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The literature studying stock index options confirms severe biases and inefficiencies in using implied volatil-
ity as a forecast of future volatility. In this paper, we revisit the implied-realized volatility relationship
with wavelet band least squares (WBLS) exploring the long memory of volatility, a possible cause of the
bias. Using the S&P 500 and DAX monthly and bi-weekly option prices covering the recent financial crisis,
we conclude that the implied-realized volatility relation is driven solely by the lower frequencies of the
spectra representing long investment horizons. The findings enable improvement of future volatility fore-
casts as they support unbiasedness of implied volatility as a good proxy for future volatility in the
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1. Introduction

Option prices are widely believed to carry information relating to
expectations of market participants about the future movement of
the underlying asset prices in financial markets, mostly its volatility.
The volatility implied by an option’s price is the forecast of the future
return volatility over the remaining life of the relevant option if the
option markets are efficient. Early papers studying the phenomenon
of implied-realized volatility relation use volatility implied by option
pricing models - most commonly Black and Scholes (1973) or Hull
and White (1987) - and come to the conclusion that volatility
inferred from option markets is a biased predictor of stock return
volatility (Day and Lewis, 1992; Lamoureux and Lastrapes, 1993;
Canina and Figlewski, 1993; Jorion, 1995).

In contrast, Christensen and Prabhala (1998) and Christensen and
Hansen (2002) use a wide variety of methods to show that informa-
tion content of option implied volatility is superior to that of the past
volatility, and it is a less biased (although still biased) predictor of
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future realized volatility than what has been previously shown. The
authors shed new light on the dubiety about the informational con-
tent of option implied volatility by specifying the sources of error
in previous research. For example, the choice of particular option
contracts for extracting volatility and lower liquidity of the option
market than in the underlying asset market. Moreover, Christensen
and Prabhala (1998) and Christensen and Hansen (2002) find that
overlapping data errors can cause cross-correlation in the volatility
series, which stems from the overlapping period between the cur-
rent implied volatility and future implied volatility. In light of these
methodological issues, Christensen and Hansen (2002) conclude that
option implied volatility is a more efficient forecast for future real-
ized volatility than historical volatility, but it does not subsume all
information contained in historical volatility, and it results in upward
biased forecasts.

Unlike the traditional concepts using the work of Black and
Scholes (1973) or Hull and White (1987) to extract volatilities
from options, model-free implied volatility (MFIV) introduced by
Britten-Jones and Neuberger (2000) is not based on any spe-
cific option pricing model, and it is derived from no-arbitrage
conditions. Jiang and Tian (2005) extended the simple measure of
implied volatility to all martingale asset price processes and express
the formula in forward rather than spot prices. Most notably,
Jiang and Tian (2005) first find that the MFIV subsumes all
information contained by historical and Black and Scholes (1973)
implied volatility and is a more efficient forecast of future realized
volatility. Hence, informational content of option implied volatil-
ity in the subsequent research is analyzed using the model-free
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measure.! For example, Seo and Kim (2015) find implied volatil-
ity to have varying forecasting ability depending on the level
of investor sentiment. Although weaker than for stock markets,
Chatrath et al. (2015) and Padungsaksawasdi and Daigler (2014)
confirm the relationship in commodity markets.

In subsequent research, Andersen and Bondarenko (2007) and
Andersen et al. (2015) argue that MFIV computation brings serious
practical limitations, yielding inaccurate results. The main problem
is the lack of liquid options with strike prices covering the entire
return distribution, including its tails. The authors advocate using
limited strike ranges at a given point in time instead. The concept is
called model-free corridor implied volatility (CIV), previously intro-
duced by Carr and Madan (1998a). While different measures can
be obtained, depending on the width and positioning of the strike
ranges, Andersen et al. (2015) advocate fixing the range of strikes
at a level that provides broad coverage but avoids excessive extrap-
olation of noisy or non-existing quotes for the out-of-the-money
options. Recently, Muzzioli (2013) shed more light on the informa-
tion content of different parts of the risk neutral distribution of the
stock price by considering different corridors in CIV.

When assessing the efficiency of implied volatility forecasts, one
needs to have return volatility at hand. However, actual volatil-
ity has not been a directly observable variable for a long time.
In recent years, as a consequence of the increased availability of
high-frequency data, another subject has brought new insight into
the implied-realized volatility relationship; the concept of real-
ized volatility. Andersen et al. (2003) and Barndorff-Nielsen and
Shephard (2004a) have shown that realized variance provides a con-
sistent nonparametric measure of price variability over a given time
interval. An immense literature studying the realized volatility
emerged in the past decade discussing the impact of noise as well
as jumps in the volatility measurement, concluding that realized
volatility is unbiased and a consistent measure of quadratic vari-
ation only if we assume no market microstructure noise in the
process. The literature also argues that it is important to separate
the jump process and use the estimator robust to noise to recover a
true underlying volatility. For the measurement of realized volatil-
ity, we use one of the most recent jump wavelet two-scale real-
ized volatility estimators (JWTSRV) by Barunik and Vacha (2015),
which compares to other estimators used in the literature very
well. JWTSRV is able to estimate volatility under the jumps and
microstructure noise consistently. The forecasting power of the
estimator is studied using a Realized GARCH framework in Barunik
etal. (2016).

Using increasingly precise measures, the recent literature sug-
gests that the predictive regression between implied volatility and
realized volatility is a cointegrating relationship, and OLS estima-
tion should be avoided as it will result in biased estimates (Bandi
and Perron, 2006; Nielsen and Frederiksen, 2011). The relationship
is driven primarily by the long memory of both implied and real-
ized volatilities, a key stylized fact commonly found in empirical
research across a wide variety of asset classes (Baillie, 1996b;
Cont, 2001). Using a spectral method, Bandi and Perron (2006) and
Nielsen and Frederiksen (2011) confirm that in a long run, implied
volatility is an unbiased predictor of future realized volatility.
Still, the results do not say anything about short-term unbiasedness,
and they rely on Black-Scholes implied volatility only. Generally,
band spectrum regression may be a useful tool in the situation
where we believe the relationship between variables is depen-
dent on frequency. The concept was introduced to econometrics by

1 Many studies use the Chicago Board Option Exchange (CBOE) Volatility Index
(VIX) as a proxy for model-free implied volatility of S&P 500. Introduced by the CBOE
in 1993, its methodology was revised in 2003 using a new model-free measure of
expected volatility and thus can be used conveniently.

Engle (1974) and further shown to be useful for estimation of
cointegrating regressions (Phillips, 1991; Marinucci and Robinson,
2001).

