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Abstract

Extending the idea of Even and Lehrer (2014) [3], we discuss a general approach to integration based on a given decomposition 
system equipped with a weighting function, and a decomposition of the integrated function. We distinguish two type of decompo-
sitions: sub-decomposition based integrals (in economics linked with optimization problems to maximize the possible profit) and 
super-decomposition based integrals (linked with costs minimization). We provide several examples (both theoretical and realistic) 
to stress that our approach generalizes that of Even and Lehrer (2014) [3] and also covers problems of linear programming and 
combinatorial optimization. Finally, we introduce some new types of integrals related to optimization tasks.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The idea of decomposition of the integrated function f for the integration purposes is a basic feature of con-
structions/definitions of integrals since ever. Recall, e.g., Eudoxus of Cnidus (408–355 BC) exhaustion principle, 
Riemann and Lebesgue integrals (lower and upper integral sums), etc. Integration always merges two sources of 
information, the integrated function and weights of special functions used for decomposition purposes (e.g., mea-
sures assigning weights to sets, i.e., to characterize functions of sets), into a single representative value. In this 
contribution, we will deal with non-negative (measurable) functions and non-negative weights only, supposing al-
ways the monotonicity of the considered weights, and vanishing of such weights for null functions. Both from 
transparency of our ideas as well as for the application purposes in economics and multicriteria decision support, 
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we will always deal with a fixed finite space N = {1, . . . , n}, where n ∈ N is a fixed positive integer. Then the 
power set 2N being considered excludes any measurability constraints. Each function f : N → [0, ∞[ = R+ can 
be seen as an n-dimensional vector x ∈ Rn+, x = (x1, . . . , xn) = (f (1), . . . , f (n)). The aim of this contribution is 
a proposal of a general approach to decomposition based integration, distinguishing sub-decompositions and super-
decompositions. We will stress several integrals known from the literature as particular instances of our approach. 
Moreover, several new types of integrals related to optimization tasks will be introduced and exemplified. The pa-
per is organized as follows. In Section 2 we propose the idea of sub-decomposition based integrals and, similarly, 
super-decomposition approach to integration is discussed in Section 3. We provide several examples of application 
of decomposition integrals, both theoretical as well as realistic. In Section 4 we confront our approach with previ-
ous research in literature, especially with the idea of Even and Lehrer [3]. Particular decomposition based integrals 
are discussed in Section 5. Finally, some concluding remarks and formal proposal for future researches are added in 
Section 6.

2. Sub-decomposition based integrals

Any finite system of vectors of Rn+, (xi )ki=1 = (x1, . . . , xk) ∈ (Rn+)k with k ∈ N, is called a collection, and the set of 
all collections is Rn = ∪k∈N(Rn+)k . A decomposition system is any D ⊆ Rn such that there exists x �= 0 = (0, . . . , 0)

with x ∈ (xi )ki=1 for some collection (xi )ki=1 ∈ D.
As usual, for any two x, y ∈Rn+ with x = (x1, . . . , xn) and y = (y1, . . . , yn), we write x ≤ y whenever xi ≤ yi for 

all i = 1, . . . , n.
Given a decomposition system D, we denote

D̃ = {x ∈ Rn+ | x ∈ (xi )ki=1 for some collection (xi )ki=1 ∈D}.

Conversely, for any X ⊆Rn+, with X containing at least one non-zero vector, we define

DX = {(xi )ki=1 ∈ Rn | xi ∈ X for all i = 1, . . . , k}

as the complete decomposition system generated by X, and clearly D̃X = X and, moreover, DX is the union of all 
decomposition systems D such that D̃ = X.

Definition 1. Let D be a decomposition system. A mapping A : D̃ → R+ is called a weighting function on D whenever

– A(x) ≤ A(y) if x ≤ y, x, y ∈ D̃ (monotonicity),
– A(x) > 0 for some x ∈ D̃ and A(0) = 0 whenever 0 ∈ D̃ (boundary conditions).

