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Sparse robust portfolio optimization
via NLP regularizations

Martin BRANDA1, Michal ČERVINKA2, Alexandra SCHWARTZ3

Abstract

We deal with investment problems where we minimize a risk measure
under a condition on the sparsity of the portfolio. Various risk measures
are considered including Value-at-Risk and Conditional Value-at-Risk
under normal distribution of returns and their robust counterparts are
derived under moment conditions, all leading to nonconvex objective
functions. We propose four solution approaches: a mixed-integer formu-
lation, a relaxation of an alternative mixed-integer reformulation and
two NLP regularizations. In a numerical study, we compare their com-
putational performance on a large number of simulated instances taken
from the literature.

1 Introduction

In portfolio optimization, two basic types of decision-making frameworks are
adopted: the utility maximization and the return-risk trade-off analysis, see,
e.g., Levy [28] for properties and relations between these two approaches. In
the latter, it is important to define a risk that the concerned system has. In
optimization problems governed by uncertain inputs, typically represented as
random variables, the risk is explicitly quantified by a risk measure.

In return-risk analysis, widely used both in theory and practice, an investor
faces a trade-off between expected return and associated risk. In his pioneering
work in 1952, Markowitz [29] adopted variance as a measure of risk in his
mean-variance analysis. Variance measures equally both positive and negative
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fluctuations. In finance, however, attention is mostly given to losses. So already
Markowitz himself was aware of this short-coming of variance [30] and proposed
a downside risk as an alternative to variance.

Many other alternatives were introduced since then. Nowadays, Value-at-
Risk (VaR), which measures the maximum loss that can be expected during
a specific time horizon with a probability β (β close to 1), is widely used in
the banking and insurance industry as a downside risk measure. Despite its
popularity, VaR lacks some important mathematical properties. Artzner at al.
[1] presented an axiomatic definition of risk measures and coined a coherent
risk measure which has certain reasonable properties. Conditional Value-at-
Risk (CVaR), the mean value of losses that exceed the value of VaR, exhibits
favorable mathematical properties such as coherence implying convexity. Rock-
afellar and Uryasev [37, 38] proposed to minimize CVaR for optimizing a port-
folio so as to reduce the risk of high losses without prior computation of the
corresponding VaR while computing VaR as a by-product. Their CVaR min-
imization formulation results usually in convex or even linear programs which
proved attractive for financial optimization and risk management in practice
due to their tractability for larger real life instances. For each of these risk
measures, one can formulate corresponding mean-risk portfolio optimization
problems.

Regardless of the risk measure used, these models are strongly dependent
on the underlying distribution and its parameters, which are typically unknown
and have to be estimated, cf. Fabozzi et al. [17]. Investors usually face the
so called estimation risk as they rely on a limited amount of data to estimate
the input parameters. Portfolios constructed using these estimators perform
very poorly in terms of their out-of-sample mean and variance as the result-
ing portfolio weights fluctuate substantially over time, cf. e.g. Michaud [31]
and Chopra and Ziemba [12]. As some reformulations of mean-risk portfolio
problems depend on the assumption of normality, poor performance can also
be caused by deviations of the empirical distribution of returns from normal-
ity. One can thus also consider the distribution ambiguity in the sense that
no knowledge of the return distribution for risky assets is assumed while the
mean and variance/covariance are assumed to be known. For these reasons,
we examine portfolio policies based on robust estimators.