While Bandi and Perron (2006); Nielsen and Frederiksen (2011);
Kellard et al. (2010) use a Fourier transform to estimate the rela-
tionship in the frequency domain, we contribute to the literature
by proposing the band regression on the spectrum estimated by
wavelet coefficients. The wavelet transform offers localized fre-
quency decomposition, providing information about frequency com-
ponents. As a result, wavelets have significant advantages over basic
Fourier analysis when the object under study is locally station-
ary and inhomogeneous — see Gengay et al. (2002); Percival and
Walden (2000); Ramsay (2002). This can be a crucial property, as
the implied-realized volatility cointegrating relationship may poten-
tially lie in a non-stationary region (Kellard et al., 2010). Wavelets
also allow us to study the relationship in the time-frequency domain.
We motivate this dynamic by estimating the wavelet coherence
measure to study the implied-realized relationship. While wavelet
coherence may be used as the “lens” into the relationship that shows
the dynamics through time, as well as frequencies at once, a newly
proposed wavelet band spectral regression allows us to estimate the
relationship.?

The contribution of this paper is twofold. First, we emphasize
the importance of the implied volatility measure in studying the
implied-realized volatility relationship. We compare MFIV and the
recently proposed CIV as measures of option implied volatilities
with realized volatility and recently proposed jump-wavelet real-
ized volatility (JWTSRV) capable of separating the continuous part
of the volatility from jumps as well as noise. We argue that it is
crucial to use proper measures for finding the answer to the ques-
tion of whether the option implied volatility is an efficient forecast
of the future realized volatility. Second, we bring new evidence on
the unbiasedness of ex-ante implied volatility as a predictor of ex-
post realized volatility by allowing long memory dynamics in the
time series. We find that the dependence comes solely from the
longer time horizons, and when estimated using wavelet band least
squares, the implied volatility forecasts are unbiased forecasts of
future volatility. These findings greatly improve the understanding
of volatility dynamics and add to previous findings of Li (2002),
who stress the importance of long memory in studying the implied-
realized volatility relationship, or Kinateder and Wagner (2014) who
argue that long memory volatility prediction is influenced by the
variance term structure.

The methods are applied to the German DAX and U.S. S&P 500
stock market indices covering the 2008 financial crisis, with abrupt
changes in prices. Unlike the previous studies, we use both call and
put options, and we use options with monthly as well as bi-weekly
maturities.

2. Volatility measurement

Consider a univariate risky logarithmic asset price process p;
defined on a complete probability space ({, #,P). The price process
evolves in continuous time t over the interval [0, T], where Tis a finite
positive integer according to a jump diffusion process:

dpt = ,Utdt + O‘[th + gtdqt, (1)
where p, is a predictable mean, o; a strictly positive volatility

process, W; is standard Brownian motion, §.dq; is a random jump

2 Note that long memory properties in the emerging markets have been largely
studied in the recent literature (Yalama and Celik,2013; Degiannakis and Livada, 2013;
Hull and McGroarty, 2014; Charfeddine and Ajmi, 2013)
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process allowing for occasional jumps in p;, and q is a Poisson process
uncorrelated with W and governed by the constant jump intensity
A. The magnitude of the jump in the return process is controlled by
factor & ~ N(§, O'gz).

Generally, we assume the latent logarithmic assess price process
is contaminated with microstructure noise. Let y, be the observed log
prices, which will be equal to the latent, so-called “true” log-price
process p, in Eq. (1) and will contain microstructure noise ¢, a zero
mean i.i.d. noise with variance 7?

Ye =Pt t+ & (2)

The main object of interest in financial econometrics is the
estimated integrated variance of the latent price process, IV;, =
[, odt. Quadratic return variation over the [t — h,t] time interval,
O<h<t<Tis

t

Q= [ olds+ 3P (3)
t-h t—h<s<t
Ve JVen

Thus, quadratic variation QV; is equal to the integrated volatility
of the continuous path and the sum of jumps variation.

2.1. Realized volatility

The recently popularized simple measure of quadratic variation -
realized variance - is a consistent and an unbiased estimator of
the quadratic variation if the sampling goes to infinity(Andersen
and Bollerslev, 1998; Andersen et al., 2003; Barndorff-Nielsen and
Shephard, 2001, 2002a,b). The realized variance over [t — h,t], for
0 < h <t <T,is defined by

n
RVip = eriﬂ(%)h, (4)
i=1

where n is the number of observations in [t — h, t]. While the realized
variance measure is widely used due to its simplicity, it estimates
the whole part of the quadratic variation and is subject to the
bias from the microstructure noise. Several estimators dealing with
microstructure noise and jumps have been introduced recently. For
example Zhang et al. (2005) propose the solution to the problem of
noise by introducing the two-scale realized volatility (TSRV hence-
forth) estimator. Another estimator, which is able to address the
noise is the realized kernels (RK) introduced by Barndorff-Nielsen
et al. (2008). Barndorff-Nielsen and Shephard (2004b, 2006) devel-
oped a very powerful and complete way of detecting the presence
of jumps in high-frequency data, bipower variation. The basic idea is
to compare two measures of the integrated variance, one containing
the jump variation and the other being robust to jumps and hence
containing only the integrated variation part.

More recently, jump-adjusted wavelet two-scale realized volatil-
ity (JWTSRV) has been proposed to measure the integrated variance
in the presence of jumps and noise by Barunik and Vacha (2015).
JWTSRYV is able to consistently estimate jumps using wavelet trans-
forms and is also robust to microstructure noise because of a Zhang
et al.’s (2005) framework. Let us introduce the estimator.

Starting with the jump detection, Barunik and Vacha (2015)

utilize the methodology proposed by Fan and Wang (2007), who
use the wavelet jump detection to the deterministic functions with
i.i.d. additive noise ¢; of Wang (1995). For the estimation of the jump
location, the universal threshold of Donoho and Johnstone (1994) on

the 1st level wavelet coefficients of y, over [t — h,t], Wy is used.
If for some Wi, Wil > dy/2logn, then 7; = (k} is the estimated
jump location with size y; - y; (averages over [T1,71 + 6q] and
[T, 71 — 6,], respectively, with 6, > 0 being the small neighbourhood
of the estimated jump location 7; & &,) and where d is the median
absolute deviation estimator defined as (2'/2)median{|Wy |,k =
.,n}/0.6745, for more details see Percival and Walden (2000).

