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The popularity of realized measures and various linear models for volatility forecasting has been the fo- 

cus of attention in the literature addressing energy markets’ price variability over the past decade. How- 

ever, there are no studies to help practitioners achieve optimal forecasting accuracy by guiding them to 

a specific estimator and model. This paper contributes to this literature in two ways. First, to capture 

the complex patterns hidden in linear models commonly used to forecast realized volatility, we propose 

a novel framework that couples realized measures with generalized regression based on artificial neural 

networks. Our second contribution is to comprehensively evaluate multiple-step-ahead volatility forecasts 

of energy markets using several popular high frequency measures and forecasting models. We compare 

forecasting performance across models and across realized measures of crude oil, heating oil, and natural 

gas volatility during three qualitatively distinct periods: the pre-crisis period, the 2008 global financial 

crisis, and the post-crisis period. We conclude that the newly proposed approach yields both statisti- 

cal and economic gains, while reducing the tendency to over-predict volatility uniformly during all the 

tested periods. In addition, the proposed methodology is robust to a substantial structural break induced 

by the recent financial crisis. Our analysis favors median realized volatility because it delivers the best 

performance and is a computationally simple alternative for practitioners. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Predicting energy price variability has become one of the most

significant issues faced by the natural gas industry and energy

companies in recent decades. With their considerable volatility, the

leading products of energy markets, i.e., crude oil, natural gas, and

heating oil, 1 contributed to a climate of uncertainty and distrust of

energy companies and investors, on one hand, and of consumers,

regulators, and legislators, on the other. The high level of volatil-
� Support from the Czech Science Foundation under project no. P402/12/G097 

DYME – “Dynamic Models in Economics” is gratefully acknowledged. K ̌rehlík grate- 

fully acknowledges financial support from the Grant Agency of Charles University 

under projects 588314 and 837413. 
∗ Corresponding author at: Institute of Economic Studies, Faculty of Social Sci- 

ences, Charles University in Prague, Opletalova 26, 110 00, Czech Republic. Tel.: +420 

776 259273. 

E-mail addresses: barunik@fsv.cuni.cz (J. Baruník), tomas.krehlik@gmail.com (T. 

K ̌rehlík). 
1 According to the CME Group Leading Products Resource, crude oil, natural 

gas, and heating oil futures are traded with the highest average volume among 

energy commodities ( http://www.cmegroup.com/education/featured-reports/ 

cme- group- leading- products.html ). 
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ty in energy markets is likely due to supply uncertainty—such as

rom a variety of macroeconomic and political factors in the case

f crude oil or simply storage constraints in the case of natural

as—and short-term inelasticity of demand, i.e., the difficulty of

educing consumption within a short period of time. The combi-

ation of these two factors makes it extremely difficult for both

onsumers and producers to forecast their costs and profits. The

esire to protect market participants against the losses resulting

rom this unpredictability has led to immense interest in empiri-

al research aiming to predict the variability in energy prices. In

his paper, we contribute to this literature by proposing a novel

ramework to forecast energy commodity volatility that couples

ealized measures with generalized regression based on artificial

eural networks. We demonstrate that our approach delivers pre-

ise forecasts even in the regime-switching moment of financial

risis. 

Volatility research from previous decades is influenced mainly

y the work of Engle (1982) and Bollerslev (1986, 1987) and has

hown that price variability is much easier to understand than

t is to forecast the direction of future price changes. However,

he lion’s share of previous research has focused on the finan-

ial markets, and the focus has only recently turned to the energy

http://dx.doi.org/10.1016/j.eswa.2016.02.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2016.02.008&domain=pdf
mailto:barunik@fsv.cuni.cz
mailto:tomas.krehlik@gmail.com
http://www.cmegroup.com/education/featured-reports/cme-group-leading-products.html
http://dx.doi.org/10.1016/j.eswa.2016.02.008
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arkets. 2 ( Kang & Yoon, 2013; Kuper & van Soest, 2006; Linn &

hu, 2004; Mohammadi & Su, 2010; Pindyck, 2004; Sévi, 2014;

ei, Wang, & Huang, 2010; Wilson, Aggarwal, & Inclan, 1996; Yang,

wang, & Huang, 2002 ). 

More recent advances in financial econometrics have led to

he development of new estimators of volatility using high fre-

uency data that make volatility observable. Although the pioneer-

ng studies in the realized volatility literature recognize the ben-

fits of using high frequency data in terms of increased accuracy

 Merton, 1980; Zhou, 1996 ), subsequent research 

3 proposes several

stimators that improve model efficiency, robustness to market mi-

rostructure effects, and the ability to separately estimate the vari-

tion due to the continuous part of the price process, on one hand,

nd the variation due to the jump part of the price process, on the

ther. For excellent reviews of the realized volatility literature, see

ndersen, Bollerslev, Christoffersen, and Diebold (2006) ; McAleer

nd Medeiros (2008) , or Barndorff-Nielsen and Shephard (2007) .

oreover, recent studies utilize high frequency data in energy mar-

ets ( Baum & Zerilli, 2016; Prokopczuk, Symeonidis, & Wese Simen,

015 ). 

However, estimating realized volatility is only the first step to

ore accurate predictions and using the appropriate model is the

econd step. Heterogeneous autoregressive (HAR) and autoregres-

ive fractionally integrated (ARFIMA) models became widely used

o forecast realized volatility because these models effectively cap-

ure the long memory of volatility ( Andersen, Bollerslev, Diebold, &

abys, 2003; Corsi, 2009 ). In contrast to FIGARCH models that cap-

ure the long memory of volatility using daily returns data, 4 these

pproaches are more flexible and easier to estimate when high fre-

uency data are available. Although both the HAR and the ARFIMA

ave been developed to capture the specific long memory feature

f volatility, more complex patterns may be revealed and explored.

hanges in market conditions and many types of noises induced

y measurement error lead to non-linear patterns that cannot be

aptured by linear models that are based on restrictive distribu-

ional assumptions. Microstructure noise that can arise through the

id-ask bounce, asynchronous trading, infrequent trading or price

iscreteness are important examples of measurement error. 

Artificial neural networks (ANN) may be understood as a gener-

lization of these classical approaches that may help to uncover

ore complex volatility patterns. Concisely, neural networks are

emi-parametric non-linear models that can approximate any rea-

onable function ( Haykin, 2007; Hornik, Stinchcombe, & White,

989 ). The number of models using machine learning is rapidly

rowing in the academic literature but applications that apply

hese models in energy market in energy markets are limited.

mong the few that do, Fan, Liang, and Wei (2008) proposes a gen-

ralized pattern matching based on a genetic algorithm to predict

rude oil prices on a multi-step-ahead basis. Xiong, Bao, and Hu

2013) ; Yu, Wang, and Lai (2008) proposes an empirical model that

ecomposes neural networks to forecast crude oil prices. Jammazi

nd Aloui (2012) uses a hybrid model for crude oil forecasting,

anella, Barcellona, and D’Ecclesia (2012) use a mixture of Gaus-

ian neural network to forecast energy commodity prices, and

apadimitriou, Gogas, and Stathakis (2014) investigates the effi-

iency of support vector machines in forecasting next-day electric-

ty prices. Although the focus has remained solely on forecasting
2 For a complete review of GARCH-type models used in the energy literature, see 

ang and Wu (2012) . 
3 Andersen and Bollerslev (1998) ; Andersen, Bollerslev, Diebold, and Labys (2001, 

003) ; Bandi and Russell (2006) ; Barndorff-Nielsen, Hansen, Lunde, and Shephard 

2008) ; Hansen and Lunde (2006) ; Zhang, Mykland, and Aït-Sahalia (2005) . 
4 Kang and Yoon (2013) recently investigate the ability of FIGARCH models to 

apture energy market volatility. 
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rices, research using neural networks to forecast volatility contin-

es to be developed. 

This paper’s primary contribution is that it proposes a model

hat couples measures of volatility from high frequency data with

rtificial neural networks to reliably forecast energy price volatility.

hereas researchers in financial econometrics have performed pi-

neering work using stock market index data ( McAleer & Medeiros,

011 ) or exchange rate data ( Sermpinis, Theofilatos, Karathana-

opoulos, Georgopoulos, & Dunis, 2013 ), we are the first to com-

rehensively test this strategy against competing models in the en-

rgy literature. Rather than choosing from among the plethora of

dvanced machine learning algorithms, we use the simplest and

ost popular feed-forward neural network as the first step in this

eld. Our main motivation is to show whether there are statisti-

al and economic gains that can be realized by coupling high fre-

uency data with easy-to-implement artificial neural networks. 

This paper also contributes to the literature by comprehen-

ively evaluating the most popular models and realized measures.

hese realized volatility measures rely on different assumptions,

nd there are no studies guiding practitioners to use a specific

easure when working with the volatility forecasting of energy

arkets. To bridge this gap, we focus on the three most liquid en-

rgy commodities—crude oil, heating oil, and natural gas—during

he period from January 5, 2004 to December 31, 2012 and put

he models into a horse race through several discrete sub-periods

o determine which model produces uniformly lower errors in

ultiple-step-ahead volatility forecasts. The period under study is

specially interesting because it includes a sub-period of high and

apidly rising prices, a sub-period encapsulating the interruption

f price increases in 2008 due to global turmoil in the financial

arkets, and the last sub-period that witnessed profound regime

hange over the most recent few years in which price variabil-

ty became much calmer. In particular, the last period is partic-

larly interesting from the forecaster’s perspective, as it appears

hat demand for liquid transport fuels has peaked in the developed

conomies with car engines becoming more efficient and amid

artial substitution by biofuels. On the supply side, high prices re-

ersed the previous trend toward growing dependence on the con-

entional oil fields of the OPEC member states. Sophisticated mod-

ling strategies should reflect these changes. 

We test the ANN against widely used the HAR and ARFIMA

ong-memory models and a benchmark low frequency-based

ARCH model. The tests are performed within the recently pro-

osed frameworks of the Model Confidence Set (MCS) developed

y Hansen, Lunde, and Nason (2011) and Superior Predictive

bility (SPA) developed by Hansen (2005) with several popular

oss functions used in the literature. Moreover, we use realized

ariance (RV), realized kernel (RK), two-scale realized variance

TSRV), bipower variation (BV), median realized volatility (MedRV),

nd the recently proposed jump-adjusted wavelet two-scale real-

zed variance (JWTSRV) as measures of volatility. Motivated by the

ossibility of reducing model uncertainty, we also experiment with

he linear combination of forecasts from the popular HAR model

nd artificial neural network. This experiment yields the lowest

rror uniformly through all tested periods regardless of which real-

zed measure is used. These low error levels also translate to eco-

omic benefits in terms of Value-at-Risk. One of the loss functions

e use in the exercise allows us to assess whether the models

end to over-predict volatility as commonly found using GARCH-

ype models 5 . A uniform finding is that coupling neural networks

ith high frequency data results in substantial reductions in the
5 For example, see Nomikos and Pouliasis (2011) , who confirm the strong ten- 

ency of GARCH-type models to over-predict the volatility of crude oil, heating oil, 

nd gasoline, which is further confirmed by Wang and Wu (2012) , who find that 

ultivariate GARCH-type models also suffer from over-predictions. 
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over-estimating tendency compared with previous studies. In

addition, we find that MedRV delivers the best forecasts of the

other measures. As a computationally simple alternative to other

measures, we prefer the MedRV for forecasting energy volatility. 

The remainder of this study is organized as follows. Section 2

describes the realized measure used in this study. Section 3

presents prediction models including the HAR, ARFIMA, and ANN

models. Section 4 presents the data and discusses the research

setup, including the methodology used for the statistical and eco-

nomic forecast evaluations. Section 5 discusses the results, and, fi-

nally, Section 6 concludes. Notably, the number of results produced

by this research setup is quite large, and the results that use differ-

ent loss functions are overlapping; therefore, we relegate our auxil-

iary results to the online supplementary appendix that is available

at 10.1016/j.eswa.2016.02.008 . 

2. Estimation of realized volatility 

In this analysis, we assume that the latent logarithmic com-

modity price follows a standard jump-diffusion process contam-

inated by microstructure noise. Let y t = p t + εt be the observed

logarithmic prices evolving over 0 ≤ t ≤ T , which will have two

components; the latent, the so-called true log-price process dp t =
μt dt + σt dW t + ξt dq t , and zero mean i.i.d . microstructure noise, εt ,

with variance η2 . In a latent process, q t is a Poisson process that is

uncorrelated with W t , and the magnitude of the jump, denoted as

J l , is controlled by factor ξt ∼ N( ̄ξ , σ 2 
ξ
) . 

The quadratic return variation over the interval [ t − h, t] , for 0

≤ h ≤ t ≤ T that is associated with the price process y t may be nat-

urally decomposed into two parts: integrated variance and jump

variation 

QV t,h = 

∫ t 

t−h 

σ 2 
s ds ︸ ︷︷ ︸ 

IV t,h 

+ 

∑ 

t−h ≤l≤t 

J 2 l ︸ ︷︷ ︸ 
JV t,h 

. (1)

As detailed by Andersen et al. (2001) and Barndorff-Nielsen and

Shephard (2002a) , quadratic variation is a natural measure of vari-

ability in the logarithmic price process. A simple consistent esti-

mator of the overall quadratic variation under the assumption that

there is zero noise contamination in the price process is provided

by the well-known realized variance developed by Andersen and

Bollerslev (1998) . The realized variance over [ t − h, t ] may be esti-

mated as 

̂ QV 

(RV ) 

t,h = 

N ∑ 

k =1 

( �k y t ) 
2 

, (2)

where �k y t = y 
t−h + 

(
k 
N 

)
h 

− y 
t−h + 

(
k −1 

N 

)
h 

is the k th intraday return in

the [ t − h, t ] interval, and N is the number of intraday observations.

The estimator in Eq. (2) converges in probability to IV t,h + JV t,h as

N → ∞ ( Andersen & Bollerslev, 1998; Andersen et al., 2001, 2003;

Barndorff-Nielsen & Shephard, 2001, 2002a, 2002b ). 

Because observed price process y t is contaminated with noise

and jumps in real data, we must account for this feature as the

main object of interest is the IV t, h part of quadratic variation.

Zhang et al. (2005) propose a solution to noise contamination by

introducing the two-scale realized volatility (TSRV) estimator. The

authors adopt a methodology to estimate the quadratic variation

utilizing all the available data with an idea of precise bias estima-

tion. The two-scale realized variation over [ t − h, t ] is measured by

̂ QV 

(T SRV ) 

t,h = ̂

 QV 

(a v erage ) 

t,h − N̄ 

N ̂

 QV 

(al l ) 

t,h , (3)

where ̂ QV 
(al l ) 
t,h is computed as in Eq. (2) on all available data

and 

̂ QV 
(a v erage ) 
t,h is constructed by averaging the estimators ̂ QV 

(g) 
t,h 
btained on G grids of average size N̄ = N/G as ̂ QV 
(a v erage ) 
t,h =

1 
G 

∑ G 
g=1 ̂

 QV 
(g) 
t,h , where the original grid of observation times, M =

 t 1 , . . . , t N } is subsampled to M 

( g ) , g = 1 , . . . , G, where N / G → ∞
s N → ∞ . The estimator in Eq. (3) is the first consistent and

symptotic estimator of the quadratic variation of p t . Zhang et al.