Robust optimization is another approach for optimization under uncer-
tainty. Robust optimization has been rapidly developed since the pioneering
work of Ben-Tal and Nemirovski [2]. Robust portfolio selection deals with elim-
inating the impacts of estimation risk and/or distribution ambiguity. Goldfarb
and Iyengar [23] studied the robust portfolio in the mean-variance framework.
Instead of the precise information on the mean and the covariance matrix of as-
set returns, they introduced some types of uncertainty, such as box uncertainty
and ellipsoidal uncertainty. They also considered the robust VaR portfolio se-



lection problem by assuming a normal distribution. Chen et al. [11] minimized
the worst-case CVaR risk measure over all distributions with fixed first and
second moment information. The reader is referred to El Ghaoui et al. [16]
and Popescu [36] for other studies on portfolio optimization with distributional
robustness. Paç and Pınar [33] extend Chen et al. [11] to the case where a
risk-free asset is also included and distributional robustness is complemented
with ellipsoidal mean return ambiguity. Other choices of the ambiguity set for
VaR and CVaR are considered e.g. by Tütüncü and Koening [42], Pflug and
Wozabal [35], Zhu and Fukushima [43], DeMiguel and Nogales [15] and Delage
and Ye [13]. For survey of recent approaches to construct robust portfolios, we
refer to Kim et al. [27].

Recently, several authors focused on inducing sparsity of the solution which
improved the out-of-sample performance of resulting portfolios, cf. e.g. DeMiguel
et al. [14]. Reduction of transaction costs can also support the use of sparse
portfolios in practice. While some studies impose a penalty on the l1-norm
of the asset weight vector or its alternatives, e.g. Fastrich et al. [18], some
consider so called cardinality constraints. The portfolio optimization prob-
lem resulting from the latter can be viewed as a mixed-integer problem and
it is considered computationally challenging. The examples of solution tech-
niques include exact branch-and-bound methods, e.g., Borchers and Mitchell
[6], Bertsimas and Shioda [3]; exact branch-and-cut methods, e.g., Bienstock
[5]; heuristic algorithms, e.g., Chang et al. [10]; and relaxation algorithms,
e.g., Shaw et al. [41], Murray and Shek [32] and Burdakov et al. [7, 8].

Despite the vast literature on robust portfolio optimization and many works
on sparse portfolio optimization, there are only few works that concern both
sparse and robust portfolios, cf. e.g. Bertsimas and Takeda [4].

In this paper, we consider the cardinality constrained minimization of VaR
and CVaR under normality of asset returns and their robust counterparts un-
der distribution ambiguity. We assume that both first and second order mo-
ments are known. Our contribution is to apply the recently proposed NLP-
reformulation in Burdakov et al [7, 8], which is further studied in Červinka et
al. [9]. We perform a numerical experiment to compare performance of four
solution methods: GUROBI to solve a mixed-integer formulation of the prob-
lems, SNOPT to solve a relaxed NLP reformulation of the problems, and two
regularization methods. A similar numerical study has been reported in Bur-
dakov et al. [7] for a cardinality constrained (and non-robust) mean-variance
model, where the objective function was convex quadratic, whereas we inves-
tigate the investment problems with VaR and CVaR introduced above which
lead to nonconvex problems even after relaxing the conditions on sparsity.

The paper is organized as follows: In Section 2, we introduce the risk mea-
sures and investment problems with a condition on portfolio sparsity. More-
over, we discuss the solution approaches. Section 3 provides an extensive nu-



merical study.

A word on notation: By e ∈ R
n we denote the vector with all components

equal to one. For two vectors x, y ∈ R
n the vector x ◦ y ∈ R

n denotes the
componentwise (Hadamard) product of x and y.

2 Minimizing robust VaR and CVaR under

distribution ambiguity with cardinality con-

straints

We consider a market with n risky financial assets. The disposable wealth is to
be allocated into a portfolio x ∈ R

n, such that each component xi denotes the
fraction of disposable wealth to be invested into the i-th asset, i = 1, . . . , n.
We do not allow short-sales, i.e. we assume x ≥ 0. Furthermore, we demand
that the whole disposable budget is invested, i.e. e⊤x = 1. Thus, for a vector x
of allocations to n risky assets and a random vector ξ of return rates for these
assets, we consider the following loss function

ℓ(x, ξ) = −x⊤ξ.