Observe that if D̃ =Rn+, then any weighting function A can be seen as an aggregation function (in the sense of [5], 
with related boundary condition, i.e., sup{A(x) | x ∈Rn+} = +∞ replaced by sup{A(x) | x ∈Rn+} > 0).

The following example is inspired by Even and Lehrer [3, example in Section 2].

Example 1. Consider two different work agencies A1 and A2. Each agency provides a couple of workers with exactly 
the same skills. However, each of the four workers can work alone, or together with one or more partners. The possible 
teams are identified with

T = {0,1,2}2 \ {(0,0)} ⊆N2
0,

where (1, 0), (0, 1) represent basic teams formed by a single worker from agency A1 and A2 respectively, while, e.g., 
(2, 1) is the team formed by the two workers from A1 and one indifferently chosen from A2. Suppose we know the 
efficiency of each team, measured in some work unit, given by the weighting function E : T →R+:



S. Greco et al. / Fuzzy Sets and Systems 287 (2016) 37–47 39
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E(1,0) = 1.0
E(2,0) = 2.2
E(0,1) = 1.1
E(0,2) = 2.0
E(1,1) = 2.2
E(2,1) = 3.5
E(1,2) = 3.0
E(2,2) = 4.3.

(1)

Clearly, we want to maximize our efficiency by choosing the best group of teams within the decomposition system 
(let us note that D̃T = T )

DT =
⎧⎨
⎩
(
xj
)k

j=1
| xj ∈ T with

k∑
j=1

xj ≤ (2,2)

⎫⎬
⎭ .

We will return to this example later.

Let D ⊆ Rn be a decomposition system and let A : D̃ → R+ be a weighting function on D. From now, we call 
(A, D) a base for integration on Rn+ (shortly, a base). Given a base (A, D), a vector x ∈ Rn+ is called (A, D)-sub-
integrable if (we use the convention sup∅ = 0)

sup {
k∑

j=1

A(yj ) | (yj )kj=1 ∈ D,

k∑
j=1

yj ≤ x} < +∞, (2)

and we define the set of (A, D)-sub-integrable vectors as

S(A,D) = {
x ∈ Rn+ | x is (A,D)-sub-integrable

}
.

Let us note that S(A,D) �= ∅, since the null vector 0 is (A, D)-sub-integrable for any base.
Now, we can introduce our sub-decomposition based integral.

Definition 2. Let (A, D) be a base for integration on Rn+, then the (A, D)-based sub-decomposition integral is the 
functional I(A,D) : S(A,D) →R+ defined by

I(A,D)(x) = sup {
k∑

j=1

A(yj ) | (yj )kj=1 ∈D,

k∑
j=1

yj ≤ x}. (3)

The following Lemma 1 follows directly by definitions of S(A,D) and I(A,D).

Lemma 1. For all y ∈ S(A,D) and x ≤ y, it holds that x ∈ S(A,D) and I(A,D)(x) ≤ I(A,D)(y).

Remark 1. Let D be a decomposition system and let B :Rn+ →R+ be an aggregation function which is super-additive 
[B(x + y) ≥ B(x) +B(y)], then for the weighting function A = B|D̃ it holds S(A,D) =Rn+ and I(A,D)(x) ≤ B(x) for 
each x ∈Rn+. Obviously, if (x) ∈ D, then I(A,D)(x) = B(x).

Regarding the domain S(A,D) of sub-decomposition integral I(A,D), this depends on both A and D. Suppose that 
(A, D) and (A′, D′) are two bases such that D ⊆ D′ and A ≤ A′|D̃ , then S(A,D) ⊇ S(A′,D′) and I(A,D) ≤ I(A′,D′) on 
S(A′,D′). This will be clear also in the following relevant examples.