2005) also formulate the theory for the optimal choice of G grids,

 

∗ = cN 

2 / 3 , where the constant c may be set to minimize total

symptotic variance. 

A different approach to addressing noise developed by

arndorff-Nielsen et al. (2008) is realized kernels. The realized ker-

el variance estimator over [ t − h, t] is defined by 

̂ V 

(RK) 

t,h = γ0 + 

H ∑ 

η=1 

K 

(
η − 1 

H 

)
(γη + γ−η) , (4)

ith γη = 

∑ N 
k =1 �k y t �k −ηy t denoting the ηth realized autocovari-

nce with η = −H, . . . , −1 , 0 , 1 , . . . , H, and K (.) denoting the kernel

unction. Notably, for η = 0 , γη = γ0 = ̂

 QV 
(RV ) 
t,h is an estimate of

he realized variance from Eq. (2) . For the estimator to work, we

ust choose the kernel function K ( · ). In our study, we focus on

he Parzen kernel because it satisfies the smoothness conditions,

 

′ (0) = K 

′ (1) = 0 , and is guaranteed to produce a non-negative es-

imate. We should stress that the realized kernel estimator is com-

uted without accounting for end effects, i.e., by replacing the first

nd last observations with local averages to eliminate the corre-

ponding noise components (so-called jittering ). Barndorff-Nielsen

t al. (2008) argue that these effects are important theoretically

ut negligible practically. 

When studying conditional volatility, it is important to separate

he contributions of the two components of the quadratic varia-

ion, i.e., the continuous component from the jump component.

ecent evidence from the volatility forecasting literature indicates

hat the two sources of variation in the price have substantially

ifferent time series properties and affect future volatility differ-

ntly. Although we are mainly interested in forecasting integrated

ariance, we also estimate jumps in the data. Barndorff-Nielsen

nd Shephard (20 04, 20 06) develop a bipower variation estimator

hat may detect the presence of jumps in high frequency data. The

ain idea of the estimator is to compare two measures in the in-

egrated variance, one containing the jump variation and the other

hat is robust to jumps and thus containing only the integrated

ariation component. In our study, we use the Andersen, Bollerslev,

nd Huang (2011) adjustment of the original ( Barndorff-Nielsen &

hephard, 2004 ) estimator, which helps it become robust to certain

ypes of microstructure noise. The bipower variation over [ t − h, t]

s defined by 

̂ V 

(BV ) 

t,h = μ−2 
1 

N 

N − 2 

N ∑ 

k =3 

| �k −2 y t | · | �k y t | , (5)

here μa = π/ 2 = E(| Z| a ) , and Z ∼ N (0, 1), a ≥ 0 and 

̂ IV 
(BV ) 
t,h →

 t 
t−h σ

2 
s ds . Therefore, ̂ IV 

(BV ) 
t,h provides a consistent estimator of the

ntegrated variance. Because ̂ QV 
(RV ) 
t,h provides a consistent estima-

or of the integrated variance plus the jump variation, the jump

ariation component may be estimated consistently as the differ-

nce between realized variance and realized bipower variation as

lim N→∞ 

( ̂  QV 
(RV ) 
t,h − ̂ IV 

(BV ) 
t,h ) = JV t,h . 

Under the assumption of no jump and certain other regular-

ty conditions, Barndorff-Nielsen and Shephard (2006) provide the

oint asymptotic distribution of the jump variation. This theory can

e used to measure the contribution of the jump variation by 

V t,h = I { Z t,h > 	α} 
(̂ QV 

(RV ) 

t,h − ̂ IV 

(BV ) 

t,h 

)
, (6)

http://dx.doi.org.10.1016/j.eswa.2016.02.008
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here I { Z t,h > 	α} denotes the indicator function and 	α refers to

he chosen critical value from the standard normal distribution.

he measure of integrated variance is defined as 

̂ V 

(CBV ) 

t,h = I { Z t,h ≤	α} ̂  QV 

(RV ) 

t,h + I { Z t,h > 	α} ̂  IV 

(BV ) 

t,h , (7)

hich ensures that the jump measure and the continuous compo-

ent add up to the estimated variance with no jumps. 

To estimate the integrated volatility in the presence of jumps,

e employ an additional estimator, the median realized volatility,

eveloped by Andersen, Dobrev, and Schaumburg (2012) : 

̂ V 

(MedRV ) 

t,h = 

π

6 − 4 

√ 

3 + π

(
N 

N − 2 

)
×

N ∑ 

k =3 

med ( | �k −2 y t | , | �k −1 y t | , | �k y t | ) 2 . (8) 

he median realized volatility offers a number of advantages over

lternative measures of integrated variance in the presence of in-

requent jumps. It is less sensitive to the presence of occasional

ero intraday returns and enjoys smaller finite-sample bias induced

y jumps, while it is also computationally simple to implement. 

.1. Estimation of quadratic variation using wavelets 

Fan and Wang (2007) employ a different approach to measur-

ng realized volatility by using wavelets to separate jump variation

rom the price process and to estimate the integrated variance on

he jump-adjusted data. Although we use the wavelet-based esti-

ator as one of our six realized measures, we do not discuss the

etails of the wavelet theory in this study and instead direct inter-

sted readers to the literature. 

Assume that the sample path of the price process y t has a finite

umber of jumps. Following the results of Wang (1995) regarding

he wavelet jump detection of the deterministic functions with i.i.d .

dditive noise, we use a special form of a discrete wavelet trans-

orm, the maximal overlap discrete wavelet transform (MODWT)

hat is not restricted to a dyadic sample length, unlike the ordi-

ary discrete wavelet transform. Jump locations are detected by

he first-level wavelet coefficients obtained on the process y t over

 t − h, t] , W 1 ,k . Because we use the MODWT, we have k wavelet

oefficients at the first scale, which corresponds to the number of

ntraday observations, i.e., k = 1 , . . . , N. If the value of the wavelet

oefficient W 1 ,k is greater 6 than the universal threshold d 
√ 

2 log N 

 Donoho & Johnstone, 1994 ), then a jump of size �k J t is detected

s 

k J t = 

(
y t−h + ( k N ) h 

− y t−h + ( k −1 
N ) h 

)
I { |W 1 ,k | >d 

√ 

2 log N 

} k ∈ [1 , N] , 

(9) 

here d = 

√ 

2 med {|W 1 ,k |} / 0 . 6745 for k ∈ [1, N ] denotes the in-

raday median absolute deviation estimator ( Percival & Walden,

0 0 0 ). 

Following Fan and Wang (2007) , the jump variation over [ t −
, t] in discrete time is estimated as the sum of the squares of all

he estimated jump sizes, ̂ JV t,h = 

∑ N 
k =1 ( �k J t ) 

2 . 

Now that we have precisely detected the jumps, we proceed to

he jump adjustment of the observed price process, y t . We adjust

he data for jumps by subtracting intraday jumps from the price

rocess as follows: 

k y 
(J) 
t = �k y t − �k J t , k = 1 , . . . , N, (10)
6 Using the MODWT filters, we must correct the position of the wavelet coeffi- 

ients just slightly to obtain the precise jump position; see Percival and Mofjeld 

1997) . 

3

 

i  

C  
here N is the number of intraday observations. Finally, volatil-

ty may be computed using the jump-adjusted wavelet two-scale

ealized variance (JWTSRV) estimator on the jump-adjusted data

k y 
(J) 
t . The JWTSRV is an estimator that can estimate integrated

ariance from the process under the assumption of data contain-

ng both noise and jumps. The estimator utilizes the TSRV ap-

roach of Zhang et al. (2005) as well as the wavelet jump detection

ethod. Another of the estimator’s advantages is that it decom-

oses the integrated variance into J m + 1 components; therefore,

e can study the dynamics of volatility at various investment hori-

ons. Following Barunik, Krehlik, and Vacha (2016) ; Barunik and

acha (2015) , we define the JWTSRV estimator over [ t − h, t ] on

he jump-adjusted data as follows: 

̂ V 

(JW T SRV ) 

t,h = 

J m +1 ∑ 

j=1 

̂ IV 

(JW T SRV ) 

j,t,h = 

J m +1 ∑ 

j=1 

(̂ IV 

(a v erage ) 

j,t,h − N̄ 

N ̂

 IV 

(al l ) 

j,t,h 

)
, (11) 

here ̂ IV 
(a v erage ) 
j,t,h = 

1 
G 

∑ G 
g=1 

∑ N 
k =1 

(
W 

(g) 
j,k 

)2 

is obtained from wavelet

oefficient estimates on a grid of size N̄ = N/G, and 

̂ IV 
(al l ) 
j,t,h =

 N 
k =1 

(
W j,k 

)2 
is the wavelet realized variance estimator at a scale

f j on all the jump-adjusted observed data, �k y 
(J) 
t . W j,k denotes

he MODWT wavelet coefficient at scale j with position k obtained

n process y t over [ t − h, t ] . 

Barunik and Vacha (2015) show that the JWTSRV is a consis-

ent estimator of the integrated variance because it converges in

robability to the integrated variance of process p t , and they as-

ess the estimator’s small sample performance in a large Monte

arlo study. The JWTSRV is found to be able to precisely recover

rue integrated variance from the noisy process with jumps. More-

ver, the JWTSRV estimator is also tested in a forecasting exercise,

hich has been found to substantially improve the forecasting of

he integrated variance ( Barunik et al., 2016 ). 

. Prediction models 

Well-documented evidence for the strong temporal dependence

f realized volatility suggests that realized volatility should be

odeled using an approach allowing for a slowly decaying au-

ocorrelation function and possibly long memory. Arneodo, Muzy,

nd Sornette (1998) ; Müller et al. (1997) and Lynch and Zumbach

2003) show that volatility over long time intervals has a strong

nfluence on volatility at shorter time intervals but that volatility

ver short time intervals has no effect on longer intervals. A possi-

le economic interpretation is that long-term volatility matters to

hort-term traders, whereas short-term volatility has no effect on

ong-term trading strategies. 

Standard, ARCH-type volatility models of Bollerslev (1986) ;

987 ); Engle (1982) and one-factor stochastic volatility models

reat volatility as a latent variable and do not capture long mem-

ry. In our study, we use realized volatility as ex-post observed

ariance, and we consider benchmark models for forecasting

olatility by capturing its properties to assess the relative perfor-

ance of the artificial neural network. We compare the forecasts

rom neural networks to the heterogeneous autoregressive (HAR)

odel of Corsi (2009) and an autoregressive fractionally integrated

oving average (ARFIMA) model that is briefly described in this

ection. 

.1. The linear heterogeneous autoregressive (HAR) model 

A simple and popular model for forecasting realized volatility

s the heterogeneous autoregressive model (HAR) developed by

orsi (2009) that is based on heterogeneous realized volatility
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o  
components 

νt+1 = α + βD νt + βW 

νt ,t −5 + βM 

νt ,t −22 + εt+1 , (12)

where νt ,t −k = 

1 
k 

∑ k −1 
l=0 

νt− j is the average νt over the past k days;

where νt, h is chosen from the estimated quadratic variation or its

components, 

√ ̂ QV 
(est) 
t,h , and 

√ ̂ IV 
(est) 
t,h ; and where ( est ) are the RV,

RK, TRSV, CBV, MedRV, and JWTSRV measures. 

3.2. Long-memory autoregressive fractionally integrated moving 

average (ARFIMA) 

Although the HAR model is popular because of its simplicity, it

is an approximate long-memory model and might not be able to

capture the dynamics of long memory properties in volatility par-

ticularly well, as a result. Therefore, in our forecasting exercise, we

follow Andersen et al. (2003) and adopt the autoregressive frac-

tionally integrated moving average (ARFIMA) class of models. 

If we assume that the volatility series belong to the class of

ARFIMA processes of Granger and Joyeux (1980) , then the d th dif-

ference of each series is a stationary and invertible ARMA process

in which, to ensure stationarity and invertibility, parameter d may

be any real number such that −1 / 2 < d < 1 / 2 . More precisely, νt is

an ARFIMA( p, d, q ) process if it follows: 

α(L )(1 − L ) d (νt − μ) = β(L ) v t , (13)

where α(z) = 1 − α1 z − · · · − αp z 
p and β(z) = 1 + β1 z + · · · + βq z 

q 

are polynomials of order p and q , respectively, in the lag opera-

tor L , which is rooted strictly outside the unit circle, v t is iid with

zero mean and σ 2 
v variance, and (1 − L ) d is defined by its bino-

mial expansion. The model is estimated using a maximum likeli-

hood method, and forecasting is performed by extrapolating the

estimated model. Andersen et al. (2003) ; Deo, Hurvich, and Lu

(2006) show that forecasting log realized volatility based on a sim-

ple ARFIMA(1, d , 0) specification performs well in comparison with

other time-series methods of forecasting realized volatility. We es-

timate a simple ARFIMA(1, d , 0). 

3.3. Artificial neural networks for predicting volatility 

Both the HAR and ARFIMA models are developed to capture

specific features of the time-series and are suitable to model

volatility because they can capture long memory. However, these

models require strict assumptions regarding distributions and sim-

ple linear structure that are never met by data. As a result of the

substantial noise caused by changes in market conditions, volatility

is a complex non-linear process, and more general methodologies

are thus required to properly capture the dependence structures.

Artificial neural networks may be viewed as a generalization of

these classical approaches, which allows us to model other types of

non-linearities in the data in addition to long memory. Specifically,

neural networks are semi-parametric non-linear models that can

approximate any reasonable function ( Haykin, 2007; Hornik et al.,

1989 ) that does not require strong distributional assumptions. 

We use the neural network as a generalized nonlinear regres-

sion that can describe the complex patterns in volatility time se-

ries. As with linear or nonlinear methods, a neural network relates

a set of input variables, such as lags of volatility to output, in the

forecast. The only difference between network and other models is

that the approximating function uses one or more so-called hidden

layers, in which the input variables are squashed or transformed by

a special function. 

The most widely used artificial neural network in financial ap-

plications with one hidden layer ( Hornik et al., 1989 ) is the feed-

forward neural network. The general feed-forward or multilayered
erception (MLP) network that we use for volatility νt forecasting

ay be described by as follows: 

 k,t = ω k,α + 

21 ∑ 

i =0 

ω k,i νt−i (14)

t+ h = γ0 + 

k ∗∑ 

k =1 

γk �(n k,t ) (15)

here �(n k,t ) = 1 / (1 + e −n k,t ) is a logistic function that introduces

onlinearity into the model. To make the model comparable to the

AR model, we use 22 lags of volatility νt as input variables and k ∗

eurons n k, t . ω k, i represents a coefficient vector to be found. The

ariable n k, t is squashed by the logistic function and becomes a

neuron” �( n k, t ). Next, the set of k ∗ neurons are combined linearly

ith the vector of coefficients { γk } k ∗k =1 
to form the final output,

hich is the volatility forecast νt+ h . This model is the workhorse

f the neural network modeling approach in finance, and almost

ll researchers begin with this network as their first alternative to

inear models. 

