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a b s t r a c t

We introduce data envelopment analysis (DEA) models equivalent to efficiency tests with respect to the
Nth order stochastic dominance (NSD). In particular, we focus on strong andweak variants of convex NSD
efficiency and NSD portfolio efficiency. The proposed DEA models are in relation with strong and weak
Pareto–Koopmans efficiencies and employ Nth order lower and co-lower partial moments.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction and notation

In this paper, we establish a link between data envelopment
analysis (DEA) models [7] and Nth order stochastic dominance
efficiency tests [13]. Such a link can be very useful because DEA lit-
erature provides many results on stability and sensitivity with re-
spect to the input data, algorithmic issues, andmethods on ranking
efficient units (super-efficiency, cross-efficiency, etc., see [8] for a
review) which can be applied to stochastic dominance theory.
Moreover, the utility-based interpretation of stochastic dominance
relations and efficiency (see [9,11,12,14]) can be used for the pro-
posed DEAmodels. We generalize results on equivalence obtained
for second-order stochastic dominance (SSD) by [5].

The proposed DEA models are derived from NSD efficiency
tests introduced in [13]. We show how equivalent DEA models
can be obtained using particular directional distance measures,
cf. [4], whichmodify thewell-known directional distance function,
cf. [6]. The tests by [13] were proposed for the weak variants
of the convex NSD efficiency and NSD portfolio efficiency only.
Thus, we extend the analysis to the strong efficiencies and we
show how these notations differ on a simple example. Note that
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the optimal solutions of the proposed DEA models are weakly or
strongly Pareto–Koopmans efficient.

Let xj,r denote return of asset j ∈ {1, . . . ,M} taken with prob-
ability pr , r = 1, . . . , R. We assume that the columns of {xj,r} are
sorted in ascending order according to prospect τ = (τ1, . . . , τM),
i.e. if we set x∗

r =
M

j=1 xj,rτj, we have x∗

1 ≤ x∗

2 ≤ · · · ≤ x∗

R. We
denote by y1 < · · · < yS all sorted returns, where S ≤ MR. We use
qj,s =

R
r=1 pr I(xj,r=ys) for all j ∈ {1, . . . ,M}, s ∈ {1, . . . , S}, where

I(·) is equal to one if the condition · is fulfilled and to zero otherwise.
Portfolios are identified by (nonnegative) weights λ =

(λ1, . . . , λM) such that
M

j=1 λj = 1. The set of all feasible portfolio
weights is denoted by Λ. For n = 0, 1, . . . , we define nth order
lower partial moment of the ith asset by

LPMn
i (w) =

R
r=1

pr [w − xi,r ]n+ =

S
s=1

qi,s[w − ys]n+,

and nth order co-lower partial moment [1] by

coLPMn
τ ,λ(w) =

R
r=1

pr


w −

M
j=1

xj,rλj


w −

M
j=1

xj,rτj

n

+

,

where [y]n
+

= ynI(y≥0). Note that its most important property is
linearity with respect to the weights λj when portfolio weights τj
and threshold w are given.
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2. DEA models

We employ DEA models based on directional distance mea-
sures. The choice of the (positive) direction is motivated by the pa-
per [15]; see also [4] for a discussion in financial area. Employing
a directional distance measure which expresses relative improve-
ment necessary to reach the efficient frontier, see [4], a decision
making unit (asset, portfolio) is classified as efficient if and only if
the optimal value of the directional distance DEAmodel is equal to
zero.

2.1. Weak Pareto–Koopmans efficiency

Paper [13] considered weak convex NSD efficiency and weak
NSD portfolio efficiency.

2.1.1. Weak convex NSD efficiency
Let UN = {u(x) : (−1)nu(n)(x) ≤ 0, ∀x, n = 1, . . . ,N} denote

a subset of all utility functions, where u(n) is the nth derivative of
u. Moreover, set xj =

R
r=1 prxj,r , ∀j ∈ {1, . . . ,M}.

Definition 2.1 ([13]). The ith asset is weakly convex NSD efficient
(relative to the set of assets {1, . . . ,M}), N ≥ 1, if there exists a
utility function u ∈ UN for which it is preferred to every asset:

R
r=1

pru(xi,r) ≥

R
r=1

pru(xj,r) ∀j = 1, . . . ,M.