Using the result of Fan and Wang (2007), the jump variation is
then estimated by the sum of the squares of all the estimated jump
sizes:

]VX‘; => (J_’t,h,%,+ _yt,h,fli)z- (5)

=1

Thus, we are able to estimate the jump variation from the process
consistently with the convergence rate N~'/4,

Following Barunik and Vacha (2015), we define the jump-
adjusted wavelet two-scale realized variance (JWTSRV) estimator
over [t —h,t], for 0 < h <t < T, on the observed jump-adjusted data,

y[,, =Yth— Zl 1Jias:

Jm41
(JWISRV) (]WTSRV) wy) N~ (Wrvy)
RV, = Z RV Z (RV - NRV th ) (6)
j=1

~ (W .
where RV}t'hJ) =c Zg_1 SN ow is obtained from wavelet
WRVJ)

coeﬂicient estimates on a grid of size N = N/G and R =

Shw r bt ki is the wavelet realized variance estimator at ascale

jon the jump- adjusted observed data, yt n

The JWTSRV estimator decomposes the realized variance into
an arbitrarily chosen number of investment horizons and jumps.
Barunik and Vacha (2015) discuss that it is a consistent estimator
of the integrated variance as it converges in probability to the inte-
grated variance of the process p, with the speed N~! 6 inherited by
the TSRV structure of the estimator. The estimator will also have
limiting distribution of the TSRV. Barunik and Vacha (2015) test the
small sample performance of the estimator in a large Monte Carlo
study, and they find that it is able to recover true integrated variance
from the noisy process with jumps precisely.

]t h+&n

2.2. Model-free implied volatility (MFIV) and corridor implied
volatility (CIV)

While realized volatility measures the volatility from the high fre-
quency returns, model-free implied volatility (MFIV) can be used to
infer the volatility from the option prices. This approach, derived by
Britten-Jones and Neuberger (2000), uses a cross-section of option
prices to calculate the volatility as the risk-neutral expected sum of
squared returns between two dates. The resulting implied volatil-
ity does not depend on any parametric model and provides ex-ante
risk-neutral expectations of the future volatilities. The most seri-
ous forerunner of MFIV was the volatility inverted from the Black
and Scholes (1973) option pricing formula. Nevertheless, it has been
proven that Black-Scholes implied that volatility featured a notar-
ially known moneyness bias, known as volatility smile or smirk
(Macbeth and Merville (1979) which were amongst the first studies
to describe this issue).

Britten-Jones and Neuberger (2000) derived the model-free
implied volatility under the diffusion assumption. They extended the

3 Not to distract the reader from the main text, we provide the necessary introduc-
tion to wavelet analysis in the Appendix 6.
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work of Derman and Kani (1994) and Dupire (1994) to infer a fore-
cast of underlying asset’s volatility from a continuum of European
call options with strikes and maturities ranging from zero to infinity.
The complete set of option prices is used to extract a condition that
characterizes the set of continuous processes consistent with current
option prices.

In the option setting, current time is fixed to t = 0, pay-off occurs
at a future fixed date T, and time to maturity is denotedas 7 =T —t.
For 0 < t < T, F; denotes the time t value of the futures contract
expiring at date T'. Prices of European put and call options with strike
K and expiration date T are given by P¢(K) and C¢(K), and the risk-free
rate is assumed to be zero.

The authors first derive the risk-neutral probability of the stock
price that is fully determined by the initial set of option prices.
Consequently, they show that the set of initial option prices also
determine the probability of the stock price reaching any two price
levels at two consecutive dates. Jiang and Tian (2005) further extend
Britten-Jones and Neuberger (2000) volatility measure to all martin-
gale asset price processes and express the formulae in forward rather
than spot prices. Because a martingale can be decomposed canon-
ically into the orthogonal sum of a purely continuous martingale
and a purely discontinuous martingale (Jacod and Shirayev, 1987;
Protter, 1990), the model-free relationship between the asset return
variance and option prices also holds when asset prices contain
jumps.

A forecast of integrated variance for the period [0, T] can be deter-
mined from observed European call option prices with maturity T as
follows:

B U-Toszds} _ /00 Ci(T.K) —max (0.Fo —K) . o
0 Jo K2

where Ef denotes the time t expectation with respect to the risk-
neutral distribution (RND) of the asset price, T denotes the expiration
date, F the forward probability measure, K the strike price and F;
and C¢(T, K) are forward asset price and forward option price, respec-
tively. To calculate the integral, the numerical integration can be
used, e.g., trapezoidal rule:

AKmGX — — m
/ SCULY “;(azx (©.Fo K)dK%Z[g(T,Ki)+g(T.K,-_1)]AK.

Kinin i=1

(8)

where AK = (Kmax — Kipin)/m, K; = Kpin + iAK, and g(T,K;) =
[C(T, K)—max(0, Fo — K)]/K>.

Jiang and Tian (2005) further developed a simple method to
implement the MFIV on observed option prices, based on examina-
tion of implementation issues. They identify two types of errors asso-
ciated with implementation: truncation and discretization errors.
Truncation errors are present when tails in the RND are ignored
(due to the limited availability of the strike prices for listed options).
The authors find that truncation errors are negligible if RND is
truncated at two standard deviations from Fy and propose the flat
extrapolation scheme for the range of strike prices outside the
available set of the prices. In their later work Jiang and Tian (2007),
the authors propose to impose smooth pasting condition at the
minimum and maximum of available strike prices to avoid kinks
in the implied volatility function at the lower and upper price
bounds. We discuss both schemes later on in the data section.
Discretization errors are minimized using interpolation between
listed strike prices. Cubic spline interpolation is not applied directly
to option prices, as there is nonlinear relationship between the
option prices and option strike prices. Implied volatilities are

obtained from Black and Scholes (1973) formula, a smooth function
is fitted to implied volatilities, and using Black and Scholes (1973)
formula, volatilities are again translated to option prices at the
desired strike prices. The Black and Scholes (1973) model works as a
one-to-one mapping between volatilities and option prices and does
not impose any model dependency on the calculation of model-free
volatility.

Andersen and Bondarenko (2007) and Andersen et al. (2015)
argue that the lack of the liquid contract results in non-trivial mea-
surement errors that are amplified by the stochastic nature of the
availability of strike prices that vary over time. The authors pro-
pose a corridor implied volatility measure following the work of
Carr and Madan (1998b), with a cut-off criterion that is determined
endogenously by option prices (part of the estimated risk neutral
density inferred from option prices). As such, it allows for reflecting
the pricing of volatility across an economically equivalent fraction
of the strike range. This would ensure inter-temporal coherence
of the measure. The authors further show that due to the lack of
availability of strike prices, the implementation of MFIV brings the
resulting implied volatilities to corridor-implied volatilities, rather
than model-free implied volatilities.

By defining two positive barriers, the lower By, the upper B, and
the following indicator function,

Ie(B1,By) = I = 1[By < F: < By], (9)

corridor integrated variance is

T
CIV AR(B1, By) = / 021,(By, B)ds. (10)
JO

In comparison to the pure integrated variance, now the return
variation is accumulated only when the futures price at time t
is between the two barrier levels. Carr and Madan (1998b) and
Andersen and Bondarenko (2007) demonstrate that risk-neutral
expectation of future corridor implied variance (CIV )at time t = 0 is

T By _ _
ES{ /0 0315(31,Bz)ds]:z [ G (LK) “;(azx(O'FO Bak @
‘ 1

when By = 0 and B, = oo, the corridor integrated variance is
equivalent to model-free implied variance. Expected future volatil-
ity can be obtained by taking square roots of CIV as well as
MFIV.