Notably, the HAR and ARFIMA are simple special cases within

his framework if transformation �( n k, t ) is skipped and one neu-

on that contains a linear approximation function is used. There-

ore, in addition to classical linear models, there are neurons that

rocess inputs to improve the predictions. 

To approximate the target function, the neural network must be

ble to learn. The process of learning is defined as the adjustment

f weights using a learning algorithm. The main goal of the learn-

ng process is to minimize the sum of the prediction errors in all

he training examples. The training phase is thus an unconstrained

onlinear optimization problem in which the goal is to find the

ptimal set of weights of the parameters by solving the minimiza-

ion problem min { �(ω) : ω ∈ R 

n } , where � : R 

n → R is a con-

inuously differentiable error function. There are several ways to

inimize �( ω), but we are essentially searching for the gradient

 = ∇�(ω) of function � , which is the vector of the first partial

erivatives of the error function �( ω) with respect to the weight

ector ω. Furthermore, the gradient specifies a direction that pro-

uces the steepest increase in � . The negative of this vector thus

eveals the direction of the steepest decrease. 

Nevertheless, traditional gradient descent algorithms often fail

o learn intricate patterns in the data efficiently because of the

ultitude of possible initial settings. An efficient method for learn-

ng the patterns in feed-forward neural networks, which we use, is

he resilient propagation algorithm ( Riedmiller & Braun, 1993 ). This

lgorithm differs from the previous one by concentrating solely on

he sign of gradients rather than on the overall numerical estimate,

hich might be imprecise in many cases. This simple idea brings

ore stability and a higher convergence speed than plain back-

ropagation or quickpropagation algorithms. Here, the possibility

f capturing the complex nature of the data and the possible non-

inearities comes with the cost of higher computational burden. 

The best ANN model is chosen from a set of models with

ither 7 or 15 hidden neurons (to determine whether the amount

f neurons in the hidden layer help to process the information

etter) and decay either at 0 (without decay) or 1 e −10 (standard

ecay used in the literature). To prevent overfitting, we use

ross-validation over time with a fixed window. The best model is

hosen based on the cross-validation scheme. 

. Data description and research design 

The data set consists of transaction prices for crude oil, heating

il, and natural gas traded on the New York Mercantile Exchange
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Table 1 

Descriptive statistics for the volatility estimates of crude oil, heating oil and natural gas for the sample period from 

July, 6, 2006 through December 31, 2012. Minimum, maximum, standard deviation and mean are multiplied by ×
10 2 for convenience. LB( l ) is Ljung–Box statistics with l lag. 

Asset Estimator N Min. Max. Std. Mean Ex. Kurt. Skew. LB(5) LB(20) 

Crude oil TSRV 1631 0 .44 6 .26 0 .82 1 .62 6 .29 2 .27 5038 18043 

RV 1631 0 .48 6 .29 0 .81 1 .62 6 .14 2 .24 4980 17879 

RK 1631 0 .44 6 .83 0 .84 1 .62 6 .69 2 .31 4790 17201 

JWTSRV 1631 0 .45 6 .07 0 .79 1 .58 6 .03 2 .24 5356 19070 

CBPV 1631 0 .47 6 .29 0 .81 1 .59 6 .38 2 .28 5047 18124 

medRV 1631 0 .39 6 .60 0 .78 1 .52 6 .34 2 .26 4991 17800 

Heating oil TSRV 1622 0 .39 5 .25 0 .65 1 .43 3 .68 1 .68 4625 16456 

RV 1622 0 .42 5 .53 0 .65 1 .43 3 .97 1 .72 4476 16005 

RK 1622 0 .41 6 .01 0 .67 1 .43 4 .38 1 .78 4301 15365 

JWTSRV 1622 0 .38 4 .75 0 .62 1 .39 3 .42 1 .67 5163 18127 

CBPV 1622 0 .42 5 .53 0 .64 1 .40 3 .72 1 .70 4642 16575 

medRV 1622 0 .37 5 .20 0 .62 1 .34 3 .61 1 .70 4500 15876 

Natural gas TSRV 1619 0 .73 9 .95 0 .91 2 .26 6 .21 1 .76 1999 5246 

RV 1619 0 .75 9 .67 0 .95 2 .29 6 .54 1 .88 1822 4676 

RK 1619 0 .69 9 .74 0 .93 2 .24 6 .02 1 .76 1718 4519 

JWTSRV 1619 0 .73 7 .30 0 .77 2 .11 3 .72 1 .36 3577 9682 

CBPV 1619 0 .65 8 .14 0 .84 2 .18 5 .20 1 .62 2822 7301 

medRV 1619 0 .68 8 .29 0 .84 2 .09 7 .27 1 .83 2629 6957 
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NYMEX). 7 We use the most active rolling contracts from the

it (floor-traded) session during the main trading hours between

:00–14:30 EST. From the raw and irregularly spaced prices, we

xtract 5-minute logarithmic returns using the last-tick method

or the RV, RK, BV, and MedRV estimators and, in addition, one-

econd logarithmic returns for the TSRV and JWTSRV estimators.

he 5-minute choice is guided by the volatility signature plot

nd the previous literature employing the same data. The sample

eriod extends from January 5, 2004 to December 31, 2012, which

overs the recent U.S. recession from December 2007–June 2009.

e eliminate transactions executed on Saturdays and Sundays, U.S.

ederal holidays, December 24 to 26, and December 31 to January

 because of the low activity on these days, which might lead to

stimation bias. 

.1. Realized measures 

We construct the following measures of the various compo-

ents of quadratic variation: realized variance ̂ QV 
(RV ) 
t,h , defined by

q. (2) , realized kernel ̂ QV 
(RK) 
t,h , defined by Eq. (4) , two-scale re-

lized variance ̂ QV 
(T SRV ) 
t,h , defined by Eq. (3) , the bipower varia-

ion 

̂ IV 
(CBV ) 
t,h , defined by Eq. (7) , median realized volatility ̂ IV 

(MedRV ) 
t,h ,

efined by Eq. (8) , and jump-adjusted wavelet two-scale realized

ariance ̂ IV 
(JW T SRV ) 
t,h , defined by Eq. (11) . We work with forecasts of

olatility, which is the square root of the component of quadratic

ariation. For ease of notation, we use only abbreviations in the

nalysis of results: RV, RK, TRSV, CBV, MedRV, and JWTSRV. 

Our main motivation in using more realized measures in the

orecasting is to determine the impact of noise and jumps on fore-

asting volatility. Although RV is simple to compute for a practi-

ioner, RK and TSRV measure the volatility of the true price process

ontaminated by microstructure noise, and these three are mea-

ures of the quadratic variation. In addition, CBV, and MedRV mea-

ure integrated variance directly, whereas MedRV offers a number

f advantages over alternative measures in the presence of infre-

uent jumps. This measure is less sensitive to the presence of oc-

asional zero intraday returns and yields smaller finite-sample bias
7 The data were obtained from Tick Data, Inc. 

d  

w  

a  

b

nduced by jumps. Finally, the most complicated JWTSRV measure

s robust to both microstructure noise and jumps. 

Table 1 reports the summary statistics for the estimated real-

zed measures. The price of natural gas shows the greatest degree

f variability in comparison with crude oil and heating oil prices

ith averages that are twice as large as either. Ljung–Box statis-

ics point to a substantial degree of dependence, as is commonly

ound in volatility time series. Daily prices, returns and volatility

re plotted in Fig. 2 . 

.2. Research design for forecast evaluation 

The main interest of this work is in relative forecasting perfor-

ance instead of the in-sample fit of various models. Although the

iterature describes the fits of particular models in detail, we are

nterested in comparing them in the forecasting exercise; there-

ore, the in-sample model fits are available upon request, and we

ver that we have conducted all the necessary tests to conclude

hat all the models fit the data well. We focus on both statistical

s well as economic evaluations of the applicable forecasts. 

Our data sample covers the period from January 5, 2004 to De-

ember 31, 2012. The first 600 observations are used for the in-

ample fit of the tested models, and we reserve the remaining

631 observations to evaluate the out-of-sample forecasting perfor-

ance. We compute and evaluate 1-step-ahead and cumulative 5-

nd 10-step-ahead forecasts of price volatility. The cumulative h -

tep-ahead forecasts are obtained from the usual multi-step-ahead

orecast by adding together ν2 
t+ h = h −1 

∑ h 
j=1 ν

2 
t+ j . We focus on cu-

ulative forecasts because they are more interesting in applica-

ions. 

After obtaining the volatility forecasts for all 1631 observations

rom July 6, 2006 through December 31, 2012 on a rolling basis,

e divide the forecasts into three periods. The main motivation for

his division is the recent global financial crisis, which occurred in

he middle of our forecast sample. As shown in Fig. 2 , dividing the

orecasts into these three equal periods allows us to evaluate the

orecasting performance of all the models before the crisis with

ata from July 6, 2006 through August 31, 2008, during the crisis

ith data from September 1, 2008 through October 31, 2010, and

fter the crisis with data from November 1, 2010 through Decem-

er 31, 2012. 
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Fig. 1. Box and whisker charts showing distributions of volatilites in different sample periods from July, 6, 2006 through August 31, 2008 (period 1), from September 1, 2008 

through October 31, 2010 (period 2) and from November 1, 2010 through December 31, 2012 (period 3). Note that each box starts at the 25% quantile and ends at the 75% 

quantile of volatility distribution. The left and right fences around the whiskers depict minimum and maximum, the gray notch around the median shows the confidence 

interval for the median, and the dashed line shows the average value. 
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To evaluate the choice of the sub-periods, we study the dis-

tributional properties of volatility with help of box whisker plots

in Fig. 1 . We can see that the first (pre-crisis) period is followed

by much higher average volatility in the second period (during the

crisis) and that the third period (post-crisis) is the period of lowest

volatility. Fig. 1 shows that the sub-periods are significantly differ-

ent. To strengthen the particular choice of the sub-periods, we use

a standard procedure for testing multiple break points based on

the F-test, and identify the break dates exactly at March 17, 2006,

February 8, 2008, December 23, 2009, and December 21, 2010. The

choice of the periods is mainly driven by the desire to obtain stat-

ically comparable results, which requires that the three periods be

of equal length. Although the break point dates are near the dates

that separate our sub-periods, we follow the analysis of the three

periods with equal sample lengths. 

5. Empirical results 

The following section compares the performance of neural net-

works with the performances of the competing ARFIMA and HAR

models in volatility forecasting. Each model is estimated using

all six realized measures: RV, TSRV, RK, CBV, MedRV, and JWT-

SRV. In addition, we experiment with equally weighted combina-

tions of the popular HAR and neural network model, as model av-

eraging may help reduce model uncertainty. Although these two

alternatives offer the best forecasts, the linear combination is a

good candidate for offering the best forecasting framework for a

practitioner in any situation. High frequency data-based forecasts

are also benchmarked against a low frequency-based GARCH(1,1)

model to study the contribution of high frequency data in the

volatility forecasting. 

We begin the discussion with a statistical evaluation of the

forecasting models and move to the economic implications later

on. As discussed above, we aim to assess the forecasting perfor-

mance of all the models over three separate periods: before, dur-

ing, and after the 2008 financial crisis. We thus discuss the re-

sults in this logical sequence. A substantial number of tables have

been produced by this research setup, and the results using dif-
erent loss functions are overlapping; therefore, we report part

f the results in the online supplementary appendix available at

0.1016/j.eswa.2016.02.008 . 

.1. Statistical evaluation of forecasts 

To statistically compare the accuracy of the volatility fore-

asts from different models, we employ two common loss func-

ions, i.e., the root mean square error (RMSE) and the mean abso-

ute error (MAE) defined as RMSE = 

√ 

1 
T 

∑ T 
t=1 

(
ˆ νt+ h − νt+ h 

)2 
, and

AE = 

1 
T 

∑ T 
t=1 | ̂  νt+ h − νt+ h | respectively. As discussed by Nomikos

nd Pouliasis (2011) , these metrics do not provide information

bout the asymmetry of the errors commonly found in the liter-

ture, particularly for the parametric GARCH models. Nonetheless,

he asymmetry of forecast error is important for practitioners be-

ause it alerts us to whether the modeling strategy tends to over-

r under-predict the volatility. Testing energy commodities fore-

asts, Nomikos and Pouliasis (2011) confirm the strong tendency

f GARCH type models to over-predict the volatility of crude oil,

eating oil, and natural gas. This finding was further confirmed

y Wang and Wu (2012) , who find that multivariate GARCH-type

odels suffer from over-predictions as well. 

This bias then translates to direct economic losses. Hence, as

uggested by Nomikos and Pouliasis (2011) , we employ two addi-

ional mean mixed error (MME) loss functions ( Brailsford & Faff,

996 ) to assess the forecasts. These functions use a mixture of pos-

tive and negative forecast errors with different weights that reveal

he cases when the model tends to over- or under-predict. Statis-

ics are defined as 

 M E(O ) = 

1 

T 

( ∑ 

t∈ U 
| ̂  νt+ h − νt+ h | + 

∑ 

t∈ O 

√ 

| ̂  νt+ h − νt+ h | 
) 

(16)

 M E(U) = 

1 

T 

( ∑ 

t∈ U 

√ 

| ̂  νt+ h − νt+ h | + 

∑ 

t∈ O 
| ̂  νt+ h − νt+ h | 

) 

, (17)

http://dx.doi.org.10.1016/j.eswa.2016.02.008
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Fig. 2. Realized volatility, returns, and prices of crude oil, heating oil and natural gas. The forecast period is divided into three equal sample periods from July, 6, 2006 

through August 31, 2008, from September 1, 2008 through October 31, 2010 and from November 1, 2010 through December 31, 2012. 
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here U is the set containing under-predictions and O is the set

ontaining over-predictions. 

To test the significant differences among competing models,

e use the Model Confidence Set (MSC) methodology of Hansen

t al. (2011) . Given a set of forecasting models, M 0 , we identify

he model confidence set ̂ M 

∗
1 −α ⊂ M 0 , which is the set of models

hat contain the “best” forecasting model at a given level of con-

dence α. For a given model i ∈ M 0 , the p -value is the threshold
onfidence level. Model i belongs to the MCS only if ̂ p i ≥ α. MSC

ethodology repeatedly tests the null hypothesis of equal forecast-

ng accuracy 

 0 , M 

: E[ L i,t − L j,t ] = 0 , for all i, j ∈ M 

here L i, t is an appropriate loss function of the i -th model. Be-

inning with the full set of models, M = M 0 , this procedure se-

uentially eliminates the worst-performing model from M when
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the null is rejected. The surviving set of models then belong to

the model confidence set ̂ M 

∗
1 −α . Following Hansen et al. (2011) , we

implement the MCS using a stationary bootstrap with an average

block length of 20 days. 8 

In addition, we employ the superior predictive ability (SPA)

test developed by Hansen (2005) to identify the best perform-

ing model. The null hypothesis of the SPA methodology is that

the chosen benchmark model is the best forecasting model among

its competitors, indicating that the benchmark model produces

the smallest loss. Again, we use bootstrapped p -values and follow

Hansen (2005) in implementing the test. 