Assume that ξ follows a probability distribution π from the ambiguity (un-
certainty) set D = {π | Eπ[ξ] = µ,Covπ(ξ) = Γ ≻ 0} of distributions with
expected value µ and positive semidefinite covariance matrix Γ.

Markowitz [29] considered variance σ2(x) = x⊤Γx as a risk measure associ-
ated with portfolio x. In the 90s, the investment bank J.P. Morgan reinvented
the quantile risk measure (quantile premium principle) used by actuaries for
investment banking, giving rise to Value-at-Risk (VaR). Associated with a con-
fidence level β,

VaRβ(x) = min{z | Pπ(ℓ(x, ξ) ≤ z) ≥ β}.

Artzner et al. [1] defined coherent risk measure as a measure satisfying mono-
tonicity, translation invariance, subadditivity and positive homogeneity. It is
known, that VaR is not a coherent risk measure as it fails subadditivity. On
the other hand, the conditional value-at-risk (CVaR) introduced by Rockafellar
and Uryasev [37] turns out to be a convex and coherent risk measure. CVaR
at level β is defined as the expected value of loss that exceeds VaRβ(x). Al-
ternatively, Rockafellar and Uryasev [37] showed that calculation of CVaR and
VaR can be achieved simultaneously by minimizing the auxiliary function with
respect to α ∈ R

Fβ(x, α) = α+
1

1− β
E[(ℓ(x, ξ)− α)+],



where (v)+ = max{0, v}. Thus,
CVaRβ(x) = min

α
Fβ(x, α)

and VaRβ(x) is the left endpoint of the interval argminα Fβ(x, α).

Let us assume normality of returns ξ. Denote by φ and Φ density and
cumulative distribution function of the standard normal distribution, respec-
tively. Following Fabozzi et al. [17], originating in Rockafellar and Uryasev
[37], the value-at-risk can be expressed as

VaRβ(x) = ζβ
√

x⊤Qx− µ⊤x, (1)

where ζβ = −Φ−1(1− β), and assuming β > 0.5, the conditional value-at-risk
reduces to

CVaRβ(x) = ηβ
√

x⊤Qx− µ⊤x, (2)

where ηβ =
−
∫ Φ−1(1−β)
−∞

tφ(t)dt

1−β
.

Further, we consider the worst case VaR for a fixed x with respect to the
ambiguity set D defined as

RVaRβ(x) = sup
π∈D

VaRβ(x).

Analogously, we consider the worst case CVaR for a fixed x with respect to set
D defined as

RCVaRβ(x) = sup
π∈D

CVaRβ(x) = sup
π∈D

min
α

Fβ(x, α).

Based on Chen et. al [11, proof of Theorem 2.9], further generalized in Paç
and Pınar [33] using Shapiro [40, Theorem 2.4], we have that under distribution
ambiguity,

RVaRβ(x) =
2β − 1

2
√

β(1− β)

√

x⊤Qx− µ⊤x (3)

and

RCVaRβ(x) =

√

β

1− β

√

x⊤Qx− µ⊤x. (4)

We now formulate cardinality constrained portfolio selection models for
each of the risk measures (1)–(4). For the sake of brevity, we replace a par-
ticular function from (1)–(4) by a general risk function r(x). Consider the
cardinality constrained problem

min
x

r(x)

s.t. e⊤x = 1,

0 ≤ x ≤ u,

‖x‖0 ≤ κ,

(5)



where u ∈ R
n are given upper bounds in the investments in the n risky assets,

κ ∈ N is a natural number and ‖x‖0 denotes the cardinality of the support of
the vector x, i.e. the number of its nonzero elements. Naturally, we assume
that κ < n.

The problem (5) is difficult to solve due to the cardinality constraint. It
can be readily reformulated as a mixed integer problem using binary decision
variables

min
x,z

r(x)

s.t. e⊤x = 1,

0 ≤ x ≤ u ◦ z,
z ∈ {0, 1}n,
e⊤z ≤ κ.

(6)

If xi is positive, then the corresponding zi must be equal to one and by the
reformulated cardinality constraint e⊤z ≤ κ this can happen at most κ times.