3. Data

To calculate option-implied volatility, we use the set of European-
style option prices on the German DAX and U.S. S&P 500 stock market
indices. The cross-sectional data contain daily option prices for all
listed maturities and strike prices and cover the period from July
2006 to October 2010. The data have been provided by the Option-
Metrics database. We use settlement mid prices for the analysis.
Settlement prices have the advantage over close prices, as they are
not plagued by nonsynchronous trading. Following Bakshi et al.,
(1997), we apply exclusions filters on the datasets to prevent liquid-
ity related bias and mitigate the impact of price discreteness. First,
options with less than one week to expiration are excluded. Sec-
ond, price quotes lower than 0.375 are excluded. Third, the quotes
that do not satisfy the no-arbitrage condition C > max(0,S; — X;)
for calls and P > max(0,X; — S¢) for puts are dropped as well. We
include only out-of-the money options where the strike price is
strictly higher than the spot price for call options and vice versa for
put options. This approach is common in all comparable studies, as
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in-the-money options are less liquid and thus introduce bias into the
calculation of implied volatility. Last, we calculate the measures if
and only if more then five options for the given maturity and dif-
ferent strikes passed the above-mentioned criteria. Altogether, we
discarded 27% of option prices and used, on average, 80 options per
day, per maturity, per index.

To address the fact that measures work with the spot price and
options are written on index forwards, we follow the literature and
translate spot prices into forward rates using zero coupon rates for
given currencies and maturities for each day. In case we do not have
zero coupons for the given maturity, we interpolate (extrapolate)
between the two nearest rates available. Zero coupon rates are again
obtained from the OptionMetrics database. To obtain forward prices,
spot prices are multiplied by e7"=9, where 17 is the risk-free rate
corresponding the maturity of options.

To calculate the model-free measures, we used the datasets with
fixed time to maturity; specifically, we use 15 and 28 calendar days
for DAX and 15 and 29 for S&P 500. Note that the one-day differ-
ence is caused by different listing conditions for the index options.
We refer to the different time to maturity as monthly and bi-weekly
maturity further in the text. We use non-overlapping datasets using
the data from the trading days when options with fixed time to matu-
rity have been available, so we do not introduce any autocorrelation
into the forecasting regressions. When dealing with implementation
of model-free implied volatility on real option datasets, one has to
inevitably resort to an approximation method introducing potential
bias. Jiang and Tian (2005) note some practical limitations associ-
ated with the implementation of MFIV, which results in truncation
errors when the tails of distribution are ignored, and discretiza-
tion errors due to numerical integration and limited availability of
strike prices range. The authors as well propose the procedure that
improve the implementation and render more or less negligible
errors.

In our calculations, we follow part of this procedure. To limit the
discretization errors, we use a step of one unit of the index to calcu-
late the integral numerically. The trapezoidal rule is applied to obtain
the variance (correspondingly, square root to obtain volatility). To
overcome the limited availability of strike prices, we infer the prices
of absent options from the prices of listed options. Due to nonlin-
earities in the option prices, we apply the cubic spline curve-fitting
method to implied volatilities, instead of option prices directly. The
implied volatilities are reverted from listed option prices using the
Black and Scholes (1973) pricing formula, and a smooth function
is fitted to them. Implied volatilities for absent strikes are then
extracted, and the same pricing formula is used again to calculate
the corresponding option prices. The pricing formula is used only as
a one-to-one mapping between option prices and strike prices. Thus,
the procedure retains its model-free grounds.

The subsequent procedure differs for MFIV and CIV calculation.
We impose flat extrapolation to the prices beyond the available daily
price range in MFIV measure implementation. Jiang and Tian (2007)
adjust the slope of the extrapolated segment to match the corre-
sponding slope of the interior segment at the extremes. We did not
apply this approach, as it actually rendered much worse results. The
number of listed strikes that passed all the abovementioned crite-
ria varies between the days. In some cases, the slope at the interior
segment would send the extrapolated prices to unrealistic numbers,
thus introducing a large bias into the calculated volatility. To avoid
truncation errors, we use one standard deviation from forward prices
as an integration range. We do not follow Jiang and Tian (2005) the
recommended approach to set the truncation point at two standard
deviations from Fj for simple reasons: the lack of available options
for some days and the high volatility of index prices through the time
period that involves financial crisis. The interval of strike prices that
then needs to be extrapolated [Fy — 25D, Kipin] U [Kmax, Fo + 2SD])
becomes too large and accounts for the majority of the inputs that

enters the calculation formula, which necessarily introduces a great
amount of error into the calculation. We calculate CIV with the cor-
ridors covering the range from the 5th to 95th percentile (CIV1) and
from the 2.5th to 97.5th percentile (CIV2) of the RND, estimated from
the available option prices that passed the exclusion criteria for the
given daily maturity.

Corresponding to each of the implied volatilities, we compute the
realized volatility (RV) using 5-minute returns and JWTSRV using
all the available data. Tick by tick data were provided by the Tick
Data. After computing the daily realized measures, we aggregate
them into monthly and bi-weekly groups, according to the matu-
rities, in order to avoid introducing the bias from the maturity
mismatch.

4. Time-frequency dynamics in volatility

The information content of implied volatility is typically assessed
in the literature by estimating the following regression:

RVipph = a + BIV; + ¢, (12)

with ordinary least squares assuming ¢ to follow iid. errors with
zero mean and finite constant variance. RV, . is the ex-post realized
volatility for period t+ h, and IV; is the implied volatility at the begin-
ning of period t, being an ex-ante measure of t + h volatility. In case
implied volatility is an unbiased forecast of future realized volatil-
ity, a should not be significantly different from 0, and 3 should not
be significantly different from 1. In case implied volatility is efficient,
the residuals ¢ should be zero mean, constant and finite variance,
and they should be serially uncorrelated. It is important to note that
RV, — IV} is the return to buying variance in a variance swap con-
tract. Therefore, residuals from the regression ¢ can be interpreted
as conditional variance risk premium (Carr and Wu, 2009). Simi-
lar regressions are common to obtain variance risk premium in the
literature (Bekaert and Hoerova, 2014).

The initial literature has generally found that implied volatil-
ity is a biased forecast of the future realized volatility, while 3 is
significantly different from unity — see, for example, Christensen
and Prabhala (1998). Few researchers (Bandi and Perron, 2006;
Christensen and Nielsen, 2006) suggest that the implied-realized
volatility relation might be a fractional cointegration relationship, as
volatility is typically found to be a long memory process. In this case,
¢ would not be integrated on order I(0), and standard OLS should
not be used. Before proceeding further with the cointegrating rela-
tionship, we study the time-frequency dynamics of the relationship
using wavelet coherence to determine how the dependence varies
over different frequencies. This will provide an important insight for
further analysis.