We determine the set of the statistically best models in three

steps. 

1. Determine the MCS ̂ M 

∗
1 −α across the forecasting models: the

ARFIMA, HAR, Neural Networks (ANN) and HAR-ANN combi-

nation. 

2. Determine the best forecasting model based on the SPA by

benchmarking all the models against the rest. 

3. Determine the MCS ̂ M 

∗
1 −α across the following realized

measures: RV, TSRV, RK, CBV, MedRV, and JWTSRV. 

As a result, the best forecasting model is the one we are unable

to reject using the SPA and which belongs to the MCS across fore-

casting models and across realized measures. We repeat the pro-

cedure for all the chosen loss functions, the MAE, RMSE, MME (O),

and MME (U) 9 . 

We present the results for the RMSE, MAE, MME(O), and

MME(U) in separate tables for each period. Each table contains re-

sults for all three commodities (crude oil, heating oil, and natural

gas) and several forecasting horizons: 1-step-ahead, 5-step-ahead

and 10-step-ahead. The statistical significance of the differences in

performance is evaluated across forecasting models (a row-wise

comparison) and across volatility estimators (a column-wise com-

parison) using MCS. ( b ) and ( a ) denote the model and estimators

that belong to the corresponding 10% model confidence sets, re-

spectively. In addition, a bold entry signifies a model that cannot

be rejected as the best forecasting model against its competitors

using the SPA test. 

Although we do not know the true process generating the data,

we must make a decision about a volatility proxy in the testing

procedure. When testing model performance, we use the realized

measure that is being forecast by the model as a volatility proxy.

When testing the performance across measures, we choose a sim-

ple proxy of the absolute value of open-close returns, which is

common in the literature. This approach lets us identify which re-

alized measures perform best. We also experimented with all dif-

ferent measures as a proxy for volatility, but the results do not

change; therefore, we offer these results upon request from the au-

thors. 

5.1.1. Forecasting performance before the crisis 

We begin by studying the forecasting performance of the mod-

els in the pre-crisis period (July, 6, 2006–August 31, 2008). Table 2

presents the results for the RMSE and MAE. 

To assist with interpreting the tables, consider the results in

Table 2 , the first column of which shows the RMSE of the mod-

els forecasting the volatility of crude oil. Beginning with 1-step-

ahead forecasts and holding the realized measure, such as the TSRV
8 We also used different block lengths, including those that depended on fore- 

casting horizons, to assess the robustness of the results and witnessed no change 

in the final results. These results are available from the authors upon request. 
9 The results from the statistical testing in the case of the MME(O) and MME(U) 

merit a cautionary note, as the results on the two loss functions should not be in- 

terpreted separately because severe underprediction might lead to favorable results 

in the case of MME(U) and disastrous results in the case of the MME(O). 

M  

%  

o  

s  

w

t

first column), fixed, ANN and HAR-ANN models produce the low-

st RMSE at 0 . 357 × 10 −2 , whereas all high frequency-based mod-

ls belong to the model confidence set, as they are depicted by ( b ).

ARCH(1,1) produces the largest RMSE and is statistically outper-

ormed by other models. Moreover, the HAR, ANN, and HAR-ANN

ombinations are set forth in bold, indicating that they are not re-

ected as the best benchmark forecasting model by the SPA test,

hereas the ARFIMA model is rejected because it has the largest

MSE of 0 . 365 × 10 −2 . This result holds for all columns (all real-

zed measures) except for JWTSRV and CBV, which forecast only

he integrated variation component. For the JWTSRV and CBV, the

NN and the HAR-ANN combinations are the only two models in

he model confidence set. This approach indicates that if we are

nterested in forecasting the entire quadratic variation, the HAR

nd ANN models are both in the model confidence set and pro-

uce statistically indistinguishable results, whereas the ANN model

roduces the lowest RMSE. If we are interested in forecasting only

he integrated variation component, the ANN is superior to other

odels. Holding the model and comparing the RMSE column-wise,

he MedRV is the only measure belonging to the confidence set.

ote that the RMSE and MAE values for comparison across mea-

ures are different from those reported in the table, as we use a

ingle volatility proxy for the absolute value of the open-close re-

urns to conduct the MCS. 

For the 5-step-ahead and 10-step-ahead forecasts, all realized

easures belong to the model confidence set, and the HAR, the

NN, and the combination HAR-ANN produce statistically identi-

al forecasts, whereas the ARFIMA model is rejected, and the ANN

odels induce the lowest RMSE. Turning to the results found for

he MAE, they lead to similar conclusions, but the ARFIMA model

s not rejected. Nonetheless, a higher forecasting horizon h im-

lies a lower RMSE for the ANN than the competing models. The

ARCH(1,1) model produces uniformly the largest errors, confirm-

ng large statistical gains by using high frequency data. 

The remaining results reported in Table 2 for heating oil and

atural gas show similar—although more mixed—results. In con-

lusion, a larger forecasting horizon h implies less error from the

NN or a combination of the HAR-ANN model than the HAR and

he ARFIMA models (with the exception of heating oil). Whereas

n many occasions, the HAR or even the ARFIMA belong to the

odel confidence set, note that the HAR-ANN combination always

elongs to the model confidence set and is never rejected by the

PA test (again, except for a few occasions concerning heating oil).

s for the comparison across realized measures, MedRV belongs

o the MCS in all cases, whereas other estimators of integrated

ariance, i.e., the CBV and JWTSRV, belong to the MCS more often

han in the case of crude oil. This fact points us to the conclusion

hat the MedRV is the best measure for forecasting volatility. One

ay argue that the results are not robust, as these are measures

f integrated variance, excluding jumps. However, the results are

trong, as the volatility proxy used is the absolute value of open-

lose returns, which also includes jumps. The large statistical gains

rom using high frequency data are visible from the largest errors

rom the GARCH(1,1) model, which is rejected by all the competing

odels. 

Turning our attention to the over- and under-predictions re-

orted in the online appendix, the main conclusions remain un-

hanged. 10 Notably, the models yield similar results for both the

ME(O) and MME(U) in terms of significance but also in terms of

 predicted. We may conclude that for all the tested futures, crude

il, heating oil, and natural gas, the models tend to over-predict

lightly, but only by approximately 55% on average (with the maxi-
10 To conserve space, we report the actual MME(U), and MME(O) values together 

ith the percentages of the over- and under-predictions in the online supplemen- 

ary appendix, available at 10.1016/j.eswa.2016.02.008 . 

http://dx.doi.org.10.1016/j.eswa.2016.02.008
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Table 2 

Statistical comparison of forecasts: pre-crisis period . The table reports average RMSE/MAE loss functions. The Model Confidence Set (MSC) is used to compare the errors row-wise (across forecasting models) as well 

as column-wise (across realized measures). We use ( a ) to denote the volatility measures that belong to the ̂ M 

∗
10% and ( b ) to denote the forecasting models that belong to the ̂ M 

∗
10% . Moreover, each forecasting model is 

benchmarked to the rest of the competing models using the Superior Predictive Ability (SPA) test. Cases in which the null hypothesis that the benchmark model is the best forecasting model cannot be rejected are set in 

bold. Note that numbers are multiplied by × 10 2 . 

Crude oil Heating oil Natural gas 

TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV 

RMSE h = 1 h = 1 h = 1 

GARCH 0.390 0.379 0.403 0.336 0.358 0.355 0.414 0.423 0.429 0.375 0.417 0.452 0.655 0.695 0.702 0.619 0.638 0.670 

ARFIMA 0.365 b 0.357 b 0.379 b 0.315 0.338 0.326 a, b 0.352 b 0.373 b 0.367 b 0.283 b 0.353 a, b 0.364 a, b 0.584 0.630 0.636 b 0.509 b 0.545 a, b 0.556 a, b 

HAR 0.360 b 0.351 b 0.375 b 0.309 0.332 0.323 a, b 0.354 b 0.373 b 0.369 a, b 0.286 a, b 0.353 a, b 0.365 a, b 0.575 b 0.622 b 0.629 b 0.504 b 0.539 a, b 0.550 a, b 

ANN 0.357 b 0.349 b 0.373 b 0.305 b 0.329 b 0.321 a, b 0.354 b 0.375 a, b 0.371 a, b 0.288 a, b 0.355 a, b 0.367 a, b 0.575 b 0.621 b 0.631 b 0.501 b 0.540 a, b 0.550 a, b 

HAR-ANN 0.357 b 0.349 b 0.373 b 0.306 b 0.329 b 0.321 a, b 0.353 b 0.372 a, b 0.369 a, b 0.287 a, b 0.352 a, b 0.365 a, b 0.573 b 0.620 b 0.628 b 0.501 b 0.538 a, b 0.548 a, b 

h = 5 h = 5 h = 5 

GARCH 0.654 0.632 0.660 0.559 0.588 0.587 0.709 0.703 0.720 0.693 0.713 0.803 1.128 1.189 1.177 1.136 1.129 1.184 

ARFIMA 0.606 0.582 0.619 0.519 a 0.542 a 0.529 a 0.538 a 0.567 a 0.553 a 0.4 4 4 a 0.531 a 0.569 a 0.974 1.032 1.038 0.881 a, b 0.915 a 0.893 a 

HAR 0.571 b 0.546 b 0.581 b 0.480 b 0.504 b 0.497 a, b 0.550 a 0.574 a, b 0.558 a, b 0.458 a 0.537 a, b 0.580 a 0.920 0.975 b 0.979 b 0.848 b 0.872 a 0.859 a 

ANN 0.568 b 0.545 b 0.581 b 0.479 b 0.502 b 0.500 a, b 0.562 a 0.591 a, b 0.577 a, b 0.468 a 0.554 a, b 0.596 a, b 0.906 b 0.969 b 0.975 b 0.853 b 0.858 a, b 0.859 a, b 

HAR-ANN 0.567 b 0.543 b 0.579 b 0.478 b 0.501 b 0.495 a, b 0.554 a, b 0.579 a, b 0.564 a, b 0.461 a, b 0.543 a, b 0.586 a, b 0.906 b 0.963 b 0.970 b 0.845 b 0.858 a, b 0.850 a, b 

h = 10 h = 10 h = 10 

GARCH 0.895 0.871 0.900 0.773 0.814 0.805 0.969 0.938 0.982 0.971 0.969 1.097 1.600 1.651 1.647 1.635 1.616 1.700 

ARFIMA 0.853 a 0.830 a 0.870 a 0.746 a 0.774 a 0.753 a 0.693 0.721 0.712 0.591 0.677 a 0.735 a 1.370 1.415 1.432 1.240 a, b 1.294 a 1.247 a 

HAR 0.769 b 0.751 b 0.782 b 0.658 b 0.696 a, b 0.689 a, b 0.721 0.739 b 0.725 b 0.625 0.698 a, b 0.766 a 1.273 1.305 1.328 b 1.177 a, b 1.216 a 1.181 a 

ANN 0.761 b 0.745 a, b 0.778 a, b 0.652 a, b 0.692 a, b 0.694 a, b 0.728 0.755 b 0.743 b 0.636 0.713 a, b 0.786 a 1.238 b 1.277 b 1.315 a, b 1.163 a, b 1.188 a, b 1.162 a, b 

HAR-ANN 0.762 b 0.744 b 0.777 a, b 0.652 a, b 0.691 a, b 0.686 a, b 0.721 b 0.742 b 0.730 b 0.628 b 0.702 a, b 0.773 a, b 1.244 b 1.276 b 1.309 b 1.161 a, b 1.190 a, b 1.158 a, b 

MAE h = 1 h = 1 h = 1 

GARCH 0.282 0.285 0.297 0.257 0.272 0.278 0.328 0.329 0.339 0.309 0.332 0.358 0.515 0.531 0.550 0.503 0.509 0.546 

ARFIMA 0.260 b 0.262 b 0.274 b 0.233 b 0.247 b 0.241 a, b 0.264 b 0.271 0.278 b 0.221 0.259 0.251 a 0.429 b 0.449 b 0.457 b 0.378 b 0.405 a, b 0.409 a, b 

HAR 0.262 b 0.265 b 0.276 b 0.231 b 0.249 b 0.243 a, b 0.262 b 0.270 b 0.276 b 0.221 b 0.258 b 0.249 a, b 0.421 b 0.442 b 0.452 b 0.374 b 0.400 a, b 0.403 a, b 

ANN 0.260 b 0.266 b 0.275 b 0.231 b 0.250 b 0.243 a, b 0.264 b 0.275 b 0.278 b 0.225 b 0.262 b 0.253 a, b 0.419 b 0.441 b 0.453 b 0.372 b 0.403 a, b 0.406 a, b 

HAR-ANN 0.260 b 0.265 b 0.275 b 0.230 b 0.248 b 0.242 a, b 0.262 b 0.272 b 0.276 b 0.222 b 0.259 b 0.250 a, b 0.418 b 0.439 b 0.451 b 0.372 b 0.400 a, b 0.403 a, b 

h = 5 h = 5 h = 5 

GARCH 0.467 0.466 0.479 0.434 0.459 0.468 0.580 0.573 0.582 0.589 0.605 0.696 0.951 0.970 0.987 0.977 0.965 1.016 

ARFIMA 0.428 b 0.430 0.443 b 0.381 b 0.404 b 0.389 a, b 0.386 0.406 0.393 0.333 0.389 a 0.392 a 0.770 0.794 0.793 0.698 0.726 a 0.709 a 

HAR 0.406 b 0.404 b 0.415 b 0.359 b 0.386 b 0.372 a, b 0.396 0.412 0.395 0.339 a 0.393 a 0.398 a 0.714 0.736 b 0.748 b 0.666 b 0.688 a 0.669 a 

ANN 0.406 b 0.405 b 0.417 b 0.361 b 0.386 b 0.374 a, b 0.409 b 0.433 b 0.416 b 0.354 a, b 0.413 a, b 0.416 a, b 0.703 b 0.733 b 0.750 b 0.669 b 0.672 a, b 0.668 a, b 

HAR-ANN 0.404 b 0.402 b 0.414 b 0.358 b 0.384 b 0.370 a, b 0.401 b 0.420 b 0.404 b 0.345 a, b 0.402 a, b 0.405 a, b 0.701 b 0.725 b 0.741 b 0.663 b 0.673 a, b 0.663 a, b 

h = 10 h = 10 h = 10 

GARCH 0.662 0.658 0.674 0.611 0.641 0.657 0.816 0.802 0.825 0.853 0.855 0.985 1.388 1.427 1.424 1.440 1.417 1.489 

ARFIMA 0.612 b 0.614 b 0.628 a, b 0.559 a, b 0.580 a, b 0.556 a, b 0.509 0.537 0.517 0.448 0.516 a 0.540 a 1.135 1.159 1.162 b 1.044 a 1.080 a 1.041 a 

HAR 0.567 b 0.570 b 0.583 b 0.507 b 0.538 b 0.526 a, b 0.528 b 0.543 b 0.520 b 0.474 a 0.525 a, b 0.561 a 1.043 1.056 1.094 b 0.982 b 1.019 a 0.973 a 

ANN 0.568 b 0.571 b 0.583 b 0.509 b 0.540 b 0.539 a, b 0.544 b 0.565 b 0.543 b 0.494 a 0.547 a, b 0.587 a 0.996 b 1.027 b 1.069 b 0.956 b 0.979 a, b 0.940 a, b 

HAR-ANN 0.566 b 0.568 b 0.582 b 0.506 b 0.537 b 0.529 a, b 0.533 b 0.550 b 0.527 b 0.481 a, b 0.533 a, b 0.571 a, b 1.011 b 1.028 b 1.071 b 0.963 b 0.991 a, b 0.947 a, b 
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mum levels of over-predictions for natural gas under 60%), whereas

on many occasions, models yield an equal number of over- and

under-predictions. This is an important finding because, in com-

parison with the GARCH-type models that strongly over-predict

volatility ( Nomikos & Pouliasis, 2011; Wang & Wu, 2012 ), high fre-

quency data appear to yield substantial improvement in this re-

spect. We confirm this result as the GARCH(1,1) models are found

to over-predict the volatility much more strongly than high fre-

quency data-based models. 