Example 2. Consider, e.g., n = 2, D = R2 and A : R2+ → R+ given by A(x, y) = x. Then S(A,R2) = R2+ and 
I(A,R2)(x, y) = x. If we consider the weighting function A′(x, y) = x + √

y, then S(A′,R2) = {(x,0) | x ∈ R+} and 
I(A′,R2)(x, 0) = x, while for any x ∈ R+ and y > 0, (x, y) is non-(A′, R2)-sub-integrable. Indeed, being A′ sub-
additive,
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sup{
k∑

i=1

A′(xi, yi) |
k∑

i=1

(xi, yi) = (x, y)} ≥ lim
n→+∞nA′(x

n
,
y

n
) = lim

n→+∞(x + √
ny) = +∞.

Consider a set of objects (criteria) N = {1, . . . , n}, and define a chain a system 
(
Ej

)k
j=1 such that E1 ⊆ . . . ⊆

Ek ⊆ N . Let D be the set of all collections 
(
cj · 1Ej

)k
j=1

, being cj positive constants and 
(
Ej

)k
j=1 a chain. Now 

consider the weighting function A : D̃ → R+, determined by a monotone measure m : 2N → R+ (m(∅) = 0,
m(N) > 0, and m(E1) ≤ m(E2) whenever E1 ⊆ E2 ⊆ N ), by means of A(c ·1E) = c ·m(E). In this case S(A,D) =Rn+
and I(A,D) is the Choquet integral [2] with respect to measure m.

Other that for the Choquet integral, in majority of integrals known so far (Lebesque, Choquet, Shilkret, Concave, 
Pan, etc. integrals), decomposition systems D such that any x ∈ D̃ can be written in the form c · 1E , where c is 
a positive constant and E a subset of N (1E is the corresponding characteristic function) are considered, and the 
corresponding weighting functions A : D̃ → R+ are then determined by A(x) = A(c · 1E) = c · m(E), being m :
2N → R+ monotone measures. Hence all these integrals are covered by our approach. For more details see Sections 4
and 5.

Typical economical problems deal with finite number of goods g1, . . . , gn, and then weight (price) is assigned to 
groups of goods represented by multisets, i.e., vectors x ∈ Nn

0 where N0 = {0, 1, 2, . . .}. Note that due to limitations 
in storing/production, D̃ is then mostly finite. For this purpose, the next result is important for real applications.

Proposition 1. For any base (A, D) such that D̃ is finite, then S(A,D) =Rn+.

Proof. Let D̃ = {x1, . . . , xm} be finite, and without loss of generality, we can imagine that xj �= 0, j = 1, . . . , m. 
Now, for any y ∈ Rn+ there exist n1, . . . , nm ∈ N such that for each j = 1, . . . , m the vector njx

j exceeds y in some 
component. Thus, we have

sup{
k∑

j=1

A(yj ) | (yj )kj=1 ∈ D,

k∑
j=1

yj ≤ y} ≤ n1A(x1) + . . . + nmA(xm) < +∞. �

Remark 2. If (A, D) is a base such that S(A,D) = Rn+, then I(A,D) : Rn+ → R+ is a weighting function on Rn+. 
Indeed, monotonicity of I(A,D) and condition I(A,D)(0) = 0 follow by definition and, moreover, since A is a weighting 
function, there exists x ∈ D̃ such that A(x) > 0; suppose that x belongs to the collection (yj )kj=1 ∈ D, it follows that 

I(A,D)

(∑k
j=1 yj

)
≥∑k

j=1 A(yj ) ≥ A(x) > 0.