If such an admissible utility function does not exist the ith asset is
called weakly convex NSD inefficient.

Proposition 2.1. Consider the directional distance DEA model

max
λj,θ

θ

M
j=1

λj · xj ≥ xi,

M
j=1

λj · LPMn
j (yS) ≤ LPMn

i (yS), n = 2, . . . ,N − 2,

M
j=1

λj · LPMN−1
j (yk) ≤ LPMN−1

i (yk), k = 1, . . . , S − 1,

M
j=1

λj · LPMN−1
j (yS) ≤ LPMN−1

i (yS) − θ · d,

M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

with the direction

d = LPMN−1
i (yS) − min

j
LPMN−1

j (yS).

If d > 0 then ith asset is weakly convex NSD efficient if and only if the
optimal value of the directional distance DEA model is equal to zero,
that is, the ith asset is DEA efficient. Moreover, if the direction is equal
to zero, then the ith asset is weakly convex NSD efficient.

Proof. We employ the problem formulated in [13]; see Theorem
2. Since yS ≥ xj,r , ∀j ∈ {1, . . . ,M}, ∀r ∈ {1, . . . , R} we obtain for
n = 1 and for all j ∈ {1, . . . ,M}:

LPM1
j (yS) =

R
r=1

pr [yS − xj,r ]1+ = yS − xj.
The first constraint then easily follows from [13, constraint (23.1)]
and the rest of the proof for d > 0 is straightforward. If the
direction is equal to zero, then the ith asset is weakly convex
NSD efficient, because no improvement to the efficient frontier is
possible. �

Proposition 2.1 shows that if expected return serves as the
output and the lower partial moments given in the constraints as
the inputs to the directional distance DEA model then an asset
is classified as convex NSD efficient if and only if either it is
DEA efficient or the direction is equal to zero. Our model uses
a special case of general directional distance function [6], where
we consider a directional vector with only one positive element d
corresponding to input LPMN−1

j (yS).

2.1.2. Weak NSD portfolio efficiency
Weakly convex NSD efficiency generally do not allow for

fully diversification across the assets. Therefore we consider also
weakly NSD portfolio efficiency. The notation of the employed
diversification-consistent DEAmodels was established by [10] and
further investigated by [2,3] in relationwith the Pareto–Koopmans
efficiency.

Definition 2.2 ([13]). The portfolio τ ∈ Λ is weakly NSD portfolio
efficient (relative to Λ), N ≥ 2, if there exists a utility function
u ∈ UN forwhich the portfolio τ is preferred to all portfoliosλ ∈ Λ:

R
r=1

pru


M
j=1

xj,rτj


≥

R
r=1

pru


M
j=1

xj,rλj


∀λ ∈ Λ.

If such an admissible utility function does not exist the portfolio τ
is called weakly NSD portfolio inefficient.

Proposition 2.2. Consider diversification-consistent DEA model
based on a directional distance measure

max
λj,θ

θ

M
j=1

λj · xj ≥

M
j=1

τj · xj,

coLPMn−1
τ ,λ


M
j=1

xj,Rτj


≤ coLPMn−1

τ ,τ


M
j=1

xj,Rτj


,

n = 2, . . . ,N − 2,

coLPMN−2
τ ,λ


M
j=1

xj,kτj


≤ coLPMN−2

τ ,τ


M
j=1

xj,kτj


,

k = 1, . . . , R − 1,

coLPMN−2
τ ,λ


M
j=1

xj,Rτj


≤ coLPMN−2

τ ,τ


M
j=1

xj,Rτj


− θ · d,

M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

with the direction

d = coLPMN−2
τ ,τ


M
j=1

xj,Rτj


− min

λ∈Λ
coLPMN−2

τ ,λ


M
j=1

xj,Rτj


.

If d > 0 then portfolio τ is weakly NSD portfolio efficient if and only if
the optimal value of the diversification-consistent DEA model is equal
to zero, that is, portfolio τ is DEA efficient. Moreover, if the direction is
equal to zero, then portfolio τ is weakly NSD portfolio efficient.
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Proof. The result follows by considering the second model in the
proof of Theorem3of [13]. Therewe replaceυ by θd in the instance
where it is a slack variable. And we replace it by θ in the instance
where it appears in the objective function. Since d is constant, the
optimal values of λ do not change.