5.1.2. Forecasting performance during the crisis 

The forecasting performance of the models during the crisis,

i.e., during the September 1, 2008–October 31, 2010 period, fol-

lows in terms of RMSE and MAE, as reported in Table 3 . A general

overview of the results from the pre-crisis period hold, whereas

all the RMSE and MAE are larger than in the pre-crisis period. The

ANN and HAR-ANN combination of models produce the fewest er-

rors, whereas in most cases, the HAR, the ANN, and their combi-

nation belong to the model confidence set. The ARFIMA is rejected

as a best-performing model several times, whereas the combina-

tion of the ANN and HAR models is never rejected and always be-

longs to the model confidence set. The GARCH(1,1) model using

daily data produces even larger errors than the previous period.

This is an important result, i.e., the GARCH model when it was

fit onto the pre-crisis data cannot forecast the volatility after large

structural break, whereas the ANN models are much more robust. 

When comparing the results across realized measures, we ob-

serve that the MedRV again belongs to the MCS across all com-

modities and forecasting horizons. In addition, when forecasting

crude oil 1 and 5 steps ahead, it does not matter which measure

is used. Therefore (and logically), the simplest realized volatility is

preferred in this case. In many cases, the CBV and JWTSRV belong

to the model confidence set as well. 

The CBV and MedRV belong to the model confidence set most

often together with the JWTSRV. From the remaining estimators,

the RK appears to perform best. 

The comparison using over- and under-prediction loss functions

reported in the online appendix provides even more support for

the ANN models. The ANN or the HAR-ANN combination belong to

the model confidence set, whereas HAR may not be rejected as the

best forecasting model more often. Generally, models tend to over-

predict volatility during the crisis little bit more on average, but

again, the degree of over-prediction is not greater than 60%. The

GARCH models generally over-predict the volatility, but to a lesser

extent. 

To conclude, the results from forecasting volatility during the

recent crisis produce larger errors than before the crisis. Generally,

ANNs frequently offer worse performance against the remaining

models because of greater uncertainty in forecasts. When com-

bined with the HAR, the ANNs prove to be the uniformly best

forecasting vehicle. In terms of realized measure, the MedRV is de-

cisively the best choice. Notably, the rate of over-prediction is not

much higher, which proves the models’ general ability to correctly

forecast volatility. In comparison with the low frequency-based

GARCH model, coupling neural networks with high frequency data

yields reliable forecasts even with large structural breaks, when

the models that were fit on pre-crisis data are producing sound

out-of-sample forecasts during the crisis. 

5.1.3. Forecasting performance after the crisis 

Next, we compare the models’ performance on the data fol-

lowing the crisis, November 1, 2010–December 31, 2012. Table 4

presents the results for the RMSE and MAE. Although the reported

loss functions are lower than in both previous periods, the statis-

tical tests tend to reject more models. The ANN tends to deliver

larger errors than competing models, but its combination with the
AR produces the fewest errors. After turmoil of the 2008, the

AR-ANN combination again always belongs to the model confi-

ence set, although it is the only model in the model confidence

et in many occasions. Interestingly, ARFIMA produces lowest er-

ors in many cases as well. The results of column-wise comparison

avor the MedRV, and the GARCH alternative is again rejected by

ll the competing models. 

Comparing the errors from a volatility forecast through the lens

f over- and under-prediction yields similar conclusions. The HAR-

NN combination again belongs to the model confidence set in all

ases. This time, all the models tend to over-predict the volatility

o a greater extent—up to 70%. This result is attributed to the fact

hat the model parameters are estimated during the high volatility

imes of 2008, whereas the predictions are made during a calmer

eriod. In this respect, the models all perform well in terms of

tatistical criteria. Looking at the statistics for the GARCH models,

e find an even larger degree of over-predictions showing that the

aily-based model in which volatility is latent can hardly compete

ith the high frequency data-based strategies 

.1.4. Forecasting performance over the entire period. 

As a robustness check, we also compute the statistics for all

631 forecasts that we obtained. The RMSE/MAE are reported in

able 5 , whereas the results for the over- and under-prediction

tatistics are reported in the online appendix. The combination of

he HAR and the ANN always belongs to the model confidence

et, and generally produces the best forecast, with few exceptions

hen forecasting heating oil. A longer forecasting period improves

he errors produced by the ANN or HAR-ANN when compared with

hose produced by competing models. When we compare the er-

ors through the realized measures, the MedRV again belongs to

he model confidence set in most cases. In addition, the CBV and

WTSRV belong to the model confidence set in many cases as well.

he forecasts based on the low frequency GARCH model decisively

ields the largest forecast errors. 

In comparison with more the complicated TSRV and JWTSRV

easures, the MedRV is a simple alternative and provides the best

erformance. Therefore, the MedRV is a preferred measure in fore-

asting the variability of energy prices. 

.2. Comparison of forecasts across realized measures 

In addition, we analyze the forecasting efficiency and informa-

ion content of different volatility estimators and models with the

elp of simple ( Mincer & Zarnowitz, 1969 ) regressions. Although

e do not know which is the most accurate measure of true pro-

ess underlying the volatility, we simply test the efficiency of all

stimators against the rest and expect that if there is an estima-

or to be chosen among the others, it should also be predicted by

ll the others. This approach allows us to avoid making decisions

bout choosing a volatility proxy, as all measures become a proxy.

n other words, we seek to describe the information content of the

easures and the forecasting models. The regression takes the fol-

owing form: 

ˆ RM 1 

t+ h = α + β ˆ ν( RM 2 , f ) 
t+ h + εt , (18)

here ˆ νt+ h is the volatility estimated with RM measures, i.e., the

SRV, RV, RK, JWTSRV, CBV, and MedRV volatility, and ˆ ν(RM, f ) 
t+ h is

ts forecast using the ARFIMA, HAR, ANN, HAR-ANN and GARCH

odels. For example, we first consider RM = T SRV as a true pro-

ess underlying the data; therefore, we use forecasts from all four

odels using all six measures to determine which measure and

odel combination carries over the most information for forecast-

ng TSRV. In this manner, we test all the remaining realized mea-

ures, which results in 144 final regressions for one commodity.
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Table 3 

Statistical comparison of forecasts: crisis period . The table reports average RMSE/MAE loss functions. The Model Confidence Set (MSC) is used to compare the errors row-wise (across forecasting models) as well as column- 

wise (across realized measures). We use ( a ) to denote the volatility measures that belong to the ̂ M 

∗
10% and ( b ) to denote the forecasting models that belong to the ̂ M 

∗
10% . Moreover, each forecasting model is benchmarked 

to the rest of the competing models using the Superior Predictive Ability (SPA) test. Cases in which the null hypothesis that the benchmark model is the best forecasting model cannot be rejected are set in bold. Note that 

numbers are multiplied by × 10 2 . 

Crude oil Heating oil Natural gas 

TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV 

RMSE h = 1 h = 1 h = 1 

GARCH 0.704 0.711 0.731 0.691 0.708 0.725 0.537 0.542 0.571 0.520 0.535 0.537 0.994 1.028 1.028 0.860 0.899 0.954 

ARFIMA 0.536 a, b 0.541 a, b 0.579 a, b 0.498 a, b 0.541 a, b 0.531 a, b 0.420 0.421 0.466 0.378 0.411 0.395 a 0.897 0.971 0.931 0.545 b 0.724 b 0.766 b 

HAR 0.522 b 0.525 b 0.569 b 0.489 b 0.526 a, b 0.517 a, b 0.416 b 0.412 0.464 b 0.376 b 0.403 b 0.388 a, b 0.872 0.936 0.907 0.548 b 0.716 b 0.759 b 

ANN 0.524 b 0.530 a, b 0.573 a, b 0.533 a, b 0.530 a, b 0.524 a, b 0.420 b 0.419 b 0.471 b 0.381 b 0.410 b 0.395 a, b 0.856 a, b 0.912 a, b 0.893 a, b 0.551 a, b 0.719 a, b 0.759 a, b 

HAR-ANN 0.519 b 0.524 a, b 0.566 a, b 0.498 a, b 0.525 a, b 0.517 a, b 0.416 b 0.413 b 0.464 b 0.377 b 0.404 b 0.389 a, b 0.859 a, b 0.918 a, b 0.894 a, b 0.548 a, b 0.716 a, b 0.757 a, b 

h = 5 h = 5 h = 5 

GARCH 1.358 1.372 1.362 1.365 1.353 1.384 1.031 1.050 1.057 1.040 1.043 1.051 1.677 1.638 1.680 1.794 1.712 1.802 

ARFIMA 0.877 a 0.879 a, b 0.942 a 0.852 a 0.882 a, b 0.874 a 0.684 0.691 a 0.751 a 0.650 a 0.677 a 0.653 a 1.339 b 1.403 b 1.342 b 1.030 a, b 1.225 a, b 1.277 a, b 

HAR 0.779 a 0.776 a, b 0.848 a 0.764 a 0.772 a, b 0.780 a 0.643 b 0.639 b 0.715 b 0.630 b 0.630 a, b 0.614 a, b 1.327 b 1.387 b 1.325 b 1.061 b 1.250 a, b 1.312 a, b 

ANN 0.796 a, b 0.787 a, b 0.875 a, b 0.779 a, b 0.786 a, b 0.816 a, b 0.680 a, b 0.667 a, b 0.762 a, b 0.658 a, b 0.664 a, b 0.651 a, b 1.355 b 1.409 b 1.349 b 1.082 b 1.308 a, b 1.369 a, b 

HAR-ANN 0.776 a, b 0.773 a, b 0.849 a, b 0.762 a, b 0.771 a, b 0.786 a, b 0.650 a, b 0.643 a, b 0.726 a, b 0.636 a, b 0.638 a, b 0.621 a, b 1.335 b 1.390 b 1.329 b 1.065 b 1.271 a, b 1.329 a, b 

h = 10 h = 10 h = 10 

GARCH 1.961 1.987 1.957 1.967 1.965 1.987 1.464 1.503 1.483 1.477 1.494 1.493 2.391 2.349 2.388 2.579 2.459 2.566 

ARFIMA 1.345 a, b 1.336 a, b 1.420 a, b 1.312 a, b 1.344 a, b 1.313 a 0.997 1.025 1.075 0.957 a 1.003 a 0.964 a 1.864 b 1.979 b 1.862 b 1.501 b 1.761 a, b 1.793 a, b 

HAR 1.114 b 1.108 b 1.215 a, b 1.088 a, b 1.105 a, b 1.096 a 0.904 b 0.918 0.988 b 0.903 a, b 0.905 a 0.880 a, b 1.861 b 1.975 b 1.845 b 1.538 b 1.790 b 1.826 b 

ANN 1.135 b 1.115 b 1.234 b 1.086 a, b 1.113 a, b 1.134 a, b 0.953 b 0.963 b 1.064 b 0.945 a, b 0.942 a, b 0.962 a, b 1.882 b 2.010 b 1.831 b 1.549 b 1.821 b 1.805 b 

HAR-ANN 1.110 b 1.099 b 1.204 b 1.075 a, b 1.098 a, b 1.097 a, b 0.911 b 0.926 b 1.005 b 0.911 a, b 0.910 a, b 0.899 a, b 1.851 b 1.968 b 1.810 b 1.531 b 1.775 b 1.798 b 

MAE h = 1 h = 1 h = 1 

GARCH 0.491 0.498 0.515 0.485 0.495 0.517 0.396 0.398 0.421 0.394 0.402 0.413 0.757 0.783 0.790 0.708 0.720 0.767 

ARFIMA 0.364 0.365 b 0.400 0.343 b 0.357 b 0.354 a 0.304 b 0.302 0.341 0.278 b 0.295 0.291 a 0.607 0.653 0.642 b 0.409 b 0.509 b 0.523 b 

HAR 0.359 0.364 b 0.398 b 0.339 b 0.359 b 0.357 a, b 0.304 b 0.294 0.340 b 0.278 b 0.288 0.288 a, b 0.597 0.641 0.632 b 0.410 b 0.509 b 0.525 b 

ANN 0.362 b 0.365 b 0.404 b 0.351 b 0.361 b 0.364 a, b 0.305 b 0.299 b 0.345 b 0.279 b 0.293 b 0.294 a, b 0.582 b 0.625 b 0.623 b 0.414 b 0.512 b 0.530 b 

HAR-ANN 0.356 b 0.362 b 0.396 b 0.343 b 0.358 a, b 0.358 a, b 0.302 b 0.294 b 0.340 b 0.277 b 0.288 b 0.289 a, b 0.585 b 0.629 b 0.623 b 0.411 b 0.509 b 0.526 b 

h = 5 h = 5 h = 5 

GARCH 0.954 0.972 0.946 0.980 0.977 1.026 0.752 0.782 0.761 0.802 0.805 0.842 1.288 1.246 1.280 1.460 1.387 1.463 

ARFIMA 0.593 0.600 0.636 0.584 0.600 0.593 a 0.495 0.501 0.536 0.487 0.498 0.486 a 0.940 b 0.982 b 0.947 b 0.718 0.841 a 0.852 a 

HAR 0.559 0.563 0.612 b 0.547 0.560 0.558 a, b 0.469 b 0.466 b 0.523 b 0.465 b 0.461 b 0.450 a, b 0.942 b 0.996 b 0.956 b 0.744 b 0.877 a 0.894 a 

ANN 0.580 b 0.576 b 0.637 b 0.568 b 0.574 b 0.583 a, b 0.498 b 0.490 b 0.555 b 0.491 b 0.491 b 0.486 a, b 0.957 b 1.001 b 0.966 b 0.757 b 0.893 a 0.915 a 

HAR-ANN 0.562 b 0.563 b 0.616 b 0.549 b 0.561 b 0.561 a, b 0.475 b 0.470 b 0.530 b 0.473 b 0.467 b 0.457 a, b 0.944 b 0.994 b 0.955 b 0.745 b 0.880 a, b 0.897 a, b 

h = 10 h = 10 h = 10 

GARCH 1.409 1.4 4 4 1.400 1.453 1.454 1.513 1.090 1.134 1.085 1.163 1.169 1.210 1.899 1.792 1.868 2.121 1.995 2.112 

ARFIMA 0.916 b 0.920 b 0.964 b 0.902 b 0.928 b 0.923 a, b 0.736 0.759 0.782 0.727 0.752 0.734 a 1.319 b 1.404 b 1.309 b 1.013 1.195 a, b 1.180 a, b 

HAR 0.813 b 0.807 b 0.884 b 0.792 b 0.804 b 0.813 a, b 0.681 b 0.681 0.740 b 0.680 b 0.679 0.669 a, b 1.378 b 1.445 b 1.331 b 1.078 1.265 b 1.253 b 

ANN 0.830 b 0.812 b 0.896 b 0.788 a, b 0.814 a, b 0.831 a, b 0.712 b 0.722 b 0.801 b 0.719 b 0.717 b 0.731 a, b 1.358 b 1.442 b 1.289 b 1.079 1.254 b 1.237 b 

HAR-ANN 0.810 b 0.795 b 0.877 b 0.779 b 0.798 a, b 0.809 a, b 0.682 b 0.688 b 0.751 b 0.685 b 0.686 b 0.682 a, b 1.352 b 1.424 b 1.291 b 1.071 b 1.244 b 1.231 b 
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Table 4 

Statistical comparison of forecasts: after-crisis period . The table reports average RMSE/MAE loss functions. The Model Confidence Set (MSC) is used to compare the errors row-wise (across forecasting models) as well 

as column-wise (across realized measures). We use ( a ) to denote the volatility measures that belong to the ̂ M 

∗
10% and ( b ) to denote the forecasting models that belong to the ̂ M 

∗
10% . Moreover, each forecasting model is 

benchmarked to the rest of the competing models using the Superior Predictive Ability (SPA) test. Cases in which the null hypothesis that the benchmark model is the best forecasting model cannot be rejected are set in 

bold. Note that numbers are multiplied by ×10 2 . 

