with VAR(1) and RW being rejected from
MCS for all maturities. For the short maturities, the FTDNN pro-
duces the best forecasts, while for longer maturities, AR(1) is also
included in the MCS.

Summarizing the results from the RMSE and MAE, FTDNN pro-
duces the forecasts with the significantly lowest errors in relative
to the competing models for short maturities and short forecast-
ing horizons. For maturities longer than 300 days and for and
longer forecasting horizons, the other models are relevant. Often,
forecasts from the AR(1) model cannot be statistically distin-
guished from the forecasts of FTDNN. Note here that FTDNN
includes only one delayed input to make the model comparable
to the AR(1) and VAR(1) strategies used in the literature, and
the FTDNN forecasts would improve if an increasing number were
introduced. While we have experimented with the number of
lags, and obtained even lower errors, the sample size does not
allow us to rigorously study these models, and we leave this task
for future research.

To determine whether the models over- or under-predict the
term structures, we employ the MME(U) and MME(O) statistics.

Table 6 shows the average number of cases in which the error
from the model is negative for all models across forecasting hori-
zons and maturities. Table 7 reports the average number of cases
in which the error from the model is positive. In addition, asym-
metric errors are tested using MME(U), and MME(O) in the MCS
framework. In brief, Table 6 indicates whether the models tend
to under-predict the term structures, while Table 7 tends to
over-predict the term structures.

The important observation from the asymmetric loss functions
is that the models, in general, produce symmetric short-term
forecasts and for short times to maturity. With longer times to
maturity, the FTDNN tends to under-predict for the 1-month-
and 12-month-ahead forecasts, while it over-predicts for the
3-month-, and 6-month-ahead forecasts. AR(1) tends to under-
predict at all forecasting horizons. For the longest forecasting hori-
zon of 1 year, and longer times to maturities, AR(1) substantially
over-predicts futures prices. The results reveal a similar pattern
in terms of forecast comparisons. FTDNN is never rejected from
the MCS.

6. Conclusion

This paper investigates the properties of the term structure of
crude oil markets and proposes the use of dynamic neural net-
works for forecasting in this context.

The term structure of crude oil futures prices exhibits very
similar behaviour to the yield curve on government bonds, and
the three-factor dynamic Nelson–Siegel model [13] used in the
literature to model yield curves captures the shapes of the term

structure very well. We further forecast the factors using a
dynamic neural network.

Our proposed framework yields significant improvements in
the futures price forecasts when compared with the benchmark
models. We report the performance of the models on the 1-
month, 3-month, 6-month and 12-month forecasting horizons.
Moreover, the forecasting errors from our approach have traceable
patterns. For a fixed forecasting horizon, the deviation between the
forecast and observed futures price decreases as the time to matu-
rity increases. Furthermore, for more distant forecast horizons, the
deviation, on average, increases as expected.

In summary, this work has shown that the crude oil term struc-
ture can be successfully modelled and predicted using the parsi-
monious Nelson–Siegel model that was primarily developed for
interest rates when coupled with a generalized regression frame-
work of neural networks. Future research will determine whether
our results also hold for other commodities. An interesting and
important approach would be to use the framework to study the
commonalities between factors across various commodities.

Appendix A

See Tables 4–7.
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