4.1. Dynamic dependence: a wavelet coherence

To better understand the relationship, it is useful to look at it
from the point of view of different frequencies. Here, the wavelet
analysis may be well utilized, as it allows for studying the time
series in the time-frequency domain. As wavelet coefficients esti-
mate the spectrum of the time series, wavelet coherence can be seen
as the estimate of the cross-spectra between two series scaled by
the spectra of both series. The coherence is analogous to the square
of the correlation between two series. Zero coherence suggests
that there is no relation; when coherence equals one, we have
perfect correlation. The main advantage of this approach is that
it provides us with the localized correlation at time-frequency
domain. Such “lenses” into dependence between economic vari-
ables have been used recently by many researchers in various
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fields (Vacha and Barunik, 2012; Aloui and Hkiri, 2014; Aguiar-
Conraria and Soares, 2014). This approach is extremely useful as a
first step in our analysis, as the period we study includes a tur-
bulent crisis period. Hence, wavelet coherence will reveal possible
structural breaks in the dependence, which we will need to focus on
later.

The wavelet transform offers localized frequency decomposition,
providing information about frequency components. As a result,
wavelets have significant advantages over basic Fourier analysis
when the object under study is locally stationary and inhomoge-
neous — see Gengay et al. (2002), Percival and Walden (2000) and
Ramsay (2002).

To be able to study the interaction between two time series,
we use a bivariate framework of wavelet coherence.* Following
Torrence and Compo (1998), we define the cross wavelet transform
of two time series RV, and IV; as

Wivirv,, (,5) = Wiy, (u,5)Wpy, (1, 5), (13)

where Wiy, (u,s) and Wgy, +h(u,s) are continuous wavelet transforms
of RV, and IV;, respectively, u is a position index, and s denotes
the scale, while the symbol * denotes a complex conjugate. The cross
wavelet power can easily be computed using the cross wavelet trans-
form as Wyy,ry,, , (1, 5)I. The cross wavelet power reveals areas in the
time-frequency space where the time series show a high common
power, i.e., it represents the local covariance between the time series
at each scale.

The wavelet coherence can detect regions in the time-frequency
space where the examined time series co-move but do not necessar-
ily have a high common power. Following the approach of Torrence
and Webster (1999), we define the squared wavelet coherence coef-
ficient as:

IS(s™ ' Wiv,rv,., , (1, 5))I?

2 —
RS = ST W (1, 592) SC Wi (0,5

(14)

where S is a smoothing operator.” The squared wavelet coherence
coefficient is in the range 0 < R*(u,s) < 1. Values close to zero indi-
cate a weak correlation, while values close to one provide evidence of
a strong correlation. Hence, the squared wavelet coherence measures
the local linear correlation between two stationary time series at
each scale and is analogous to the squared correlation coefficient in
linear regression. Because the theoretical distribution for the wavelet
coherence is not known, the statistical significance of dependence is
tested using Monte Carlo methods (Grinsted et al., 2004; Torrence
and Compo, 1998).6

Finally, wavelet coherence phase differences may be used to
assess the details about the delays in the oscillation (cycles) between

4 In our work, we use continuous wavelet analysis tools. For any interested reader,
we include the necessary introduction to wavelet analysis in the Appendix 6

5 Without smoothing, the wavelet coherence equals one at all scales. Smoothing is
achieved by convolution in both time and scale. The time convolution is performed
with a Gaussian window, while the scale convolution is conducted with a rectangular
window — see Grinsted et al. (2004).

6 The use of wavelets brings with it the difficulty of dealing with boundary condi-
tions on a dataset with finite length. This is a common problem with any transfor-
mation relying on filters. In our paper, we address this problem by padding the time
series with a sufficient number of zeroes. The area where the errors caused by discon-
tinuities in the wavelet transform cannot be ignored, i.e., where edge effects become
important, is called the cone of influence. The cone of influence is highly dependent
on the type of wavelet used — see Torrence and Compo (1998). The cone of influence
lies under a cone that is bordered by a thin black line.

the two time series under study (see Torrence and Webster (1999)
for the details). The phase is indicated by arrows on the wavelet
coherence plots. A zero phase difference means that the exam-
ined time series move together. The arrows point to the right (left)
when the time series are in-phase (anti-phase) or are positively
(negatively) correlated. Arrows pointing up mean that the first time
series leads the second by 90°, whereas arrows pointing down indi-
cate that the second time series leads the first by 90°. Usually, we
have a mixture of positions; for example, an arrow pointing up and
right means that the time series are in phase, with the first times
series leading the second.

Fig. A1 brings the wavelet coherence plots of the two variance
series. We use CIV1, CIV2 as well as MFIV to measure volatility
implied by options and RV and JWTSRV robust to noise and jumps
to measure the realized volatility. Moreover, for each index, we use
options with monthly and bi-weekly maturity to study the differ-
ence. Realized volatility is computed correspondingly.

Dynamic dependence reveals interesting findings. A distinct
change in the general pattern can be found at the 2° frequency
corresponding to 32 days, or approximately 1.5 months when 21
trading days is considered in one month. In the investment horizons
less than 1.5 months, no dependence is found, while the wavelet
coherence is significant through horizons longer than 1.5 months
and all time periods considered. Thus, the effects of market fric-
tions and short-run fluctuations disappear in the long run, and the
dynamic relationship between the variances is nearly perfect in the
long run for the entire studied period. In the long run (low frequen-
cies), coherence close to one implies that implied volatility is an
unbiased forecast of future realized volatility, and no forecast error
or premium for bearing volatility risk exists. In the short run, this
equilibrium is broken, and zero coherence implies that most of the
changes in implied volatility is coming from the risk premium or
errors in future expectations.

Interestingly, options with different maturities used to calcu-
late the implied volatility of S&P 500 do not bring any difference
into the relationship. The implied-realized volatility relationship
is very strong for all investment horizons longer than 1.5 months
and time periods without exception. The situation is similar in the
DAX. The only difference is that the relation appears to break in
the last years of the sample even with long horizons. This may sug-
gest that the German option market is not as efficient as that of the
us.

An important distinction can be seen from the wavelet coherence
plots when we consider the different measures of volatility used.
When CIV measures are used to calculate the implied volatility, the
long-term relationship is much stronger than in the case when MFIV
is used. This may suggest that MFIV provides a biased measure of
implied volatility, as the long run dynamics of the relationship is not
so pronounced.