Crude oil Heating oil Natural gas 

TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV 

RMSE h = 1 h = 1 h = 1 

GARCH 0.394 0.392 0.393 0.379 0.388 0.403 0.306 0.314 0.313 0.300 0.311 0.333 0.670 0.690 0.690 0.599 0.623 0.663 

ARFIMA 0.321 0.330 0.332 0.288 0.318 0.309 a 0.257 0.270 0.268 0.228 0.254 0.254 a 0.620 0.645 0.636 0.365 0.485 a, b 0.454 a, b 

HAR 0.333 0.340 b 0.342 b 0.299 0.328 0.318 a, b 0.262 0.275 0.272 0.232 b 0.257 0.259 a 0.605 0.629 0.625 0.371 0.481 a, b 0.455 a, b 

ANN 0.335 0.341 b 0.343 b 0.299 0.328 0.318 a, b 0.265 0.280 0.277 b 0.234 b 0.261 a, b 0.261 a 0.585 b 0.599 b 0.610 b 0.370 0.477 a, b 0.455 a, b 

HAR-ANN 0.333 b 0.339 b 0.341 b 0.298 b 0.327 b 0.317 a, b 0.263 b 0.276 b 0.273 b 0.232 b 0.259 b 0.259 a, b 0.590 b 0.606 b 0.612 b 0.370 b 0.478 a, b 0.453 a, b 

h = 5 h = 5 h = 5 

GARCH 0.760 0.746 0.731 0.772 0.755 0.805 0.559 0.566 0.553 0.585 0.576 0.635 0.956 0.976 0.970 1.207 1.098 1.247 

ARFIMA 0.612 b 0.616 b 0.592 b 0.578 b 0.600 b 0.588 a, b 0.440 0.458 0.437 0.412 0.436 a 0.438 a 0.792 0.829 b 0.822 0.622 0.697 a 0.689 a 

HAR 0.629 b 0.631 b 0.609 b 0.598 b 0.622 b 0.610 a, b 0.478 0.492 0.471 0.446 0.472 a 0.473 a 0.826 0.863 b 0.857 0.660 0.737 a 0.736 a 

ANN 0.635 b 0.636 b 0.613 b 0.601 b 0.627 b 0.616 a, b 0.497 0.507 0.491 0.457 0.484 a 0.484 a 0.823 0.860 b 0.859 0.649 0.722 a 0.722 a 

HAR-ANN 0.628 b 0.630 b 0.606 b 0.595 b 0.621 b 0.608 a, b 0.484 b 0.496 b 0.476 b 0.448 b 0.475 a, b 0.475 a, b 0.820 b 0.858 b 0.852 b 0.651 b 0.725 a, b 0.724 a, b 

h = 10 h = 10 h = 10 

GARCH 1.038 1.014 0.994 1.069 1.039 1.116 0.765 0.767 0.750 0.816 0.797 0.880 1.293 1.313 1.285 1.721 1.558 1.759 

ARFIMA 0.860 b 0.857 b 0.825 b 0.827 b 0.848 b 0.833 a, b 0.596 0.605 0.578 0.566 a 0.593 a 0.591 a 1.079 b 1.120 b 1.093 b 0.909 1.009 a 0.980 a 

HAR 0.881 b 0.873 b 0.842 b 0.857 b 0.877 b 0.865 a, b 0.669 0.669 0.640 a 0.640 a 0.665 a 0.659 a 1.130 b 1.188 b 1.148 b 0.967 1.081 a 1.056 a 

ANN 0.887 b 0.879 b 0.855 b 0.858 b 0.886 b 0.869 a, b 0.710 0.702 0.690 a 0.666 a 0.693 a 0.687 a 1.135 b 1.195 b 1.157 b 0.950 1.056 a, b 1.030 a, b 

HAR-ANN 0.878 b 0.871 b 0.841 b 0.852 b 0.876 b 0.861 a, b 0.682 b 0.679 b 0.656 b 0.646 a, b 0.673 a, b 0.667 a, b 1.124 b 1.183 b 1.144 b 0.953 b 1.062 a, b 1.035 a, b 

MAE h = 1 h = 1 h = 1 

GARCH 0.300 0.304 0.309 0.300 0.305 0.328 0.251 0.250 0.256 0.250 0.255 0.277 0.542 0.549 0.558 0.513 0.515 0.570 

ARFIMA 0.231 0.236 0.250 0.210 0.231 0.221 a 0.191 0.193 0.204 0.169 0.185 0.183 a 0.468 0.487 0.480 0.286 b 0.366 a 0.345 a 

HAR 0.241 0.247 0.259 0.218 0.241 0.229 a 0.191 b 0.194 b 0.205 b 0.169 b 0.186 b 0.185 a, b 0.447 0.462 0.465 0.290 b 0.360 a, b 0.344 a, b 

ANN 0.243 0.248 0.261 0.218 0.241 0.228 a 0.196 b 0.198 b 0.211 b 0.174 b 0.190 b 0.188 a, b 0.433 b 0.443 b 0.460 b 0.290 b 0.360 a, b 0.345 a, b 

HAR-ANN 0.241 b 0.246 b 0.259 b 0.217 b 0.239 b 0.228 a, b 0.193 b 0.195 b 0.207 b 0.171 b 0.187 b 0.186 a, b 0.436 b 0.4 4 4 b 0.458 b 0.290 b 0.359 a, b 0.344 a, b 

h = 5 h = 5 h = 5 

GARCH 0.578 0.587 0.571 0.616 0.604 0.666 0.458 0.465 0.453 0.496 0.486 0.550 0.762 0.756 0.776 1.062 0.937 1.090 

ARFIMA 0.405 0.414 0.405 0.386 0.405 0.383 a 0.324 0.337 0.330 0.304 0.326 a 0.322 a 0.596 0.624 0.621 0.474 0.524 a 0.526 a 

HAR 0.435 0.454 0.436 0.425 0.445 0.427 a 0.361 0.372 0.359 0.337 0.360 a 0.353 a 0.622 0.656 0.655 0.500 0.552 a 0.560 a 

ANN 0.449 0.465 0.452 0.433 0.455 0.437 a 0.378 0.387 0.381 0.350 0.373 a 0.367 a 0.627 0.662 0.665 0.501 0.548 a 0.557 a 

HAR-ANN 0.439 b 0.458 b 0.440 b 0.427 b 0.448 b 0.429 a, b 0.367 b 0.377 b 0.368 b 0.340 b 0.366 a, b 0.358 a, b 0.620 b 0.655 b 0.657 b 0.498 b 0.547 a, b 0.555 a, b 

h = 10 h = 10 h = 10 

GARCH 0.796 0.801 0.776 0.864 0.831 0.923 0.625 0.638 0.609 0.688 0.665 0.763 1.048 1.052 1.043 1.537 1.360 1.567 

ARFIMA 0.559 b 0.569 0.558 0.544 0.559 0.533 a 0.449 0.467 0.4 4 4 0.424 a 0.456 a 0.450 a 0.820 b 0.849 b 0.840 b 0.684 0.746 a 0.725 a 

HAR 0.612 b 0.629 b 0.600 b 0.610 0.626 0.616 a 0.520 0.529 0.501 0.501 a 0.520 a 0.514 a 0.868 b 0.915 b 0.896 b 0.727 0.818 a 0.796 a 

ANN 0.626 b 0.643 b 0.623 b 0.618 0.640 0.625 a 0.555 0.558 0.547 0.526 a 0.544 a 0.539 a 0.877 b 0.926 b 0.909 b 0.732 0.797 a 0.777 a 

HAR-ANN 0.613 b 0.632 b 0.605 b 0.609 b 0.629 b 0.615 a, b 0.532 b 0.539 b 0.517 b 0.508 a, b 0.527 a, b 0.522 a, b 0.865 b 0.916 b 0.896 b 0.725 b 0.801 a, b 0.781 a, b 
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Table 5 

Statistical comparison of forecasts: whole period . The table reports average RMSE/MAE loss functions. The Model Confidence Set (MSC) is used to compare the errors row-wise (across forecasting models) as well as 

column-wise (across realized measures). We use ( a ) to denote the volatility measures that belong to the ̂ M 

∗
10% and ( b ) to denote the forecasting models that belong to the ̂ M 

∗
10% . Moreover, each forecasting model is 

benchmarked to the rest of the competing models using the Superior Predictive Ability (SPA) test. Cases in which the null hypothesis that the benchmark model is the best forecasting model cannot be rejected are set in 

bold. Note that numbers are multiplied by ×10 2 . 

Crude oil Heating oil Natural gas 

TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV 

RMSE h = 1 h = 1 h = 1 

GARCH 0.517 0.516 0.532 0.494 0.509 0.521 0.430 0.437 0.451 0.409 0.432 0.449 0.789 0.820 0.822 0.703 0.731 0.774 

ARFIMA 0.417 b 0.419 b 0.443 0.378 b 0.411 b 0.401 a 0.350 0.361 0.376 0.303 0.346 0.344 a 0.714 0.765 0.747 0.479 b 0.594 a 0.606 a 

HAR 0.413 b 0.414 b 0.440 0.375 b 0.406 b 0.397 a 0.351 b 0.359 b 0.378 b 0.304 b 0.344 b 0.342 a, b 0.697 0.744 0.732 0.480 b 0.587 a, b 0.602 a, b 

ANN 0.414 b 0.415 b 0.441 b 0.394 b 0.407 a, b 0.399 a, b 0.353 b 0.363 b 0.382 b 0.308 b 0.348 b 0.347 a, b 0.684 b 0.725 b 0.723 b 0.480 b 0.588 a, b 0.601 a, b 

HAR-ANN 0.411 b 0.412 b 0.438 b 0.378 b 0.404 b 0.396 a, b 0.350 b 0.359 b 0.378 b 0.305 b 0.344 b 0.343 a, b 0.686 b 0.729 b 0.723 b 0.479 b 0.586 a, b 0.600 a, b 

h = 5 h = 5 h = 5 

GARCH 0.974 0.972 0.970 0.962 0.957 0.985 0.793 0.801 0.806 0.798 0.804 0.849 1.291 1.297 1.310 1.410 1.344 1.438 

ARFIMA 0.709 a 0.705 a 0.735 a 0.665 a 0.691 a 0.680 a 0.564 0.581 0.596 0.514 0.558 a 0.561 a 1.060 b 1.114 b 1.088 b 0.861 b 0.970 a, b 0.984 a, b 

HAR 0.666 0.658 0.690 a 0.625 a 0.643 a 0.640 a 0.562 b 0.572 b 0.591 b 0.519 b 0.551 a, b 0.559 a, b 1.047 b 1.099 b 1.072 b 0.872 b 0.978 a, b 1.0 0 0 a, b 

ANN 0.673 b 0.664 b 0.702 a, b 0.632 a, b 0.649 a, b 0.657 a, b 0.585 b 0.593 b 0.621 b 0.537 b 0.573 a, b 0.582 a, b 1.054 b 1.106 b 1.081 b 0.879 b 0.995 a, b 1.022 a, b 

HAR-ANN 0.663 b 0.656 b 0.689 a, b 0.623 a, b 0.641 a, b 0.642 a, b 0.567 b 0.576 b 0.599 b 0.523 b 0.557 a, b 0.565 a, b 1.045 b 1.095 b 1.070 b 0.870 b 0.980 a, b 1.002 a, b 

h = 10 h = 10 h = 10 

GARCH 1.383 1.384 1.370 1.369 1.368 1.397 1.108 1.118 1.117 1.127 1.129 1.187 1.822 1.824 1.833 2.025 1.923 2.048 

ARFIMA 1.045 b 1.035 a, b 1.073 a 0.994 a, b 1.021 a, b 0.998 a 0.783 0.805 0.818 0.729 a 0.780 a 0.780 a 1.474 b 1.547 b 1.496 b 1.240 b 1.390 a, b 1.383 a, b 

HAR 0.933 b 0.924 b 0.966 0.887 b 0.909 b 0.900 a 0.772 a, b 0.783 a, b 0.800 a 0.735 a, b 0.764 a, b 0.775 a, b 1.457 b 1.530 b 1.471 b 1.250 b 1.398 b 1.397 b 

ANN 0.941 b 0.927 b 0.976 b 0.885 a, b 0.915 a, b 0.918 a, b 0.806 b 0.816 b 0.850 0.763 a, b 0.792 a, b 0.821 a, b 1.457 b 1.539 b 1.464 b 1.246 b 1.397 a, b 1.375 a, b 

HAR-ANN 0.929 b 0.917 b 0.959 b 0.878 b 0.905 b 0.898 a, b 0.779 b 0.790 b 0.813 b 0.741 a, b 0.770 a, b 0.786 a, b 1.443 b 1.517 b 1.450 b 1.239 b 1.378 a, b 1.372 a, b 

