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We propose two novel methodological approaches — the detrending moving average based regression coefficient
estimator and the scale-dependent instrumental variable estimator — and show their utility on a specific case of
dependence between stock markets and connected foreign exchange rates in the Central European region — the
Czech Republic, Hungary, and Poland. The methodology has proven useful as we uncovered several interesting
findings such as scale dependence of the shock transmission and differences between the Euro and U.S. dollar
currency pairs. The Polish currency is also the most sensitive of the three with respect to the stock market shocks.
The proposed methodology can be applied to any system with potential endogeneity issues if one is interested in
the scale variability of the effect of interest.
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1. Introduction

Analysis of stock markets and foreign exchange (FX)
rates has frequently been a focus of interdisciplinary ap-
plications of physics to finance [1–16]. Both stocks and
FX rates form a cornerstone of the mainstream finan-
cial economics and finance as well due to their tight con-
nection to economic activity of a country (specifically its
gross domestic product, GDP) [17–20]. On the one hand,
stock markets development has been shown to boost and
support economic growth worldwide or, alternatively, the
growth of stock markets precedes the economic growth of
a referred country [21–23]. On the other hand, economic
growth is one of the key macroeconomic variables influ-
encing FX rates of a given country [18, 19]. Consequently,
stock markets and FX rates are intertwined as well. From
one side, stock markets growth suggests expanding econ-
omy which in turn leads to currency appreciation. From
the other side, appreciating currency mitigates profits of
stock market foreign investors. The latter relationship
is essential for rather small economies whose stock mar-
kets are strongly influenced by foreign capital. Here we
focus on three such economies — the Czech Republic,
Hungary and Poland — which form a majority of the
Visegrad Group (less Slovakia which has already adopted
the Euro and it is thus not relevant for our analysis),
i.e. the group of the Central European post-communist
countries. Even though the countries are geographically
close, their economic situation and specifically the devel-
opment of their stock markets varies considerably (rang-
ing from the large Polish market to the quite shallow
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Czech market). We analyze the dependence between
the local stock markets (specifically the stock indices)
and the local currencies. As the relationship between
these is complex, the effect may transmit gradually and
it may thus be different for various scales (time horizons).
To uncover such characteristics, we utilize a regression
framework based on the detrended fluctuation analysis
and detrending moving average, which is newly intro-
duced here. As an additional methodological novelty,
we propose a two-step approach to control for endogene-
ity between stock indices and FX rates. The expected
proportionality between a growing stock market and an
appreciating currency is complemented by an uncovered
variability across scales for all three analyzed countries.

2. Methodology
2.1. Model

We are interested in a basic relationship between a
foreign exchange rate (FX) and a stock index (INDEX).
Such model can be written as

FXt = β0 + β1INDEXt + εt, (1)
where the parameter of interest is β1, which represents
an effect of a change in the stock index on the foreign
exchange rate keeping other factors in the error term
ε fixed. However, as argued in Introduction section, a di-
rection of the relationship is not clear and it can, in fact,
be bidirectional. This forms a well-known endogeneity
problem causing the least squares estimators of β1 to be
biased and inconsistent. As a remedy, the instrumen-
tal variable (IV) estimator procedure [24–26] is utilized
here. Specifically, we need at least one instrumental vari-
able which is exogenous to FX in Eq. (1) but is correlated
with INDEX. Crude oil serves as an ideal candidate as it
is tightly connected to stock markets (and even more so
in the recent years after the global financial crisis) but

(908)

http://dx.doi.org/10.12693/APhysPolA.129.908
mailto:kristouf@utia.cas.cz


Scaling of Dependence between Foreign Exchange Rates. . . 909

it does not play a critical role in the FX markets [27].
In turn, we get a complementary regression equation con-
necting all three variables

INDEXt = α0 + α1FXt + γ1OILt + νt. (2)
The IV procedure stems in fitting the right-hand side en-
dogenous variables in Eq. (1), in our case INDEX, with
all exogenous variables of our system of equations, in our
case OIL. Equation (1) is then rewritten using the fitted
values as