As even for simple instances of cardinality constrained problems Bienstock
[5] showed the problem to be NP-complete, solving problems (6) even using
specialized global solution techniques can be computationally very time de-
manding. Thus, we consider the following relaxed NLP reformulation of (6)
introduced in Burdakov et al. [8].

min
x,y

r(x)

s.t. e⊤x = 1,

0 ≤ x ≤ u,

0 ≤ y ≤ e,

x ◦ y = 0,

e⊤y ≥ n− κ.

(7)

Here, in contrast to the previous reformulation, whenever xi is positive, the
corresponding yi has to be equal to zero. Due to the reformulated cardinality
constraint e⊤y ≥ n − κ this can again occur at most κ times. Note that
this problem can be considered a mathematical program with complementarity
constraints (MPCC) due to the complementarity constraints x ≥ 0, y ≥ 0, x ◦
y = 0.

In our numerical experiments, we consider the two techniques to regular-
ize the complementarity constraints developed in Scholtes [39] and Kanzow
and Schwartz [25] for MPCCs. The latter has already been successfully mod-
ified and applied to cardinality-constrained mean-variance portfolio problems
in Burdakov et al. [7]. For the regularization based on Scholtes [39], we replace
the constraints x ≥ 0, y ≥ 0, x ◦ y = 0 in (7) by the inequalities

x ≥ 0, y ≥ 0, x ◦ y ≤ te (8)



for some small regularization parameter t > 0. Analogously, for the regular-
ization by Kanzow and Schwartz [25], we replace the same constraints in (7)
by the inequalities

Φ(x, y; t) ≤ 0, x ≥ 0, y ≥ 0, (9)

where Φi(x, y; t) = ϕ(xi, yi; t) with

ϕ(a, b; t) =

{

(a− t)(b− t) if a+ b ≥ 2t,

−1
2
[(a− t)2 + (b− t)2] if a+ b < 2t.

It is not difficult to see that for t ≥ 0 the inequality ϕ(a, b; t) ≤ 0 is equivalent
to min{a, b} ≤ t. Figure 1 provides an illustration of the respective feasible sets
of the complementarity constraint and the two regularizations. In both cases,
the idea of the regularization method is to solve a sequence of parameterized
nonlinear programs NLP(tk) for tk ց 0. Comparison of theoretical properties
and numerical experience with these regularizations for general MPCCs, along
with other types of regularizations that we do not consider here, can be found
in Kanzow and Schwartz [26]. We refer to Burdakov et al. [7] for details on the
properties of NLP(tk) and the convergence properties for the approach from
Kanzow and Schwartz [25] adapted to cardinality constrained programs.

0
xi

yi

(a) Complementarity con-
straints

0
√
t

xi

√
t

yi

(b) Scholtes regularization

0 t
xi

t

yi

(c) Kanzow-Schwartz reg-
ularization

Figure 1: Illustration of the complementarity constraints and the two regular-
izations

3 Numerical study

In this section, we apply the introduced solution approaches to the investment
problems with the VaR and CVaR measures under normality assumption and
to the robust VaR and CVaR. We will consider each problem for several levels
of β, in particular we select β ∈ {0.9, 0.95, 0.99}. Table 1 contains the values
of the corresponding quantiles and generalized quantiles, which appear in the
exact reformulations of the risk measures.



Table 1: Quantiles and generalized quantiles

β 0.9 0.95 0.99
VaR ζβ 1.2816 1.6449 2.3263
CVaR ηβ 1.7550 2.0627 2.6652

RVaR 2β−1

2
√

β(1−β)
1.3333 2.0647 4.9247

RCVaR
√

β

1−β
3.0000 4.3589 9.9499

We use 90 simulated instances with mean vectors and variance matrices
which were already employed by [19] and are freely available at website [20].
The generation of the data was described by [34]. Various problems with
n = 200, 300 and 400 assets are included in the dataset.