MAE h = 1 h = 1 h = 1 

GARCH 0.358 0.362 0.373 0.347 0.358 0.374 0.326 0.326 0.339 0.318 0.330 0.350 0.605 0.621 0.632 0.574 0.581 0.628 

ARFIMA 0.285 0.288 b 0.307 0.262 b 0.278 b 0.272 a 0.253 0.256 0.275 0.223 0.247 0.242 a 0.501 0.530 0.526 0.358 b 0.427 a 0.426 a 

HAR 0.287 b 0.292 b 0.311 b 0.263 b 0.282 b 0.276 a, b 0.253 b 0.253 b 0.274 b 0.223 b 0.244 b 0.241 a, b 0.488 0.515 0.517 0.358 b 0.423 a 0.424 a 

ANN 0.288 b 0.293 b 0.313 b 0.266 b 0.284 b 0.278 a, b 0.255 b 0.258 b 0.279 b 0.226 b 0.249 b 0.245 a, b 0.478 b 0.503 b 0.512 b 0.359 b 0.425 a, b 0.427 a, b 

HAR-ANN 0.286 b 0.291 b 0.310 b 0.263 b 0.282 b 0.276 a, b 0.253 b 0.254 b 0.275 b 0.224 b 0.245 b 0.242 a, b 0.480 b 0.504 b 0.511 b 0.357 b 0.423 a, b 0.424 a, b 

h = 5 h = 5 h = 5 

GARCH 0.667 0.675 0.666 0.677 0.680 0.721 0.598 0.608 0.600 0.630 0.633 0.697 1.0 0 0 0.991 1.014 1.167 1.096 1.190 

ARFIMA 0.475 0.481 0.494 0.450 0.469 0.455 a 0.402 0.415 0.421 0.375 0.405 0.401 a 0.769 b 0.800 b 0.787 0.630 0.697 a, b 0.696 a, b 

HAR 0.467 b 0.474 b 0.488 b 0.4 4 4 b 0.464 b 0.452 a, b 0.409 0.417 0.426 0.381 0.405 0.401 a 0.760 b 0.796 b 0.786 b 0.637 b 0.706 a, b 0.707 a, b 

ANN 0.478 b 0.482 b 0.502 b 0.454 b 0.472 b 0.465 a, b 0.429 b 0.437 b 0.451 b 0.399 b 0.426 b 0.423 a, b 0.762 b 0.799 b 0.794 b 0.642 b 0.705 a, b 0.713 a, b 

HAR-ANN 0.468 b 0.475 b 0.490 b 0.445 b 0.465 b 0.454 a, b 0.415 b 0.423 b 0.434 b 0.387 b 0.412 b 0.407 a, b 0.755 b 0.791 b 0.784 b 0.635 b 0.700 a, b 0.705 a, b 

h = 10 h = 10 h = 10 

GARCH 0.957 0.969 0.951 0.978 0.977 1.033 0.845 0.860 0.842 0.903 0.898 0.988 1.445 1.424 1.445 1.701 1.592 1.724 

ARFIMA 0.695 0.701 0.716 0.668 b 0.689 0.671 a 0.566 0.589 0.582 0.534 0.576 0.576 a 1.091 1.137 b 1.103 0.913 b 1.007 a 0.982 a 

HAR 0.665 0.669 0.689 0.637 b 0.657 0.652 a, b 0.577 b 0.585 b 0.588 0.552 b 0.576 b 0.582 a, b 1.096 b 1.139 b 1.107 b 0.929 b 1.034 a, b 1.007 a, b 

ANN 0.675 b 0.676 b 0.701 b 0.639 b 0.665 b 0.666 a, b 0.604 b 0.616 b 0.631 b 0.581 b 0.603 b 0.620 a, b 1.078 b 1.132 b 1.089 b 0.922 b 1.010 a, b 0.985 a, b 

HAR-ANN 0.663 b 0.665 b 0.688 b 0.632 b 0.655 b 0.652 a, b 0.583 b 0.593 b 0.600 b 0.559 b 0.583 b 0.592 a, b 1.076 b 1.123 b 1.086 b 0.919 b 1.012 a, b 0.987 a, b 
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Table 6 

Economic comparison of forecasts: whole period . The table reports unconditional coverage for VaR (long). In addition, models are compared through loss function using the Model Confidence Set (MSC) is used to compare 

the errors row-wise (across forecasting models) as well as column-wise (across realized measures). We use ( a ) to denote the volatility measures that belong to the ̂ M 

∗
10% and ( b ) to denote the forecasting models that belong 

to the ̂ M 

∗
10% . Moreover, each of the forecasting models is benchmarked to the rest of the competing models using the Superior Predictive Ability (SPA) test. Cases where the null hypothesis that the benchmark model is the 

best forecasting model cannot be rejected are set in bold. 

Crude oil Heating oil Natural gas 

TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV 

1% VaR h = 1 h = 1 h = 1 

GARCH 1.349 1.349 1.349 1.349 1.349 1.349 1.850 1.850 1.850 1.850 1.850 1.850 1.174 1.174 1.174 1.174 1.174 1.174 

ARFIMA 1.901 1.901 2.023 2.452 a 2.330 a 2.820 a, b 1.726 1.603 1.726 2.035 1.911 2.035 a 1.853 b 1.606 b 1.853 2.409 b 1.915 a, b 2.162 a, b 

HAR 1.594 1.533 b 1.594 2.085 1.901 b 2.269 a, b 1.850 1.726 1.726 2.096 2.096 2.281 a 1.915 b 1.729 b 2.038 2.471 b 1.977 a, b 2.285 a, b 

ANN 1.655 1.717 b 1.717 2.207 a 2.085 a, b 2.391 a, b 1.788 1.788 1.665 2.096 2.035 2.281 a 1.482 b 1.606 b 1.668 b 2.409 a, b 1.977 a, b 2.162 a, b 

HAR-ANN 1.655 b 1.655 b 1.533 b 2.146 b 1.901 b 2.330 a, b 1.850 b 1.788 b 1.665 b 2.035 b 2.035 b 2.281 a, b 1.668 b 1.606 b 1.791 b 2.532 a, b 1.977 a, b 2.224 a, b 

h = 5 h = 5 h = 5 

GARCH 1.659 1.659 1.659 1.659 1.659 1.659 1.669 1.669 1.669 1.669 1.669 1.669 1.053 1.053 1.053 1.053 1.053 1.053 

ARFIMA 1.659 1.598 a 1.782 a 1.844 a 1.782 a 2.151 a 1.483 1.483 b 1.422 1.607 b 1.545 a, b 1.792 a, b 1.362 1.176 1.362 2.167 2.043 a 2.291 a 

HAR 1.291 1.291 1.291 1.414 1.352 1.598 a 1.669 1.545 b 1.545 1.669 b 1.669 b 1.916 a, b 0.867 0.867 0.867 1.981 1.548 a 1.796 a 

ANN 1.352 1.229 1.414 1.352 1.291 1.659 a 1.483 1.422 b 1.483 1.669 b 1.607 a, b 1.978 a, b 1.053 0.805 0.991 1.981 1.548 1.610 

HAR-ANN 1.352 b 1.229 b 1.291 b 1.414 b 1.352 b 1.721 a, b 1.607 b 1.545 b 1.545 b 1.731 b 1.669 a, b 1.916 a, b 0.929 b 0.867 b 0.991 b 2.043 b 1.424 a, b 1.858 a, b 

h = 10 h = 10 h = 10 

GARCH 1.850 1.850 1.850 1.850 1.850 1.850 2.294 b 2.294 2.294 b 2.294 2.294 2.294 1.180 1.180 1.180 1.180 1.180 1.180 

ARFIMA 2.466 2.466 2.589 2.589 2.589 2.959 a 2.294 b 2.356 b 2.170 b 2.728 b 2.728 a, b 3.100 a, b 1.491 1.429 1.491 b 2.236 b 1.615 a, b 2.050 a, b 

HAR 1.480 1.418 1.480 1.788 1.665 2.035 a 2.108 b 2.294 b 2.108 b 2.666 b 2.542 a, b 2.728 a, b 1.242 1.242 1.304 b 1.863 b 1.553 b 1.801 b 

ANN 1.480 1.541 1.418 1.726 1.541 a 2.158 a 2.294 b 2.232 b 2.108 b 2.666 a, b 2.604 a, b 3.224 a, b 1.366 b 1.366 1.366 b 1.988 b 1.615 b 1.863 b 

HAR-ANN 1.480 b 1.480 b 1.480 b 1.726 b 1.541 b 1.973 a, b 2.232 b 2.170 b 2.108 b 2.604 a, b 2.604 a, b 2.976 a, b 1.242 b 1.242 b 1.366 b 1.863 b 1.615 b 1.739 b 

5% VaR h = 1 h = 1 h = 1 

GARCH 5.457 5.457 5.457 5.457 5.457 5.457 4.932 4.932 4.932 4.932 4.932 4.932 5.250 5.250 5.250 5.250 5.250 5.250 

ARFIMA 6.193 6.131 6.254 6.560 6.499 6.99 a 6.165 6.165 6.104 6.782 6.535 7.398 a 6.547 b 6.177 6.733 7.350 b 7.103 a, b 7.844 a, b 

HAR 5.763 5.886 5.947 6.070 6.009 6.683 a 5.980 6.042 6.042 6.720 6.597 7.583 a 6.362 b 6.362 b 6.733 7.597 b 7.165 a, b 7.721 a, b 

ANN 6.009 6.070 5.886 6.193 6.254 6.560 a 6.104 6.042 5.980 6.843 6.289 7.707 a 6.177 b 6.238 b 6.733 b 7.659 b 7.165 a, b 7.906 a, b 

HAR-ANN 5.886 b 5.886 b 5.886 b 6.131 b 6.193 b 6.622 a, b 5.795 b 6.104 b 5.919 b 6.658 b 6.473 b 7.645 a, b 6.424 b 6.300 b 6.609 b 7.474 b 6.980 a, b 7.783 a, b 

h = 5 h = 5 h = 5 

GARCH 4.548 4.548 4.548 4.548 4.548 4.548 6.428 6.428 6.428 6.428 6.428 6.428 4.706 4.706 4.706 4.706 4.706 4.706 

ARFIMA 5.839 5.839 a 6.023 a 6.515 a 6.392 a 7.068 a, b 7.293 b 7.293 b 7.231 b 7.911 b 7.726 a, b 8.653 a, b 6.378 6.130 6.625 8.111 b 7.678 a 8.421 a 

HAR 4.733 4.917 4.794 5.224 5.163 b 6.146 a, b 6.737 b 6.922 b 6.860 b 7.540 b 7.355 a, b 8.405 a, b 6.006 5.573 6.068 8.050 b 7.492 a, b 8.297 a, b 

ANN 4.610 4.917 4.733 5.163 5.224 b 6.146 a, b 6.984 b 6.922 b 6.984 b 7.726 b 7.540 a, b 8.653 a, b 6.006 5.820 6.130 7.926 b 7.368 a, b 8.297 a, b 

HAR-ANN 4.733 b 4.978 b 4.856 b 5.286 b 5.163 b 6.146 a, b 6.860 b 6.984 b 6.737 b 7.540 b 7.540 a, b 8.529 a, b 6.068 b 5.573 b 6.192 b 7.926 b 7.307 a, b 8.235 a, b 

h = 10 h = 10 h = 10 

GARCH 5.487 5.487 5.487 5.487 5.487 5.487 8.122 8.122 8.122 8.122 8.122 8.122 4.410 4.410 4.410 4.410 4.410 4.410 

ARFIMA 6.782 6.658 6.720 7.213 a, b 6.905 a 8.138 a, b 8.865 b 9.175 b 8.927 b 9.857 a, b 9.733 a, b 10.353 a, b 4.907 4.720 5.155 6.584 b 5.839 a, b 6.894 a, b 

HAR 5.179 5.425 5.055 5.734 b 5.734 6.412 a, b 8.617 b 8.555 b 8.493 a, b 9.361 a, b 9.237 a, b 9.857 a, b 4.658 b 4.348 4.534 6.149 b 5.404 a, b 6.460 a, b 

ANN 5.425 5.302 5.364 5.795 b 5.610 a 6.473 a, b 8.617 b 8.803 b 8.679 b 9.547 a, b 9.361 a, b 10.167 a, b 4.845 b 4.472 4.783 6.460 b 5.528 a, b 6.584 a, b 

HAR-ANN 5.179 b 5.302 b 5.302 b 5.919 b 5.610 b 6.289 a, b 8.679 b 8.555 b 8.493 a, b 9.423 a, b 9.361 a, b 9.857 a, b 4.720 b 4.410 b 4.720 b 6.398 b 5.528 a, b 6.584 a, b 
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Table 7 

Economic comparison of forecasts: whole period . The table reports unconditional coverage for VaR (short). In addition, models are compared through loss function using the Model Confidence Set (MSC) is used to compare 

the errors row-wise (across forecasting models) as well as column-wise (across realized measures). We use ( a ) to denote the volatility measures that belong to the ̂ M 

∗
10% , and ( b ) to denote the forecasting models that belong 

to the ̂ M 

∗
10% . Moreover, each of the forecasting models is benchmarked to the rest of the competing models using the Superior Predictive Ability (SPA) test. Cases where the null hypothesis that the benchmark model is the 

best forecasting model cannot be rejected are set in bold. 