FXt = β0 + β1 ̂INDEXt + εt. (3)
The least squares estimator of β1 is then consistent given
the instrumental variable is a good instrument, i.e. it
is correlated with INDEXt. In Results section, we show
that this is in fact the case. To follow a standard given in
the topical literature, we study the logarithmic first dif-
ferences of the original series to eschew non-stationarity
issues and major asymmetries in the analyzed time se-
ries. Our procedure then transforms to

∆ log(FXt) = β0 + β1 ̂∆ log(INDEX)t + εt,

̂∆ log(INDEX)t = α̂0 + α̂1∆ log(OILt). (4)
For the estimation purposes, we utilize the recently pro-
posed detrended fluctuation analysis based regression
which allows for disentangling the effect into specific
scales. In addition, we introduce a complementary re-
gression estimation based on the detrending moving av-
erage procedure.

2.2. DFA and DMA based regression
and estimation specifics

We shortly recall the necessary steps of the detrended
fluctuation analysis (DFA), which is a popular method for
describing the fractal nature and long-range dependence
properties of time series [28–31]. For time series {xt}, a
profile is constructed asXt =

∑t
i=1 (xi − x̄) which is split

into non-overlapping boxes of length s usually referred to
as a scale. In a box between j and j + s− 1, a linear fit
of a time trend X̂k,j is obtained for j ≤ k ≤ j + s − 1.
Fluctuation function f2X(s, j) is defined for each box of
scale s as

f2X,DFA(s, j) =

∑j+s−1
k=j (Xk − X̂k,j)

2

s− 1
.

The fluctuation f2X,DFA(s, j) is further averaged over all
boxes of length s to get

F 2
X,DFA(s) =

∑T−s+1
j=1 f2X(s, j)

T − s
. (5)

For bivariate series {xt} and {yt}, the detrended cross-
correlation analysis (DCCA or DXA) [32, 33] is based on
the generalized fluctuation function

f2DCCA(s, j) =

∑j+s−1
k=j (Xk − X̂k,j)(Yk − Ŷk,j)

s− 1
,

which is again averaged over boxes of length s to find

F 2
XY,DCCA(s) =

∑T−s+1
j=1 f2XY (s, j)

T − s
. (6)

As the fluctuations F 2
X,DFA(s) and F 2

XY,DCCA(s) can be
seen as scale-dependent variance and covariance, respec-
tively, these can be further used in correlation and re-
gression analyses [34, 35]. Kristoufek [36] utilizes this
correspondence and proposes a new regression framework
based on the detrended fluctuation and detrended cross-
correlation analyses that can disentangle the relationship
to specific scales. An important advantage over related
correlation coefficients [34, 37] is the interpretation of
the estimated parameter as a direct effect of one variable
on the other. Correlation coefficient gives us information
only about strength of the relationship but not the actual
size of the effect. Specifically, the least squares estima-
tor is rewritten using the scale-dependent variance and
covariance so that we have

β̂DFA(s) =
F 2
XY,DCCA(s)

F 2
X,DFA(s)

(7)

with a use of fluctuations defined in Eqs. (5), (6). More
concretely, the DFA-based estimator β̂DFA(s) is based
on a substitution of the scale-dependent variance and co-
variance into the standard least squares estimator for a
simple regression (a more detailed treatment is provided
in Ref. [36]). Scale-specific residuals, i.e. deviations of
the fitted values xtβ̂DFA(s) from the actual values yt, are
obtained through

ût(s) = yt − xtβ̂DFA(s)− yt − xtβ̂DFA(s). (8)

The correction yt − xtβ̂DFA(s) is necessary here to ensure
that residuals have a zero mean and it in fact substitutes
the intercept estimation. Using the residuals ût(s), vari-
ance of the β̂DFA(s) estimator is given as

var
(
β̂DFA(s)

)
=

1

T − 2

F 2
û,DFA(s)

F 2
X,DFA(s)

. (9)

In the same logic, we can reformulate other methods
originally developed for the fractal and long-range depen-
dence analyses to get new estimators for specific scales.
As argued by Kristoufek [37, 38], the detrending moving
average represents a suitable framework which is com-
parable to the DFA–DCCA setting on the performance
basis but it is also computationally less demanding.