We will compare the performance of the following solution approaches:

1. GUROBI 60: Solve the mixed integer formulation (6) using the commercial
mixed-integer solver GUROBI, version 6.5, with time limit 60s and start
vector x0 = 0, z0 = e.

2. GUROBI 300 40: Same as above but with time limit 300s and node limit
40.

3. Relaxation 01: Solve the relaxed nonlinear problem (7) using the sparse
SQP method SNOPT, version 7.5, with start vector x0 = 0, y0 = e.

4. Relaxation 00: Same as above but with start vector x0 = 0, y0 = 0.

5. Scholtes 01: Solve a sequence of Scholtes regularizations (8) using SNOPT
with starting point x0 = 0, y0 = e.

6. Scholtes 00: Same as above but with start vector x0 = 0, y0 = 0.

7. KanzowSchwartz 01: Solve a sequence of Kanzow–Schwartz regulariza-
tions (9) using SNOPT with starting point x0 = 0, y0 = e.

8. KanzowSchwartz 00: Same as above but with start vector x0 = 0, y0 = 0.

All computations were done in MATLAB R2014a. A few details on the im-
plementation of the respective solution approaches:

More information on the solver GUROBI and its various options can be found
at [24]. To be able to solve the mixed-integer problem (6) with GUROBI, we had



to reformulate it in the following form :

min
x,z,w,v

cβv − µ⊤x

s.t. e⊤x = 1,

0 ≤ x ≤ u ◦ z,
z ∈ {0, 1}n,
e⊤z ≤ κ,

v ≥ 0,

w = Q
1
2x,

v2 ≥ w⊤w,

where cβ is the respective constant from Table 1 for the different risk measures.
Since we used x0 = 0 as start vector, we also used w0 = 0 and v0 = 0.

Note that GUROBI is a global solver, i.e. it tries to verify that a candi-
date solution is indeed a global minimum. Since the other solution approaches
do not provide any guarantee of finding a global solution, we set the option
mipfocus to one in order to encourage GUROBI to try to find good solutions fast.
Additionally we set the option timelimit to 60s at first. However, we found
that GUROBI sometimes spent the whole time by looking for a feasible solution
without moving to the branch-and-bound tree. Thus we increased timelimit

to 300s and added the condition on the maximal number of computed nodes
nodelimit = 40 to obtain results less dependent on slight variations in com-
putation time.

The relaxed problem (7) and the regularized problems (8) and (9) are all
solved using the sparse SQP method SNOPT, see [22, 21] for more information.
We started both regularization methods with an initial parameter t0 = 1 and
decreased tk in each iteration by a factor of 0.01. Both regularization methods
where terminated if either ‖xk ◦ yk‖∞ ≤ 10−6 or tk < 10−8.

The constraints e⊤x = 0 and 0 ≤ x ≤ u were usually satisfied in the
solutions x∗ found by all methods (except for GUROBI which occasionally did
not return a feasible solution at all, see below). In order to check whether the
cardinality constraint ‖x‖0 ≤ κ are also satisfied, we count the number of all
components x∗

i > 10−6.

Table 2 contains results for a particular problem with 400 assets (pard400-
e-400). We can see that GUROBI running 60s was not able to provide a feasible
solution for problem with RVaR0.99. The Scholtes regularization starting from
point x0 = 0, y0 = e was not successful for RCVaR0.95. However, in all other
cases the Scholtes regularization starting from x0 = 0, y0 = e provided the best
solution with a runtime around 1s. We also report the relative gap:

relative gap = (f − fbest)/fbest,



where f is the objective value obtained by an algorithm and fbest denotes the
lowest objective value for a problem.

Summary results for all problems are reported in Tables 3, 4, 5. For each
problem with a particular risk measure, level β, number of assets and algo-
rithm we report the following descriptive statistics over 30 instances of prob-
lems: average relative gap with respect to the minimal objective value, average
computation time (in seconds), number of cases when the algorithm found the
best solution, number of cases when the result was infeasible with respect to
the sparsity or orthogonality. All computations were done on two computers
with comparable performance indicators. Nonetheless, the given computation
times should only be used for a qualitative comparison of the methods.