A final observation can be made when looking at the phases
(arrows in the plot) that point down to the right. This means that
implied volatility generally leads the future realized volatility, which
is expected in case implied volatility provides an efficient expecta-
tion about future volatility.

While wavelet coherence plots provide us the “lenses” into the
implied-realized relationship, in the next sections, we will develop
a rigorous methodology to estimate the long-term fractional cointe-
gration relationship using wavelets. Our main motivation in doing
so is that wavelets are capable of dealing with non-stationary time
series, which will become a crucial property for the analysis.

4.2. Fractional cointegration in variances

Fractional integration provides a framework for studying
long-run dependencies in economic time series (Baillie, 1996a). A
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stationary time series y;, is said to be fractionally integrated of order
d €(0,0.5), I(d), if

Ad}’t = €&, (15)

where ¢ is an I(0) process, and A® = (1 — L)¢ is the fractional
difference operator. The empirical evidence suggests that finan-
cial market volatilities are well described by the I(d) processes
Andersen et al. (2001, 2003) and Christensen and Nielsen (2006),
and long memory quickly became one of the key stylized facts about
volatility Cont (2001). Naturally, we can expect that the implied
and realized variance series will be tied together in the long-run
relationship in the form of fractional cointegration, and a linear com-
bination of the two will be integrated into an order lower than I(d).
Thus, the difference between the implied and realized variances,
the variance risk premium, should be less persistent that the
two individual variance series. This result has been documented
by Christensen and Nielsen (2006). Interestingly, Bandi and
Perron (2006) and Kellard et al. (2010) report a fractional
order of volatility in a non-stationary region when 1/2 < d < 1,
although it is difficult to determine the integration order of the frac-
tional variables, as a smooth transition exists between the stationary
and non-stationary regions (Marinucci and Robinson, 2001).

When looking at the regression Eq.(12), for « = 0 and
B = 1, residuals ¢ clearly decreases to a variance risk premium.
In case ¢ is an I(d,) with d, < d, we may suspect a frac-
tional cointegrating relationship between the implied and realized
variances.

4.3. Band spectral regression approach

Part of the literature proposes to use a band spectral regression
to estimate a fractionally cointegrating relationship in implied and
realized volatilities, as OLS estimates of (3 are inconsistent. Robinson
and Marinucci (2003); Christensen and Nielsen (2006) have shown
that narrow band least squares (NBLS) result in an estimator that is
consistent and normally distributed. The basic idea is transforming
the time series into the frequency domain using Fourier transforms
and estimating 3 on the narrow band of the spectrum (Fourier
coefficients) not far from the zero frequency on the long mem-
ory region. Recently, Nielsen and Frederiksen (2011) generalize this
idea to a fully modified NBLS (FMNBLS), which is able to address
the bias introduced by correlation between regressors and errors.
In this paper, we build on these ideas, but use a rather different
approach of band least squares on the spectra estimated on wavelet
coefficients.

Let us introduce the approach by considering the regression
model

Ye=XxB+ e, (16)

where {x;,t = 1,...,T}, {(y,t = 1,...,T) and ¢ ~ N(0,0?). The OLS
estimator of 3 is

o = () "y = G 0

Engle (1974) was among the first to consider estimation of 3 in
the frequency domain. In fact, the frequency domain is very intuitive,
as the variance and covariance are the spectrum and co-spectrum of
the series and can be simply estimated, for example, using Fourier
transforms.

Recently, Kellard et al. (2010) finds that realized as well implied
volatility series may lie in the non-stationary region when 1/2 <

d < 1. Frequency domain least squares using the Fourier trans-
form are able to accommodate non-stationary fractional cointegra-
tion by transforming potentially non-stationary series x;, which are
I(d) with d>1/2 using y > O into the resulting A”x;, which are
I(d — y) (Nielsen and Frederiksen, 2011). The choice of vy affects
the estimation procedure, and different choices will lead to differ-
ent estimators. The authors propose the best choice of y = d,,
where d, is the memory parameter of the residuals which can be
estimated.

Frequency domain least squares based on the wavelet estimation
of spectra are able to address this problem, as wavelets are generally
a very convenient tool in case we are dealing with the non-stationary
series (Fan and Whitcher, 2003; Roueff and Sachs, 2011). Although
wavelets do not improve the estimation of d in the standard station-
ary context d < 1/2, Fay et al. (2009) showed that in the presence of
trends, or series withd > 1/2 and d < —1/2, they are helpful because
they allow differencing implicitly.

4.4. Wavelet band spectral regression (WBLS)

Using wavelet transform, we are able to divide the entire fre-
quency spectrum into frequency bands represented by wavelet
scales j. After the transform, the resulting spectrum on the j-th scale
has the following form: f¥ e [1/20+1,1/2i]. The wavelet spectral
density function at a scale j can be expressed as Sq;(f) = H;(f)Sx(f)
where #;(f) is the transfer function of the wavelet filter at a scale
Jj, and Sx(f) denotes the spectrum of x;. Similarly, the wavelet cross-
spectrum at a scale j is defined as Siy)i(f) = H;(f)Sx(f), where
Sixy)j(f) represents the cross-spectrum of x; and y,. Furthermore,
wavelet variance v2(j) and wavelet covariance Yxy(J) at a scale j
reads:

S 1/2 1/2

ve(J) = /_1/2 Seoi(Hdf = s H;i(F)Sx(F)df, (18)
1/2 1/2

YuoJ) = /_1/2 Sepyi(fdf = L2 Hi(f)Sxy(f)df - (19)

In case T — oo, and therefore, the maximum number of wavelet
scales | — oo is available, we can write total variance and covari-
ance as a sum of wavelet variances and covariances at all scales as
(Whitcher et al., 1999):

1/2 o0
vartx) = () = [ S0l = 3 #30) (20)
: 2
1/2 o0 '
Covtrey) = (1) = [ | Sun(f = 3 val0) (21)

j=1

Thus, B can be estimated in the frequency domain using the
wavelet least square estimator (WLS) as follows

-1
BWLS(l.oo)z(va(f)> (vay(j)>. (22)
Jj=1 j=1

Asymptotically, B%S is equal to BOS. In many situations,
time series carry different information in the low and high part
of the spectra. It can be viewed as estimating the simple linear
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regression on the different time horizons j obtained from the wavelet
transform

W =8+ . @

As revealed by the wavelet coherence, this is also the case for
the volatility relationship. As the relationship comes solely from
the long run part of the spectra, we need a tool that will be able
to estimate the relation only on this part. Similarly to the NBLS and
FMNBLS (Robinson and Marinucci, 2003; Christensen and Nielsen,
2006; Nielsen and Frederiksen, 2011), which we introduce later in
the text, as we use it for comparison with our estimator, we can
obtain the estimate on the narrow band of the spectrum not far
from the zero frequency on the long memory region. More pre-
cisely, we can use only scales j, which cover the long memory
region.