For w =
M

j=1 xj,Rτj and n = 1

coLPM0
τ ,λ(w) =

R
r=1

pr


w −

M
j=1

xj,rλj


w −

M
j=1

xj,rτj

0

+

=

R
r=1

pr


w −

M
j=1

xj,rλj



= w −

M
j=1

λj · xj.

Similarly coLPM0
τ ,τ (w) = w−

M
j=1 τj·xj. Thus, ifwe subtractw and

multiply the constraint by −1, we obtain an equivalent constraint
for n = 1:
M
j=1

λj · xj ≥

M
j=1

τj · xj.

If the direction d is equal to zero, then portfolio τ is weakly NSD
portfolio efficient, because no improvement to the efficient frontier
is possible. �

The above theorem shows that to reach the equivalence with
the NSD portfolio efficiency test [13, Theorem 3], we need to
consider the diversification-consistent model where co-lower
partial moments serve as the inputs and the expected return as
the only output. Moreover, a positive direction is used to find an
improvement in coLPMN−2

τ ,·

M
j=1 xj,Rτj


.

2.2. Strong Pareto–Koopmans efficiency

In this section, the DEAmodels are generalized to be consistent
with the strong Pareto–Koopmans NSD efficiency. Firstly, we
slightly modify a set of considered utility functions as follows:
U+

N = {u(x) : (−1)nu(n)(x) < 0, ∀x, n = 1, . . . ,N}.

The strong counterparts of convex NSD and NSD portfolio efficien-
cies can be then obtained by a slightmodification of Definitions 2.1
and 2.2, where we substitute UN by U+

N . Since set U+

N is not closed,
we use an approximate set to construct the equivalent DEA mod-
els where the derivatives of utility functions are bounded by in-
finitesimal positive constants wn, w

′

k. Such infinitesimal constants
are often used in DEA models.

We continuewith a simple examplewhere strongly andweakly
SSD portfolio efficient assets do not match. Consider three assets
j ∈ {1, 2, 3} with three scenarios of returns xj,r listed in the
following table

Asset/scenario 1 2 3
x1,r 2 1 5
x2,r 0 6 4
x3,r 1 3 5

The first asset is bothweakly and strongly SSD portfolio inefficient,
whereas the second asset is strongly and weakly SSD efficient. The
third asset is weakly SSD portfolio efficient but not strongly SSD
efficient.

2.2.1. Strong convex NSD efficiency
We propose a DEA model with directional distance measure

which is equivalent to the strong convex NSD efficiency test. We
show that the model has the same structure of inputs and outputs
as the one formulated in Proposition 2.1 for the weak convex NSD
efficiency. However, the directional distance measure has to be
extended to measure a possible improvement in each input and
output.

Proposition 2.3. Define the nonnegative directions

d1 = max
j

xj − xi,

dn = LPMn
i (yS) − min

j
LPMn

j (yS), n = 2, . . . ,N − 2,

d′

k = LPMN−1
i (yk) − min

j
LPMN−1

j (yk), k = 1, . . . , S,

and consider the directional distance DEA model

max
λj,θn,θ

′
k

1
N + S − 2


N−2
n=1

θn +

S
k=1

θ ′

k


M
j=1

λj · xj ≥ xi + θ1 · d1,

M
j=1

λj · LPMn
j (yS) ≤ LPMn

i (yS) − θn · dn, n = 2, . . . ,N − 2,

M
j=1

λj · LPMN−1
j (yk) ≤ LPMN−1

i (yk) − θ ′

k · d′

k, k = 1, . . . , S,

M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

θn = 0, if dn = 0, n = 1, . . . ,N − 2,
θn ≥ 0, if dn > 0, n = 1, . . . ,N − 2,

θ ′

k = 0, if d′

k = 0, k = 1, . . . , S,

θ ′

k ≥ 0, if d′

k > 0, k = 1, . . . , S.

If at least one direction is positive, then ith asset is strongly convex
NSD efficient if and only if the optimal value of the directional distance
DEA model is equal to zero, that is, the ith asset is DEA efficient.
Moreover, if all directions are equal to zero, then the ith asset is
strongly convex NSD efficient.