It can be observed that the best results were obtained by approach 5: the
Scholtes regularization starting from x0 = 0, y0 = e. When the results of this
regularization were feasible, they correspond to the best obtained solutions.
However, in many cases the portfolios obtained by the regularizations were
infeasible. Also the relaxed problems (approach 3) behaved badly showing an
average relative gap greater than 100%.

To further investigate the behavior, we changed the starting point of relax-
ations and regularizations to x0 = 0, y0 = 0. In this case, the obtained optimal
values were slightly worse for the regularizations, but we have reduced the
problems with infeasible solutions. Moreover, for the starting point x0 = 0,
y0 = 0, the behavior of the relaxation approach improved significantly such
that it is fully comparable with the regularizations.

Figures 2, 3, 4 present performance plots for each problem size and algo-
rithm. We identified the minimal objective value for each problem found by
any of the eight considered algorithms algorithms and then compared it with
the remaining objective values using the ratio: actual objective value/minimal
objective value. The graphs report the relative number of problems (y-value),
where the ratio is lower or equal to the x-value. We would prefer algorithms
with the curve close to the upper-left corner, i.e. which produce good and
feasible solutions. Since infeasible problems are considered with an infinite ob-
jective function value, not all algorithm curves touch the upper bound 1. This
is the case for the regularized problems with x0 = 0, y0 = e for all problem
sizes. For the largest problems with 400 assets, even GUROBI with 60s limit and
Kanzow–Schwartz regularization starting from x0 = 0, y0 = 0 were not able to
reach the upper bound 1.

4 Conclusions

We proposed and compared several solution approaches for cardinality con-
strained portfolio optimization problems. We minimized VaR and CVaR risk



Table 2: Results for a problem with 400 assets (pard400-e-400)

VaR CVaR RVaR RCVaR
β 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Alg. Objective value
1 62.29 42.79 58.87 49.58 55.28 64.67 64.81 52.08 – 80.31 117.98 272.07
2 32.70 40.55 63.97 49.58 55.28 64.67 36.62 52.73 133.68 79.21 117.98 272.07
3 53.20 68.28 96.57 72.85 85.62 110.64 55.35 85.71 204.43 124.53 180.94 413.04
4 29.76 38.20 54.03 40.76 47.91 61.90 30.97 47.96 114.39 69.68 101.24 231.11
5 25.94 33.30 47.12 35.54 41.76 53.99 27.00 41.80 99.86 60.79 – 201.92
6 29.76 38.20 54.03 40.76 47.91 61.90 30.97 47.95 114.34 69.68 101.21 231.02
7 27.30 35.05 49.58 37.40 43.94 56.80 28.41 44.00 104.92 63.94 92.86 201.45
8 29.76 38.20 54.03 40.76 47.91 61.90 30.97 47.95 114.39 69.68 101.24 231.11

Alg. Relative gap
1 1.40 0.29 0.25 0.39 0.32 0.20 1.40 0.25 – 0.32 0.27 0.35
2 0.26 0.22 0.36 0.39 0.32 0.20 0.36 0.26 0.34 0.30 0.27 0.35
3 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 0.95 1.05
4 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.09 0.15
5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 – 0.00
6 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.15 0.09 0.15
7 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.00
8 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.09 0.15

Alg. Computation time (s)
1 60 61 62 60 61 69 67 73 – 60 68 68
2 300 300 258 300 300 300 300 300 189 288 302 300
3 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 0.03
4 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05 0.05
5 1.03 0.78 1.09 1.07 1.06 1.16 0.97 1.17 1.14 0.71 – 1.04
6 1.53 1.47 1.52 1.64 1.51 1.39 1.50 1.52 1.37 1.41 1.25 1.20
7 0.77 0.78 0.76 0.76 0.72 0.81 0.73 0.83 0.69 0.77 0.71 0.69
8 0.87 0.91 0.80 0.81 0.92 0.80 0.81 0.88 0.83 0.86 0.83 0.83