The detrending moving average (DMA)
method [6, 39, 40] is based on the variance scaling
with respect to the moving average window length λ.
The method has been further generalized into a bivari-
ate setting [41, 42] and utilized for a construction of
new correlation coefficient [37]. Specifically, for time
series {xt} and {yt}, we construct integrated series
Xt =

∑t
i=1 xi and Yt =

∑t
i=1 yi for t = 1, 2, . . . , T where

T is the time series length which is common for both
series. Fluctuation function FX,DMA is defined as:

F 2
X,DMA(λ)=

1

T−λ+1

bT−θ(λ−1)c∑
i=bλ−θ(λ−1)c

(
Xt−X̃t,λ

)2
, (10)

where λ is the moving average window length and θ is a
factor of the moving average type (forward, centered and
backward for θ = 0, θ = 0.5 and θ = 1, respectively).
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X̃t,λ represents the specific moving average with the
window size λ at time t. It has been shown [43] that
the centered moving average (θ = 0.5) performs the best
compared to the other alternatives so that we choose
this setting as well.

For the bivariate series, we have the bivariate fluc-
tuation F 2

XY,DMCA (DMCA for the detrending moving-
average cross-correlation analysis) defined as:

F 2
XY,DMCA(λ) =

1

T − λ+ 1

bT−θ(λ−1)c∑
i=bλ−θ(λ−1)c

×
(
Xt − X̃t,λ

)(
Yt − Ỹt,λ

)
. (11)

Parallel to Eq. (7), we define the DMA-based estimator
for a scale λ as:

β̂DMA(λ) =
F 2
XY,DMCA(λ)

F 2
X,DMA(λ)

. (12)

The residuals and variance of the estimator are parallel
to the DFA case.

We thus have two estimators of the effect given by the
first equation of the system in Eq. (4). This is, how-
ever, the second step of the analysis. For the first step,
i.e. estimating the second equation of Eq. (4), we use es-
timators given by averaging either Eq. (7) or Eq. (12)
over all analyzed scales. This way, we get a fitted value
of the endogenous variable INDEX using the exogenous
variable OIL. The procedure is in turn consistent under
endogeneity.

3. Results and discussion

We analyze the relationship between foreign exchange
rates and stock market indices of three Central European
countries — the Czech Republic, Hungary and Poland.
Specifically, we study the Czech koruna (CZK), Hungar-
ian forint (HUF) and Polish zloty (PLN) as represen-
tatives of currencies, and the Prague Stock Exchange
PX-GLOB index, Budapest Stock Exchange BUX in-
dex and Warsaw Stock Exchange WIG20 index for stock
market indices. The analyzed series cover a range be-
tween 4.1.2010 and 31.1.2016 (approximately 1500 ob-
servations for each country). The crude oil price is repre-
sented by the Brent spot prices covering the same period.

The transmission from stock market changes to FX
rates is estimated using the two-equation system de-
scribed in Eq. (4). Specifically, the second equation is
fitted using the DFA/DCCA and DMA/DMCA proce-
dures to get fitted values of a relevant stock market in-
dex. These are then input into the first equation to avoid
endogeneity inconsistency. For the DFA method, we set
a minimum scale equal to 10 (smin = 10) and a maximum
scale equal to 300 (smax = 300 ≈ T/5). The system is es-
timated for each scale between smin and smax with a step
of 10. Similarly for the DMA method, we set a minimum
length of the moving average window to 11 (λmin = 11,
odd numbers are needed due to the central moving aver-
aging), a maximum length is set to 301 (λ = 301 ≈ T/5)
and a step between scales is set to 10 here as well.

For each pair of the FX rate and stock market, we run
a weak instrumental variable test, which stems in test-
ing the instrument significance in the second equation
of Eq. (4). For each pair and both the DFA and DMA
techniques, the null hypothesis of a weak instrument
is rejected at any reasonable significance level, i.e. the
p-values are well below 0.0001. Using the crude oil prices
thus turns out to be a correct choice.