Proof. Following [9], we add conditions on positivity of deriva-
tives, see Appendix A of [13] (proof of Theorem 2) where in model
(25.1)–(25.3) decision variables bn and ck related to the derivatives
of a utility function appear. In particular, if we add bn ≥ wn >
0, n = 1, . . . ,N − 2, and ck ≥ w′

k > 0, k = 1, . . . , S, we obtain
the dual LP formulation

max
λj,υn,υ

′
k

N−2
n=1

wnυn +

S
k=1

w′

kυ
′

k

M
j=1

S
s=1

(λjqj,s − qi,s)(yS − ys)n + υn = 0, n = 1, 2, . . . ,N − 2,

M
j=1

k
s=1

(λjqj,s − qi,s)(yk − ys)N−1
+ υ ′

k = 0, k = 1, 2, . . . , S,

M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

υn ≥ 0, n = 1, . . . ,N − 2,

υ ′

k ≥ 0, k = 1, . . . , S.

Using the definition of lower partial moments, the problem can be
reformulated as

max
λj,υn,υ

′
k

N−2
n=1

wnυn +

S
k=1

w′

kυ
′

k
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M
j=1

λj · LPMn
j (yS) ≤ LPMn

i (yS) − υn, n = 1, . . . ,N − 2,

M
j=1

λj · LPMN−1
j (yk) ≤ LPMN−1

i (yk) − υ ′

k, k = 1, . . . , S,

M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

υn ≥ 0, n = 1, . . . ,N − 2,

υ ′

k ≥ 0, k = 1, . . . , S.

The constraint for n = 1 is transformed as in the proof of Proposi-
tion 2.1. Using the positive directions multiplied by decision vari-
ables θn, θ

′

k instead of slack variables υn, υ
′

k, i.e. we put υn = θndn,
υ ′

k = θ ′

kd
′

k, andby setting thepositiveweights in the objective func-
tion to

wn =
1

(N + S − 2)dn
, w′

k =
1

(N + S − 2)d′

k
,

we obtain the final form of the DEA model. For zero directions, the
corresponding decision variables θn, θ

′

k are set to zero, because no
improvement in these inputs and the output is possible. Moreover,
if all directions are equal to zero, then no improvement to reach
the efficient frontier is possible, thus the ith asset is strongly con-
vex NSD efficient. �

Note that the objective function is usually normalized by the
number of the decision variables in the objective function, in our
case by (N + S − 2). However, this normalization has no influence
on the efficiency classification.

2.2.2. Strong NSD portfolio efficiency
TheDEAmodel equivalent to the strongNSDportfolio efficiency

test employs the same inputs and outputs as themodel introduced
in Proposition 2.2 for the weak NSD portfolio efficiency, whereas
the directional distance measure has to be again extended to
investigate a possible improvement in any input and output.

Proposition 2.4. Define the nonnegative directions

d1 = max
j

xj − xi,

dn = coLPMn−1
τ ,τ


M
j=1

xj,Rτj


− min

λ∈Λ
coLPMn−1

τ ,λ


M
j=1

xj,Rτj


,

n = 2, . . . ,N − 2,

d′

k = coLPMN−2
τ ,τ


M
j=1

xj,kτj


− min

λ∈Λ
coLPMN−2

τ ,λ


M
j=1

xj,kτj


,

k = 1, . . . , R,

and consider diversification-consistent DEA model based on direc-
tional distance measure

max
λj,θn,θ

′
k

1
N + R − 2


N−2
n=1

θn +

R
k=1

θ ′

k


M
j=1

λj · xj ≥

M
j=1

τj · xj + θ1 · d1,

coLPMn−1
τ ,λ


M
j=1

xj,Rτj


≤ coLPMn−1

τ ,τ


M
j=1

xj,Rτj


− θn · dn,

n = 2, . . . ,N − 2,
coLPMN−2
τ ,λ


M
j=1

xj,kτj


≤ coLPMN−2

τ ,τ


M
j=1

xj,kτj


− θ ′

k · d′

k,

k = 1, . . . , R,
M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

θn = 0, if dn = 0, n = 1, . . . ,N − 2,
θn ≥ 0, if dn > 0, n = 1, . . . ,N − 2,

θ ′

k = 0, if d′

k = 0, k = 1, . . . , R,

θ ′

k ≥ 0, if d′

k > 0, k = 1, . . . , R.

If at least one direction is positive, then portfolio τ is strongly NSD
portfolio efficient if and only if the optimal value of the diversification-
consistent DEA model is equal to zero, that is, portfolio τ is DEA
efficient. Moreover, if all directions are equal to zero, then portfolio
τ is strongly NSD portfolio efficient.