Let us note that I(A,D) restricted on D̃ is not, in general, a weighting function, consider, e.g., D {((1,3,0) , (3,1,0))}
with A(1, 3, 0) = A(3, 1, 0) = 2, then it holds I(A,D)(1, 3, 0) = I(A,D)(3, 1, 0) = sup∅ = 0. Now suppose there exists 
x ∈ D̃ such that I(A,D)(x) > 0 and then I(A,D) is a weighting function on D̃ and we can consider I(I(A,D),D

). However, 
in this case, the two weighting function A and I(A,D) are non-comparable and also considering sub-decomposition 
integrals, we have that I(A,D) is non-comparable with I(I(A,D),D

), see Example 3.
A case where I(A,D) and I(I(A,D),D

) are comparable is when the weighting function A is super-additive, since in this 

case for any x and any collection (yj )kJ=1 ∈ D such that 
∑k

j=1 yj ≤ x, it follows that 
∑k

j=1 A(yj ) ≤ A(
∑k

j=1 yj ) ≤
A(x), and then I(A,D)(x) ≤ A(x) and, consequently, I(I(A,D),D

) ≤ I(A,D).
Finally, let us note that when D =Rn and S(A,D) =Rn+, then I(A,D) = I(I(A,D),D

).
Example 3. Consider D {((0,2,1) , (2,0,0)) , ((2,2,1) , (0,1,2)) , ((0,1,2))}, and the weighting function A(0, 2, 1)

= A(2, 0, 0) = A(0, 1, 2) = 2, A(2, 2, 1) = 3. It follows that I(A,D)(0, 2, 1) = I(A,D)(2, 0, 0) = sup∅ = 0,
I(A,D)(0, 1, 2) = 2 and I(A,D)(2, 2, 1) = 4, I(A,D)(2, 3, 3) = 5. It is easily computed that I(I(A,D),D

)(2, 2, 1) = 0 and 
I(I(A,D),D

)(2, 3, 3) = 6.

When D = Rn, we are able to enunciate sufficient conditions for existence of I(A,Rn) on all Rn+ (for the proof of 
Theorem 1 and subsequent corollaries, see [7]).
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Theorem 1. S(A,Rn) =Rn+ if and only if the constant vector 1 = (1, . . . , 1) is (A, D)-sub-integrable.

Corollary 1. Let A :Rn+ →R+ be a weighting function on Rn such that for each y ∈ Rn+, A(x) ≤ c ·max {y1, . . . , yn}, 
where c is some fixed constant from ]0,∞[. Then S(A,Rn) =Rn+.

Due to Corollary 1, also the domination by a weighted sum W : Rn+ → R+, W(x) = ∑n
i=1 wixi , with w =

(w1, . . . , wn) ∈ Rn+ \ {0}, is sufficient to guarantee that S(A,Rn) = Rn+ (i.e., A(y) ≤ W(y) for each y ∈ Rn+ is con-
sidered).

Corollary 2. Let A : Rn+ → R+ be a weighting function on Rn and let, for a fixed ε > 0, {A(y)
k

| y ∈ Rn+,

max {y1, . . . , yn} ≤ k} be bounded by a fixed constant c, independently of k ∈ ]0, ε]. Then S(A,Rn) =Rn+.

The following example shows that, in general (i.e. when D�Rn), Theorem 1 is not valid.

Example 4. Consider in R2+ the following decomposition system

D =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝(1,1) ,

n times︷ ︸︸ ︷(
1

n
,

1

n

)
, . . . ,

(
1

n
,

1

n

)⎞⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

n∈N

.

Now, independently from the weighting function, I(A,D)(1, 1) = sup∅ = 0. On the other hand, if we choose 
A(x, y) = x + √

y, we have

I(A,D)(2,2) = sup

{
A(1,1) +

n∑
1

A

(
1

n
,

1

n

)}
n∈N

= sup
{
3 + √

n
}
n∈N = +∞.