Fig. 1. Relationship between stock market indices and
connected FX rates. The rows represent countries
— the Czech Republic, Hungary and Poland, respec-
tively — and columns represent the currency pairs —
the Euro (EUR) and the U.S. dollar (USD), respec-
tively. On the y-axes, the estimates (solid lines) and
the 95% confidence intervals (dashed lines) based on
DFA (DCCA) are shown in black and the ones based
on DMA (DMCA) in gray. The x-axes represent scale
measured in days.

The resulting effects between stock market indices and
FX rates are illustrated in Fig. 1. The rows represent
countries — the Czech Republic, Hungary and Poland,
respectively — and the columns represent the currency
pairs — the Euro (EUR) and the U.S. dollar (USD), re-
spectively. The estimates (solid lines) and the 95% confi-
dence intervals (dashed lines) based on DFA (DCCA) are
shown in black and the ones based on DMA (DMCA) in
gray. The estimates based on DFA and DMA (or DCCA
and DMCA) are very similar and they overlap in most
cases. However, the DMA estimates are much smoother
with varying scales. As for the overall findings, there are
several common patterns.

Firstly, the estimated effects are negative for all coun-
tries, all analyzed scales and both used methods. As the
FX rates are defined as the amount of a given local



Scaling of Dependence between Foreign Exchange Rates. . . 911

currency (CZK, HUF or PLN) for a unit of a global cur-
rency (EUR or USD), the negative transmission suggests
that an increasing stock market is connected to an ap-
preciating currency. This effect is statistically significant
for all analyzed combinations. Secondly, the transmission
is below a perfect transmission of −1 for vast majority
of cases (we discuss the scale dependence later). Shocks
to the stock markets thus do not spill over to the FX
markets completely. Thirdly, the effect is higher (in ab-
solute terms) for the USD pairs compared to the EUR
pairs. We attribute this to the fact that all three analyzed
markets are well integrated into the European Union so
that they are mainly affected by common shocks to the
whole EU economy rather than local shocks which would
transfer more into the EUR exchange rate. Fourthly,
the transmission to the EUR pairs is very stable across
scales (which is tightly connected to the previous point)
with the effect of between −0.2 and −0.4 (the Polish ex-
change rate reacts to the local stock market shocks more
strongly than the Hungarian one). This means that if
the stock market increases by a single percentage point,
the FX rates appreciate by between 0.2 and 0.4 percent-
age points. However, this is not true for the CZK/EUR
pair for which the transmission is apparently scale depen-
dent. We attribute this to the Czech Nation Bank mon-
etary policy which, starting from November 2013, has
kept the CZK/EUR exchange around 27 using monetary
interventions. The main motivation behind this move
has been to avoid deflation and thus support consump-
tion as well as to boost exports due to a real currency
depreciation. Fifthly, the effects for the USD pairs vary
strongly with scales. Specifically, the higher the scale
(the longer the time horizon) the stronger the effect. For
CZK and HUF, the effects vary from approximately −0.3
for the lowest scales up to approximately −1, i.e. the per-
fect transmission, for the highest scales (approximately
one year). For PLN, the transmission is overall stronger
and it varies between approximately −0.6 up to more
than −1. The Polish FX market thus tends to overreact
to the stock market shocks in the long term. However,
the claim is slightly weakened by the estimates based
on DMA which are more conservative. Nevertheless, the
Polish FX market is more sensitive to the local stock
market shocks than the other two.

4. Summary

We have introduced two novel methodological ap-
proaches — the DMA-based regression coefficient esti-
mator and the scale-dependent instrumental variable es-
timator — and have shown their utility on a specific case
of dependence between stock markets and connected for-
eign exchange rates. The methodology has been proven
useful as we have uncovered several interesting findings.
The proposed methodology can be applied to any system
with potential endogeneity issues if one is interested in
the scale variability of the effect of interest.
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