Symmetry condition for partially factorizable discrete distributions

Aleš Kuběna

ÚTIA, Czech Academy of Sciences Prague, Czech Republic e-mail: kubena@utia.cas.cz

Definition

For a hypergraph $\mathcal{A} \subseteq 2^{I}$, |I| = n, we define a probability manifold of everywherenonzero \mathcal{A} -factorizable distributions on $\Omega_{I} = \{0, 1\}^{I}$,

$$\mathcal{P}_{\mathcal{A}} = \left\{ \mathbf{p} : \exists_{\theta_Z; Z \in \mathcal{A}} \forall_{X \subseteq I} \ \mathbf{p}(X = (1, \dots, 1)) = \prod_{Z \in \mathcal{A} \cap 2^X} \theta_Z \right\}$$

Let $\mathcal{P}_k = \mathcal{P}_{\{Z:|Z|=k\}}$ Any ordering $\varphi: I \to \{0, \dots, n-1\}$ define a projection operator

$$m_{\varphi}: \mathcal{P}_{\mathcal{A}} \to \mathcal{P}_1, \quad m_{\varphi}(\mathbf{p})|_k = \frac{\mathbf{p}(\{i: \varphi(i) \leq k\})}{\mathbf{p}(\{i: \varphi(i) < k\})}$$

For a permutation group $G \leq S_n$ let $m_{\varphi G}(\mathbf{p})|_k = GeoMean_{\pi \in G}(m_{\pi \cdot \varphi}(\mathbf{p})|_k)$.

Results

We proved that there exist an algebraic condition for the permutation group G, for which the operator $m_{\varphi G}$ is defined unambiguously on $\mathcal{P}_{\mathcal{A}}$, that is, $m_{\varphi G}$ is independent of the original order φ :

Let sOrb(G) be the set of all orbits of all subgroups of G. We claim that $m_{\varphi G}$: $\mathcal{P}_{\mathcal{A}} \to \mathcal{P}_1$ is independent of the original order φ iff $\mathcal{A} \subseteq sOrb(G)$. Such permutation groups G can be classified for $\mathcal{A}_k = \begin{pmatrix} I \\ k \end{pmatrix}, k > 2$. The case k = 2 is hard.

In the special case $\mathcal{A} = 2^{I}$, the condition $\mathcal{A} \subseteq sOrb(G)$ is satisfied only for the full symmetric group S_n for all n, alternating group A_n for $n \geq 4$, and the image of a non-standard embedding $S_5 \to S_6$ for n = 6. If $\mathcal{A} = \mathcal{A}_k$, then a subgroup $G \leq S_n$ different from S_n and A_n that satisfies $\mathcal{A} \subseteq sOrb(G)$ only exists for $k \leq 6$ or $k \geq n-3$.

On the other hand, the trivial group $G = \{e\}$ guarantees φ -independency only for a system of n independent Bernoulli distributions.

For a general permutation group $G \leq S_n$, the set of all operators $\{m_{\varphi G} : \varphi \in I^n\}$ forms a convex set with dimension

$$\left[\left[u^k \right] \left(e^{\sum_{i=1}^n u^i \frac{\partial}{\partial x_i}} u \frac{\partial}{\partial x_1} - e^{\sum_{i=1}^n u^i \frac{\partial}{\partial x_i}} \right) \right] Z_G(1, 1, \dots, 1)$$

where Z_G is the cycle index of the permutation group G [1] and $e^{\sum_{i=1}^{n} u^i \frac{\partial}{\partial x_i}}$ is applied as a formal operator.

References

- Cameron, P. (1999) Permutation Groups, Cambridge University Press, ISBN 0-521-65379
- [2] Giblisco, P. & all (ed.), (2009) Algebraic and geometric method in statistic, Cambridge University Press, ISBN 9780511642401