Our final estimator, the wavelet band least square estimator,
simply estimates the 3 on the band of scalesj e [k, [] in Eq. (22), thus
using frequency band f € [1/2!*1,1/2K]. For the estimation of spec-
tra, we use modified discrete wavelet transforms (MODWT).” The
WABLS estimator is then

-1 |
BWBLS(k, 1) = (Zv2 ) (zvxyu)) (24)
j=k j=k

where j-th scale represents the frequency band f e [1/2/*1,1/2]].
For example 3WBLS(3,4) will estimate 3 over the frequency band of
fe[1/2°,1/23]. The estimator in Eq. (24) can be expressed in terms
of the MODWT coefficients Wx(j, s) and W, (j,s), where j and s denote
scale position of the transform for x; and y, as

I T T T
BYWBLS(k, 1) = (Z [; S w j,s)D (Z [; > Wil s)Wy (i, S)D
Jj=k u=1 i=k u=1

(25)

By WBLS, we can focus on estimating the long memory part of the
spectra using the frequency band near the origin and obtain the long
memory relationship. Thus, the information content of the implied
volatility can simply be assessed by estimating the relationship on
the different bands of spectra as

RVD, = a+pIvVY + &, (26)

when we use all scales j and as j — oo, 3BLS will be equivalent to
BWLS and will converge on an OLS estimator. The properties of this
type of regression in the long memory setting, together with the lim-
iting distributions of the estimates, are studied in Fadili and Bullmore
(2002).

4.5. FMNBLS

For comparison with the newly proposed WBLS estimator
of the fractional cointegrating implied-realized relationship, we
use the frequency domain least squares methods, which is well
established in the literature. The basic distinction from the WBLS

7 For a more detailed treatment, see the Appendix.

is that instead of using wavelet coefficients to estimate the spec-
tra and co-spectra, a Fourier transform is used by the rest of the
literature.

The basic idea of the narrow band least squares (NBLS) esti-
mator is to transform the time series into the frequency domain
using Fourier transforms and estimating 3 on the narrow band of
the spectrum not far from the zero frequency on the long memory
region. Robinson and Marinucci (2003) and Christensen and Nielsen
(2006) have shown that narrow band least squares (NBLS) results
in an estimator that is consistent and normally distributed. Aver-
aged (co-) cross- perlodogram used for the estimation of spectrum
is ny(kl = 211/sz klxy( )forany 0 < k < I < T—1 and for

Nj = 2mj/T, where Ly(\j) = 1/20T X _; 1 xy;e ™ is cross-
periodogram, or estimated cross-spectrum between two series on a
specific frequency band [k, []. Analogously, Fy(k, ) is estimated spec-
trum of x;. Then, the cointegrating relation between two time series
{x¢} and {y,} can be estimated as

BNES(k, 1) = F (K, DFy(k, 1), (27)
where k and | define the frequency band used for the estimation
of B.

By definition, BNBIS(1,T — 1) is algebraically identical to the
usual OLS estimator of 3 and thus identical to the WLS estima-
tor in Eq.(22). If 1 + L - 0as T — oo PS(kI) is an
NBLS estimator using only a degenerating band of frequencies near
the origin. While [ must tend to infinity to have information, it
also needs to remain in a neighbourhood of zero where we have
assumed knowledge about the spectral density, so I/T must tend to
zero.

Nielsen and Frederiksen (2011) based on their previous work
(Christensen and Nielsen, 2006) show that the absence of non-
coherence between regressors and errors at zero frequency
imposes bias on the NBLS estimates, and they propose a fully
modified NBLS estimator to eliminate this bias. The FMNBLS
estimator is simply NBLS corrected for the asymptotic bias estimated
by running an auxiliary NBLS regression of the (differenced) resid-
uals from the initial NBLS on the same regressors. To keep the text
under control, we point any interested reader to the work of Nielsen
and Frederiksen (2011) for details of the methodology.

5. Results

The main aim of the paper is to revisit the relationship between
implied and future realized volatility using the new unbiased
measures of volatilities and newly proposed wavelet band spectral
regression.

Wavelet coherence suggests that implied volatility may be an
efficient forecast of the future volatility in the long run, while the
existence of risk premia makes it an inefficient forecast in the short
run. Until now, we have been using the daily data as wavelets that
are known for their decorrelation properties, and they can address
the non-stationary data as well. Christensen and Prabhala (1998)
were the first to note that overlapping data may affect the estima-
tion considerably. To overcome this problem, we aggregate the daily
data to monthly (and bi-weekly) non-overlapping data for further
analysis.

We begin to study the volatilities by estimating their long
memory parameter. Table 1 shows the long memory estimates
of different implied and realized volatility measures used in our
study. For the estimation, we use the popular GPH method (Geweke
and Porter-Hudak, 1983; Robinson, 1995), and we report the
estimates up to various different frequencies T%6, T%7 and TO8.
Interestingly, nearly all estimated volatilities show memory lying
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in between the stationary and non-stationary region of d =
0.5. When implied volatility is measured using corridor-implied
volatility (CIV1 and CIV2), it displays larger memory than the
conventional MFIV measure constituting the popular VIX index.
Both realized volatility measures show similar memory, which
is uniformly lower than the memory of implied volatility.
These results suggest that choice of the different measures may
have serious consequences for the estimation of the relation-
ship, in particular, due to the implied volatility measure. When
compared to the literature that uses either model-driven implied
volatilities or MFIV, our estimated implied volatilities have
larger memory possibly crossing the boundary of stationarity.
It is worth noting that the period used in our study covers
the recent financial crisis, which could possibly introduce this
feature.

As a preliminary step in the estimation of the relationship, we
estimate it using OLS. The results are reported together with fre-
quency domain estimates separately for each series. Tables 2, 3,
4 and 5 report the OLS estimates for the S&P 500 using monthly
and bi-weekly maturities, and the DAX using monthly and bi-
weekly maturities in the implied volatility measurement, respec-
tively. The first rows show the coefficients of the Eq.(12), sug-
gesting that generally, IV is a biased predictor of RV. However,
when CIV is used to measure the implied volatility, slope coeffi-
cients are strikingly closer to unity than MFIV estimates for both
markets and both maturities used. This measurement error may
have led researchers to find bias more pronounced than it may
be.

Memory estimates of the residuals from the OLS confirm this
result. When MFIV is used, residuals are I(d) suggesting implied-
realized volatility is a cointegrating relationship. When CIV is used as
the implied volatility measure, except for the case of S&P 500 with
monthly maturity options, residuals do not display as pronounced
long memory as reported in the literature. In all the cases, when
residuals show a long memory parameter close to zero, or I(0), the
slope coefficient is very close to unity.