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.1
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Gurobi 60

Gurobi 300 40

Relaxation 01

Relaxation 00
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Scholtes 00

KanzowSchwartz 01

KanzowSchwartz 00

Figure 2: Performance plot of the objective function values for n = 200 assets



Table 3: Results for 30 instances with 200 assets

VaR CVaR RVaR RCVaR
β 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Alg. Average relative gap
1 0.126 0.157 0.143 0.158 0.171 0.180 0.164 0.170 0.154 0.167 0.179 0.188
2 0.158 0.149 0.146 0.133 0.130 0.155 0.123 0.139 0.145 0.143 0.147 0.164
3 1.091 1.087 1.093 1.092 1.088 1.089 1.073 1.085 1.096 1.094 1.092 1.096
4 0.166 0.163 0.167 0.166 0.164 0.165 0.156 0.162 0.169 0.167 0.167 0.169
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.166 0.163 0.167 0.166 0.164 0.165 0.156 0.162 0.169 0.167 0.167 0.169
7 0.004 0.010 0.016 0.013 0.020 0.014 0.008 0.020 0.017 0.014 0.015 0.000
8 0.166 0.163 0.167 0.166 0.164 0.165 0.156 0.162 0.169 0.167 0.167 0.169

Alg. Average computation time (s)
1 60 60 60 60 60 60 67 67 67 60 60 60
2 59 72 51 63 63 80 56 59 71 56 66 71
3 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.01 0.01 0.02 0.02
4 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
5 0.25 0.26 0.27 0.26 0.28 0.25 0.27 0.28 0.26 0.27 0.27 0.26
6 0.31 0.31 0.34 0.31 0.31 0.30 0.31 0.32 0.33 0.31 0.32 0.31
7 0.23 0.20 0.18 0.18 0.19 0.19 0.19 0.20 0.18 0.19 0.17 0.19
8 0.21 0.21 0.22 0.22 0.21 0.20 0.21 0.21 0.20 0.21 0.20 0.20

Alg. Best solution found (out of 30)
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 0 1 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 29 29 28 28 28 28 26 28 27 28 27 30
6 0 0 0 0 0 0 1 0 0 0 0 0
7 17 20 14 19 16 14 16 15 11 14 11 9
8 0 0 0 0 0 0 0 0 0 0 0 0

Alg. Solution was infeasible (out of 30)
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 0 3 1 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0
7 6 4 5 3 5 5 5 5 13 6 14 21
8 0 0 0 0 0 0 0 0 0 0 0 0



Table 4: Results for 30 instances with 300 assets

VaR CVaR RVaR RCVaR
β 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Alg. Average relative gap
1 0.256 0.245 0.224 0.219 0.232 0.202 0.204 0.196 0.217 0.220 0.248 0.232
2 0.209 0.224 0.216 0.206 0.197 0.187 0.229 0.200 0.215 0.207 0.234 0.230
3 1.093 1.086 1.082 1.083 1.082 1.085 1.093 1.082 1.094 1.090 1.094 1.094
4 0.170 0.166 0.163 0.164 0.164 0.165 0.170 0.164 0.171 0.168 0.171 0.171
5 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
6 0.170 0.166 0.163 0.164 0.164 0.165 0.170 0.164 0.171 0.168 0.169 0.171
7 0.016 0.017 0.011 0.021 0.014 0.014 0.018 0.014 0.018 0.020 0.022 0.008
8 0.170 0.166 0.163 0.164 0.164 0.165 0.170 0.164 0.171 0.168 0.171 0.168