Proof. Following [9], we add conditions on positivity of the
derivatives, see Appendix of [13] (proof of Theorem 3). We obtain
the dual formulation

max
λj,υn,υ

′
k

N−2
n=1

wnυn +

R
k=1

w′

kυ
′

k

R
r=1

pr


M
j=1

xj,rτj −
M
j=1

xj,rλj


M
j=1

xj,Rτj −
M
j=1

xj,rτj

n−1

+ υn

= 0, n = 1, 2, . . . ,N − 2,

k
r=1

pr


M
j=1

xj,rτj −
M
j=1

xj,rλj


M
j=1

xj,kτj −
M
j=1

xj,rτj

N−2

+ υ ′

k

= 0, k = 1, 2, . . . , R,
M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

υn ≥ 0, n = 1, . . . ,N − 2, υ ′

k ≥ 0, k = 1, . . . , R.

We can rewrite the model using the co-lower partial moments
which can serve to quantify the risk:

max
λj,υn,υ

′
k

N−2
n=1

wnυn +

R
k=1

w′

kυ
′

k

M
j=1

λj · xj ≥

M
j=1

τj · xj + υ1,

coLPMn−1
τ ,λ


M
j=1

xj,Rτj


≤ coLPMn−1

τ ,τ


M
j=1

xj,Rτj


− υn,

n = 2, . . . ,N − 2,

coLPMN−2
τ ,λ


M
j=1

xj,kτj


≤ coLPMN−2

τ ,τ


M
j=1

xj,kτj


− υ ′

k,

k = 1, 2, . . . , R,
M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

υn ≥ 0, n = 1, . . . ,N − 2,

υ ′

k ≥ 0, k = 1, . . . , R.

The constraint for n = 1 is transformed as in the proof of Propo-
sition 2.2. Instead of the slack variables υn, υ

′

k in the constraints
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and objective, we can substitute the positive directions multiplied
by the new decision variables θn, θ

′

k, i.e. we put υn = θndn and
υ ′

k = θ ′

kd
′

k. These variables are then maximized in the objective
function using weights

wn =
1

(N + R − 2)dn
, w′

k =
1

(N + R − 2)d′

k
.

For zero directions, the corresponding decision variables θn, θ
′

k are
set to zero, because no improvement in these inputs and the out-
put is possible. Moreover, if all directions are equal to zero, then
no improvement in all inputs and outputs is possible and the claim
follows. �

Note that the computation of directions dn, d′

k, in particular
the minimization of co-lower partial moment coLPMn

τ ,λ(w) over
weights λj, leads to a linear programming problem for arbitrary
argument w:

max
λj

M
j=1

λj

R
r=1

prxj,r


w −

M
j=1

xj,rτj

n

+

s.t.
M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

where the objective function is linear in decision variables λj.

2.2.3. Explicit linear programming formulation
All DEA models proposed in this paper can be solved as linear

programming problems. Below, we provide a reformulation of
the DEA model introduced in Proposition 2.4 for the strong NSD
portfolio efficiency. Let us denote

ak,r =


M
j=1

xj,kτj −
M
j=1

xj,rτj


+

.

Then we obtain the following linear program:

max
λj,θn,θ

′
k

1
N + R − 2


N−2
n=1

θn +

R
k=1

θ ′

k


M
j=1

λj · xj ≥

M
j=1

τj · xj + θ1 · d1,

M
j=1

λj

R
r=1

prxj,ran−1
R,r ≥

M
j=1

τj

R
r=1

prxj,ran−1
R,r + θn · dn,

n = 2, . . . ,N − 2,
M
j=1

λj

R
r=1

prxj,raN−2
k,r ≥

M
j=1

τj

R
r=1

prxj,raN−2
k,r + θ ′

k · d′

k,

k = 1, . . . , R,

M
j=1

λj = 1, λj ≥ 0, j = 1, 2, . . . ,M,

θn = 0, if dn = 0, n = 1, . . . ,N − 2,

θn ≥ 0, if dn > 0, n = 1, . . . ,N − 2,

θ ′

k = 0, if d′

k = 0, k = 1, . . . , R,

θ ′

k ≥ 0, if d′

k > 0, k = 1, . . . , R.
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