Crude oil Heating oil Natural gas 

TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV TSRV RV RK JWTSRV CBV MedRV 

99% VaR h = 1 h = 1 h = 1 

GARCH 98.774 98.774 b 98.774 b 98.774 b 98.774 98.774 b 99.260 99.260 99.260 99.260 99.260 99.260 99.259 99.259 99.259 99.259 99.259 99.259 

ARFIMA 98.651 98.590 b 98.406 b 98.345 a, b 98.406 a 98.099 a, b 98.767 b 98.644 b 98.767 b 98.705 b 98.582 b 98.274 a, b 98.703 b 98.826 b 98.888 b 98.023 b 98.394 a, b 98.147 a, b 

HAR 98.712 a, b 98.651 a, b 98.712 a, b 98.467 a, b 98.651 a, b 98.283 a, b 98.767 b 98.520 b 98.890 b 98.582 b 98.582 b 98.335 a, b 98.765 b 98.950 b 98.888 b 97.962 a, b 98.456 a, b 98.085 a, b 

ANN 98.712 b 98.774 a, b 98.651 a, b 98.651 a, b 98.651 a, b 98.099 a, b 98.829 b 98.582 b 98.829 b 98.644 b 98.459 b 98.335 a, b 98.641 b 98.888 b 98.888 a, b 97.900 a, b 98.394 a, b 98.147 a, b 

HAR-ANN 98.835 b 98.774 a, b 98.835 a, b 98.590 a, b 98.590 a, b 98.345 a, b 98.705 b 98.582 b 98.890 b 98.582 b 98.582 b 98.274 a, b 98.765 b 98.950 b 98.888 a, b 97.962 a, b 98.394 a, b 97.962 a, b 

h = 5 h = 5 h = 5 

GARCH 99.385 99.385 99.385 99.385 b 99.385 b 99.385 b 99.506 99.506 99.506 99.506 99.506 99.506 99.443 99.443 99.443 99.443 99.443 99.443 

ARFIMA 99.262 99.262 99.262 99.017 b 99.017 a 98.648 a, b 99.320 99.320 99.320 99.258 99.258 99.073 a 99.257 99.319 99.257 98.576 98.824 a 98.638 a 

HAR 99.385 99.508 99.447 99.262 b 99.447 b 99.078 a, b 99.4 4 4 99.506 99.567 99.197 99.382 99.073 a 99.257 99.319 99.257 98.638 98.700 a 98.700 a 

ANN 99.570 99.508 99.508 99.447 b 99.447 b 99.201 a, b 99.506 99.4 4 4 99.506 99.258 99.382 99.197 a 99.195 99.381 99.195 98.638 98.824 a 98.700 a 

HAR-ANN 99.570 b 99.508 b 99.508 b 99.385 b 99.447 b 99.201 a, b 99.567 b 99.4 4 4 b 99.506 b 99.197 b 99.320 b 99.135 a, b 99.257 b 99.443 b 99.257 b 98.638 b 98.824 a, b 98.700 a, b 

h = 10 h = 10 h = 10 

GARCH 99.630 99.630 99.630 99.630 99.630 99.630 99.752 99.752 99.752 99.752 99.752 99.752 99.814 99.814 99.814 99.814 99.814 99.814 

ARFIMA 99.260 99.260 99.260 99.075 99.260 98.890 a 99.814 99.876 99.814 99.628 99.876 99.442 a 99.689 99.627 99.627 99.317 99.565 a 99.255 a 

HAR 99.753 99.753 99.692 99.630 99.630 99.383 a 99.814 99.752 99.814 99.628 99.752 99.442 a 99.627 99.627 99.565 99.379 99.441 a 99.379 a 

ANN 99.630 99.630 99.568 99.445 99.630 99.322 a 99.690 99.752 99.752 99.566 99.690 99.504 a 99.565 99.379 99.503 99.317 99.441 a 99.193 a 

HAR-ANN 99.630 b 99.692 b 99.630 b 99.507 b 99.630 b 99.322 a, b 99.752 b 99.752 b 99.814 b 99.628 b 99.752 b 99.442 a, b 99.565 b 99.441 b 99.503 b 99.379 b 99.503 a, b 99.317 a, b 

95% VaR h = 1 h = 1 h = 1 

GARCH 94.421 94.421 94.421 94.421 94.421 94.421 95.561 95.561 95.561 95.561 95.561 95.561 95.738 95.738 95.738 95.738 95.738 95.738 

ARFIMA 94.482 b 94.298 b 94.237 a, b 93.746 a 93.930 a 93.256 a, b 95.253 b 95.191 b 95.253 b 94.636 b 94.698 b 93.896 a, b 94.441 b 94.565 b 94.194 b 93.206 b 93.638 a, b 92.959 a, b 

HAR 94.543 b 94.359 b 94.421 b 94.237 94.237 93.624 a, b 95.068 b 95.068 b 95.006 b 94.451 b 94.451 b 93.527 a, b 94.194 b 94.194 b 93.885 b 93.144 b 93.391 a, b 92.588 a, b 

ANN 94.850 b 94.359 b 94.605 b 94.543 94.482 93.930 a, b 95.438 b 95.314 b 95.314 b 94.760 b 94.575 b 93.773 a, b 94.132 b 94.194 b 94.256 b 92.835 b 93.391 a, b 92.712 a, b 

HAR-ANN 94.788 b 94.421 b 94.727 b 94.298 b 94.359 b 93.746 a, b 95.191 b 95.129 b 95.191 b 94.513 b 94.513 b 93.835 a, b 94.009 b 94.132 b 94.132 b 92.959 b 93.515 a, b 92.773 a, b 

h = 5 h = 5 h = 5 

GARCH 95.206 95.206 95.206 95.206 95.206 95.206 96.601 96.601 96.601 96.601 96.601 96.601 97.028 97.028 97.028 97.028 97.028 97.028 

ARFIMA 94.776 94.530 94.345 94.161 94.038 a 93.239 a 95.797 95.859 95.921 95.426 95.612 95.179 a 95.604 96.037 95.789 94.737 95.480 a 94.923 a 

HAR 95.698 95.882 95.698 95.022 95.452 94.407 a 95.921 95.921 95.983 95.488 95.612 95.056 a 96.223 96.285 96.223 94.923 95.604 a 95.046 a 

ANN 95.636 95.698 95.636 95.022 95.267 94.345 a 95.859 95.921 95.921 95.488 95.797 95.117 a 96.037 96.285 95.975 94.737 95.356 a 95.046 a 

HAR-ANN 95.698 b 95.882 b 95.698 b 95.083 b 95.452 b 94.407 a, b 95.797 b 95.921 b 95.921 b 95.426 b 95.797 b 95.117 a, b 96.223 b 96.285 b 96.161 b 94.799 b 95.418 a, b 95.046 a, b 

h = 10 h = 10 h = 10 

GARCH 95.623 95.623 95.623 95.623 95.623 95.623 96.714 96.714 96.714 96.714 96.714 96.714 98.137 98.137 98.137 98.137 98.137 98.137 

ARFIMA 95.191 95.376 95.006 94.698 94.575 93.711 a 95.970 96.156 96.032 95.598 95.970 95.040 a 97.267 97.267 f96.957 96.025 96.584 a 95.963 a 

HAR 95.993 95.993 96.054 95.746 95.869 95.314 a 95.846 95.908 95.970 95.350 95.474 95.102 a 97.516 97.516 97.143 96.211 96.646 a 96.087 a 

ANN 95.993 95.931 96.239 95.869 95.869 95.253 a 95.908 96.156 96.156 95.598 96.032 95.226 a 97.205 97.267 96.957 96.087 96.584 a 96.149 a 

HAR-ANN 95.993 b 96.054 b 96.054 b 95.808 b 95.993 b 95.191 a, b 95.846 b 96.094 b 95.970 b 95.350 b 95.78 4 b 95.102 a, b 97.267 b 97.453 b 97.081 b 96.087 b 96.646 a, b 96.211 a, b 
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Fig. 3. Whole period: R 2 from the Mincer–Zarnowitz regressions for the 1-day forecast horizon. 
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Following Patton and Sheppard (2009) , we estimate the Mincer–

Zarnowitz (MZ) regression using Generalized Least Squares (GLS),

employing the form ˆ νRM 

t+ h / ̂  ν
(RM, f ) 
t+ h = α/ ̂  ν(RM, f ) 

t+ h + β + ε∗
t . In cases in

which the forecast is unbiased, we expect α = 0 and β = 1 jointly.

The results from the MZ regressions are reported in the on-

line appendix for all periods. Testing the joint null hypothesis that

(α, β) = (0 , 1) shows us that after November 2010, we never reject

the hypothesis that the parameters are significantly different for

the high frequency data-based models—except for the heating oil

for the last period. This finding leads us to the conclusion that all

the forecasts are uniformly unbiased. As for the daily based GARCH
odel, the joint hypothesis is frequently rejected, leading us to the

esult that forecasts from the GARCH model are frequently biased. 

Finally, we study R 2 from the regressions because it will tell

s what portion of variance is explained by forecasts. The results

rom the MZ regressions for the entire period are incorporated into

igs. 3 –5 for all forecasting horizons. We also include the R 2 re-

ults for all three periods in the online supplementary appendix.

e observe from the figures that all the models perform well in

ll the forecasting horizons, with R 2 over 70% in all cases except

or natural gas, which is forecasted 1-step-ahead for the high fre-

uency data-based models. This is the expected result, as natural
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Fig. 4. Whole period: R 2 from the Mincer–Zarnowitz regressions for the 5-day forecast horizon. 
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as shows the greatest degree of price variability, leading the mod-

ls to be able to explain less variance. When comparing perfor-

ance across models, we may conclude that all the models de-

iver similar accuracy of the explained variance, and the results are

onsistent with previous analyzes. Comparing the high frequency-

ased models to the low frequency GARCH model confirms the re-

ult from the previous analysis, as R 2 is more than 10% lower for

ll the GARCH forecasts in comparison with the competing models.

More interestingly, a distinction may be made when compar-

ng realized measures. The JWTSRV, together with the CBV and

edRV, may be forecast with the highest degree of success on

ll horizons. Although a longer forecasting horizon implies less
ifference, we may conclude that measures of integrated volatility

re the best choice when a forecaster requires an accurate forecast

f a ‘true’ volatility process underlying the data. In addition to

revious results that have indicated that the MedRV performs

he best statistically, the results of this analysis find this simple

easure to outperform the others. 

.3. Economic evaluation of forecasts 

A model’s statistical superiority does not necessarily translate

o economic benefits; therefore, in addition to performing a statis-

ical evaluation, we evaluate the forecasts economically. Quantile
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Fig. 5. Whole period: R 2 from the Mincer–Zarnowitz regressions for the 10-day forecast horizon. 
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forecasts are central to risk management decisions because of a

widespread Value-at-Risk (VaR); therefore, we use VaR metrics for

the economic evaluation of the forecasts. From the volatility fore-

casts, we compute 1% and 5% VaR for both long positions and short

positions. 

Although quantile forecasts may be readily evaluated by com-

paring their actual (estimated) coverage, ̂ C α = 1 /T 
∑ T 

t=1 I { y t+ h < ̂ q α
t+ h } ,

against their nominal coverage rate, C α = E[ I { y t+ h <q α
t+ h } ] , with ˆ q α

t+ h 
being h -step-ahead forecast of VaR at α, this approach reduces to

the simple comparison of unconditional coverage rates. Therefore,

we evaluate the accuracy of VaR forecasts statistically by defin-

ing the expected loss of VaR forecasts of Giacomini and Komunjer
2005) made by forecaster m as follows: 

 

 α,m 

= E 

[ (
α − I { y t+ h < ̂  q α,m 

t+ h } 
)(

y t+ h − ̂ q α,m 

t+ h 
)] 

, (19)

nd VaR forecasts are tested using the same methodology as em-

loyed in the previous section, i.e., using MSC and SPA procedures.

gain, we test the performance across both forecasting models and

ealized measures. 

To conserve space, we discuss the economic evaluation of the

esults for the entire forecasted period, although the results from

he three periods studied previously are the same, and the com-

arison of the forecasting performance does not change over time.
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Tables 6 and 7 report conditional coverage as well as a statis-

ical comparison by means of the loss function of Giacomini and

omunjer (2005) that was described in previous sections for the

ong and short positions, at 1%, 5%, 95%, and 99% forecasts of re-

urn distribution. 

Examining the model confidence set and the SPA results, the

AR-ANN model combination belongs to the model confidence

et uniformly yielding the statistically best results. Notably, the

RFIMA model belongs to the model confidence set in many oc-

asions. Forecasts from the realized volatility tend to overestimate

aR, forcing a forecaster to hold more capital than required. VaRs

f 1%, 5%, 95% and 99% are forecasted on average at approximately

%, 6%, 94%, and 98%. However, the results are much better than

xpected, as this is a well-documented feature of realized volatil-

ty forecasts. 

Turning to the comparison of the VaR forecasts through real-

zed measures used, it appears that although MedRV again pro-

ides the best statistical performance, it also yields greater bias

n the unconditional coverage. This feature is common for mea-

ures of integrated variance, and it is expected, as they do not in-

lude jumps, although the forecasts are compared with the orig-

nal returns containing jumps. Therefore, to use these measures,

t is recommended to also include the jump variation. This ap-

roach is nevertheless beyond the scope of this study. We conduct

n economic evaluation as a robustness check for the results from

he statistical evaluation. The general conclusion is that the results

rom the statistical evaluation materialized into economic benefits.

Finally, we compare the economic value of forecasts from high

requency data-based models to the GARCH model. In most situ-

tions, the statistical results translate also to significant economic

ains, as the GARCH is outperformed almost in all the situations

xcept h = 1 in 99% VaR for crude oil, in which its performance

an not be statistically distinguished. Thus, high frequency data do

ontribute to better VaR forecasts in most of the situations. 

. Conclusion 

Predicting energy price variability is of immense interest to

oth practitioners and the academic literature. Nonetheless, most

elevant studies focus on the usage of daily data and rely on the

opular GARCH-type models when predicting the volatility of en-

rgy prices. Many recent studies in expert and intelligent systems

mplemented neural networks for forecasting volatility with in-

ention to improve the volatility forecasts ( Cheng & Wei, 2009;

ajizadeh, Seifi, Zarandi, & Turksen, 2012; Kristjanpoller, Fadic, &

inutolo, 2014; Kristjanpoller & Minutolo, 2015; Roh, 2007 ). Al-

hough all the studies focus on the daily data, a few recent works

tilize high frequency data in expert systems for trading ( Araújo,

liveira, & Meira, 2015; Kotkatvuori-Örnberg, 2016 ). 

In this paper, we contribute to this literature by combining the

nformation included in high frequency data with popular artificial

eural networks to improve volatility forecasts. Precise volatility

orecasting is the core issue in risk management, as portfolio pric-

ng, hedging, and option strategies rely on it heavily. Hence our re-

ults not only contribute to the academic literature but also are of

reat importance for market participants and practitioners as pre-

ise forecasts of volatility translate directly to precise forecasts of

isk. The results are also important because of increased interest in

olatility trading and hedging. 

Examining the most liquid energy commodity markets of crude

il, heating oil, and natural gas, we comprehensively evaluate the

ost popular models for realized volatility forecasting. We test

he widely used HAR and ARFIMA models against the simple ANN

sing the Model Confidence Set and Superior Predictive Ability.

oreover, we use realized variance, realized kernel, two-scale real-

zed variance, bipower variation, median realized volatility, and the
ecently proposed jump-adjusted wavelet two-scale realized vari-

nce measures of volatility. Driven by the possible reduction of

odel uncertainty, we also experiment with the linear combina-

ion of forecasts from the popular HAR model and the ANN, which

ields the lowest error uniformly through all tested periods. These

rrors also translate to economic benefits in terms of VaR. In addi-

ion, we find that high frequency data-based forecasting strategies

ubstantially outperform the benchmark GARCH model. 

Our main finding is that coupling realized measures with artifi-

ial neural networks results in both statistical and economic gains.

lthough the proposed methodology delivers less precise short-

erm forecasts during the crisis period, the forecasts remain eco-

omically valuable. Importantly, the methodology reduced the ten-

ency to over-predict the volatility confirmed by previous research.

ven in those cases in which the model is fit on the data during

 period of high uncertainty and forecasts a period of reduced un-

ertainty, the results hold. Therefore, the findings hold uniformly

hroughout the tested periods, and the methodology yields sub-

tantial advances to previously used methodologies, which tend

o over-predict the volatility. Another important finding is that

he median realized volatility is preferred as the best approxima-

ion of volatility when we are interested in forecasting. This result

olds across all studied periods, and models with median realized

olatility deliver the best forecasts both statistically and economi-

ally. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.eswa.2016.02.008 . 
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