Alg. Average computation time (s)
1 60 60 61 60 60 60 67 67 64 60 60 60
2 141 135 132 148 158 127 135 149 139 144 125 156
3 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02
4 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
5 0.49 0.48 0.56 0.53 0.58 0.53 0.49 0.56 0.56 0.59 0.57 0.55
6 0.69 0.68 0.69 0.68 0.67 0.69 0.70 0.70 0.73 0.72 0.69 0.67
7 0.47 0.43 0.40 0.40 0.41 0.38 0.42 0.42 0.39 0.43 0.39 0.41
8 0.47 0.46 0.44 0.44 0.45 0.45 0.46 0.47 0.43 0.44 0.44 0.44

Alg. Best solution found (out of 30)
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 29 28 21 28 26 23 29 25 25 25 26 22
6 0 0 0 1 0 0 0 0 0 0 0 0
7 13 10 18 8 9 13 14 8 11 11 10 11
8 0 0 0 0 0 0 0 0 0 0 0 0

Alg. Solution was infeasible (out of 30)
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 2 2 2 2 2 0 3 0 1 0 0
6 0 0 0 0 0 0 0 0 0 0 1 0
7 1 4 6 4 3 11 1 3 13 12 12 17
8 0 0 0 0 0 0 0 0 0 0 0 1



Table 5: Results for 30 instances with 400 assets

VaR CVaR RVaR RCVaR
β 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99 0.9 0.95 0.99

Alg. Average relative gap
1 0.266 0.259 0.235 0.226 0.277 0.241 0.311 0.228 0.209 0.253 0.288 0.269
2 0.205 0.238 0.244 0.198 0.215 0.214 0.206 0.199 0.226 0.212 0.258 0.250
3 1.180 1.191 1.195 1.188 1.172 1.201 1.182 1.178 1.201 1.201 1.197 1.200
4 0.171 0.177 0.179 0.175 0.168 0.183 0.173 0.171 0.183 0.183 0.181 0.182
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001
6 0.171 0.177 0.179 0.175 0.167 0.183 0.172 0.170 0.183 0.183 0.181 0.183
7 0.016 0.023 0.017 0.016 0.011 0.017 0.015 0.011 0.006 0.013 0.003 0.000
8 0.171 0.177 0.179 0.175 0.167 0.183 0.173 0.171 0.180 0.183 0.181 0.183

Alg. Average computation time (s)
1 62 61 67 62 62 64 67 67 65 63 64 63
2 231 243 220 201 206 205 217 221 224 222 183 210
3 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03
4 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.04
5 0.94 1.03 1.09 1.04 1.02 1.04 0.93 1.04 1.07 1.07 1.06 1.06
6 1.36 1.36 1.38 1.38 1.36 1.36 1.37 1.50 1.32 1.37 1.32 1.30
7 0.85 0.77 0.76 0.75 0.76 0.77 1.00 0.76 0.73 0.73 0.74 0.72
8 0.86 0.86 0.84 0.84 0.83 0.84 0.85 0.85 0.82 0.85 0.83 0.79

Alg. Best solution found (out of 30)
1 0 0 0 0 0 0 0 1 0 0 0 0
2 0 0 1 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 24 25 19 22 13 20 24 14 16 19 16 21
6 0 0 0 0 0 0 0 0 0 0 0 0
7 14 8 12 9 16 12 12 15 16 14 16 11
8 0 0 0 0 1 0 0 0 0 0 0 0

Alg. Solution was infeasible (out of 30)
1 0 0 0 0 0 0 0 0 20 0 0 1
2 0 0 0 0 0 0 0 0 1 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 5 1 2 5 0 0 2 0
6 0 0 0 0 0 0 1 0 0 0 0 0
7 2 1 12 2 5 12 4 5 12 11 13 19
8 1 1 2 1 1 0 1 1 2 0 2 0
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Figure 3: Performance plot of the objective function values for n = 300 assets
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measures under the assumption of normality and distributional ambiguity. Fu-
ture research will be devoted to developing a global solution strategy based on
several starting points and combinations of the proposed methods.
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