While estimated volatilities tend to be at the boundary of station-
arity, wavelet band least squares may serve as the best tool for the
estimation of the relationship. From the wavelet coherence plots, we
can see that there is no relationship until the 32nd period, while the
relationship for the periods higher than 32 appears to be nearly per-
fect. Thus, we can utilize the result and conveniently estimate the
relationship only on this part of the spectra using wavelet band least
squares.

Tables 2, 3, 4 and 5 report the results for the estimated 3 using
WBLS. We use j = {5,6} levels from the 6 level wavelet decom-
position to estimate the relationship. All the 3's are much closer
to unity, regardless of the measure used. It is interesting to note
that when CIV is used, the relationship is not significantly differ-
ent from unity in most of the cases, while the CIV1 measure implies
coefficients closest to unity than does the CIV2. The only exception
is the S&P 500 data, with monthly options where the coefficients are
significantly lower than unity. MFIV provide the 3, which is always
lower than unity. The difference between the RV and JWTSRV
measures is not so pronounced, although JSTWRV does bring
some improvement in the estimates.® This confirms the result of Mar-
tinetal.(2009), who assess the robustness of the relative performance
of various estimators to the microstructure noise, and they find that

8 As JWTSRV is a relatively new measure, we have also used realized measures
well-established in the literature, namely bipower variation (BPV), realized kernels
(RK) and the two-scale realized variance (TSRV), and the results are very similar to
those reported here. To keep minimize the length of the document, we do not report
these results but make them available upon request from the authors.

results are invariant to the method of noise correction in the realized
volatility.

For comparison, we also estimate the FMNBLS. While in the
WBLS, we have motivated the choice of the bands by the wavelet
coherence plots, in the FMNBLS, we follow Nielsen and Frederik-
sen (2011) and use the same bands to estimate the relation-
ship. Namely, we use [T04 T06] [T04 T07] [T04, TO08], [T0-> TO6],
[T95,T97] and [T9>,T08] frequencies. All of the bands overlap
the bands used in the WABLS, although they interfere also with
higher frequencies. The results are statistically similar to those
obtained by the WBLS estimates. When CIV measures are used,
B is closer to unity (or significantly does not differ from unity)
when compared to the usual OLS. When MFIV is used, 3 is closer
to unity, but in most cases, they are significantly lower than
unity.

Finally, it is worth noting the difference between monthly and
bi-weekly regressions. In the case of monthly regressions, when
the CIV1 measure is used, spectral band regressions confirm the
long-run unbiasedness of the implied volatility forecasts. Residuals
do not display significant long memory; thus, fractional cointegra-
tion describes the relationship well. However, the unbiasedness of
bi-weekly volatility forecasts is confirmed, but residuals from both
WABLS as well as FMNBLS display significant long memory. OLS resid-
uals do not show significant long memory, and 3s from OLS are very
close to unity.

6. Conclusion

In this paper, we study the long run unbiasedness of implied
volatility as a predictor of future volatility. While this relation-
ship has been studied previously in the literature, our work con-
tributes to the findings in several ways. First, we propose new
spectral techniques to estimate the potential fractional cointegrat-
ing relationship of the implied and realized volatilities based on
wavelets. The main advantage in comparison to common spectral
regression techniques based on Fourier coefficients is that wavelets
allow us to work with locally stationary series. Second, we study
the fractional cointegration of the implied and realized volatili-
ties using accurate corridor implied volatility (CIV measure) for the
first time, as most of the literature uses model based implied
volatilities.

When CIV is used to measure implied volatility on options
with monthly maturities, implied volatility is found to be
an unbiased forecast of the future realized volatility in the
long-term horizon over one month. This result holds for
the options on S&P 500 as well as DAX indices. Implied
and realized volatilities are confirmed to have a fractionally
cointegrating relationship, jointly using our newly proposed
wavelet band least squares as well as fully modified nar-
row band least squares. In contrast, when MFIV is used as
a measure of implied volatility, all estimates are lower than
unity. This result strongly suggests that the measurement of
volatility implied by option prices is crucial for the volatility
forecasts, as incorrect measurements introduce bias into the
forecasts. The result is also important to the literature, as it may
suggest that the estimated bias of option implied volatility fore-
casts might not be that pronounced, as it is caused by an imprecise
measurement.

We also question the importance of measures used on the
other side of the regression testing the unbiasedness of implied
volatility, namely, realized volatility. Interestingly, we find that the
results are invariant to the method of noise correction in the realized
volatility.
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Appendix A
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Fig. 1. S&P 500 and DAX monthly and bi-weekly wavelet coherences between implied and realized volatilities measured by CIV1, CIV2, MFIV and RV and JWTSRV, respectively.
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Table 1

Long memory estimates of CIV1, CIV2, MFIV measures of implied volatility, RV and JWTSRV measures of realized volatility series. Long memory parameter d is estimated using
GPH estimator with different frequency bands [T"] for m e {0.6,0.7,0.8}. Standard errors are provided in parentheses.

CIv1 CIvV2 MFIV RV JWTSRV

SPX monthly

[1°6] 0.581(0.144) 0.573 (0.144) 0.582 (0.144) 0.515 (0.144) 0.534 (0.144)
[1°7] 0.523 (0.115) 0.517 (0.115) 0.546 (0.115) 0.538 (0.115) 0.555 (0.115)
[1°%) 0.641 (0.091) 0.636 (0.091) 0.665 (0.091) 0.776 (0.091) 0.776 (0.091)
SPX bi-weekly

[1°6] 0.654 (0.144) 0.662 (0.144) 0.494 (0.144) 0.526 (0.144) 0.520 (0.144)
[1°7 0.782(0.118) 0.784(0.118) 0.702 (0.118) 0.693 (0.118) 0.637(0.118)
[1°%) 0.711 (0.094) 0.683 (0.094) 0.527 (0.094) 0.779 (0.094) 0.752 (0.094)
DAX monthly

[1°6] 0.626 (0.139) 0.631(0.139) 0.570(0.139) 0.448 (0.139) 0.486 (0.139)
[1°7] 0.506 (0.112) 0.509 (0.112) 0343 (0.112) 0.498 (0.112) 0.531(0.112)
[1°%] 0.574 (0.091) 0.577 (0.091) 0.300 (0.091) 0.613 (0.091) 0.633 (0.091)
DAX bi-weekly

[1°6] 0.674 (0.112) 0.680(0.112) 0.543 (0.112) 0.425(0.112) 0.441 (0.112)
[1°7] 0.572 (0.087) 0.573 (0.087) 0.371 (0.087) 0.544 (0.087) 0.542 (0.087)
[1°%) 0.700 (0.067) 0.701 (0.067) 0.333 (0.067) 0.689 (0.067) 0.706 (0.067)

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.econmod.2016.01.014.
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