Example 5. Let us reconsider Example 1. To choose the best group of teams, we have to compute efficiency of various 
complete groups (i.e. where we use all four workers), which can be easily done due to small quantity of data.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 · E(1,0) + E(0,2) = 2.0 + 2.0 = 4.0
2 · E(1,0) + 2 · E(0,1) = 2.0 + 2.2 = 4.2
E(2,0) + E(0,2) = 2.2 + 2.0 = 4.2
E(2,0) + 2 · E(0,1) = 2.2 + 2.2 = 4.4
E(1,2) + E(1,0) = 3.0 + 1.0 = 4.0
E(2,2) = 4.3
E(1,1) + E(1,0) + E(0,1) = 2.2 + 1.0 + 1.1 = 4.3
2 · E(1,1) = 4.4
E(2,1) + E(0,1) = 3.5 + 1.1 = 4.6 = I(E,DT )(2,2).

(4)

System (4) illustrates how the best solution, corresponding to I(E,DT )(2, 2), is obtained. This example can be 
generalized, by thinking that the two agencies A1 and A2 can provide any number of workers and then the possi-
ble teams are identified with elements of T = N2

0 \ {(0, 0)}. Supposing that we know the efficiency of all possible 
teams, expressed by the weighting function E : T → R+ and supposing that the first agency provides n1 workers 
and the second agency n2, then the best group of teams corresponds to decompositions of (n1, n2) allowing the 
computation of I(E,DT )(n1, n2). For n1 and n2 large enough we need the use of linear programming techniques to 
compute I(E,DT )(n1, n2), however I(E,DT )(n1, n2) is the theoretical solution to the problem, in the sense that the 
sub-decomposition integral definition provides the algorithmic to solve the problem.

Let us consider Examples 1 and 5. The optimal solution we found, I(E,DT )(2, 2) = 4.6, can be also obtained by 
using the concave integral [9] and choosing an “ad hoc” measure, as we next describe. We identify the set of the 
four workers with N = {1, 2, 3, 4} where 1 and 2 are the two workers from the first agency and 2, 3 those from 
the second. Consider the measure ν : 2N → R+ given by ν(∅) = 0, ν(1) = ν(2) = E(1, 0), ν(3) = ν(4) = E(0, 1), 
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ν(12) = E(2, 0), ν(34) = E(0, 2), ν(13) = ν(14) = ν(23) = ν(24) = E(1, 1), ν(123) = ν(124) = E(2, 1), ν(134) =
ν(234) = E(1, 2) and ν(1234) = E(2, 2). Now the best solution for the problem proposed in Example 1 is given 
by 

∫ cav
(1,1,1,1)dν = 1 · ν(123) + 1 · ν(3) = 4.6. Also the generalization of the problem discussed at the end of 

Example 5 can be obtained using the concave integral, in the sense that I(E,DT )(n1, n2) =
∫ cav

ydν where N =
{1, 2, . . . , (n1 + n2)}, y = (1, 1, . . . , 1) ∈ Nn1+n2 and ν : 2N →R+ is an opportune capacity. However this is possible 
only because we have chosen an integer components vector (n1, n2) and we have allowed only for decomposition of it 
in integer components vectors. Suppose to have two numerical control machines M1 and M2 and they can work alone 
or together, the first machine depends on a parameter α1 and the second on a parameter α2, with (α1, α2) ≤ (2

√
2, 2). 

The possible setting of these two machines are identified with T = ]0, α1] × ]0, α2], and we know the efficiency of 
each combination of these machines given by E : T → R+. Finally the best setting for the couple of machines is 
obtained by solving I(E,DT )(α1, α2). Suppose that I(E,DT )(α1, α2) = E(2

√
2, 

√
2) + E(0, 2 − √

2). In this case no 
measure can be specified in order to solve the problem using the concave integral.

3. Super-decomposition based integrals

We open this section with a realistic example, providing motivations to our approach to super-decomposition 
integral.

Example 6. Consider a Fast Food (FF) which, basically, offers three goods (basic-offers)

g1 = hamburger, g2 = chips, g3 = coke.

To increase the sales, the FF proposes also discounted compound-offers, e.g. to buy conjointly 1 [hamburger + 
chips] is less expansive than 1 hamburger and 1 chips bought separately. Let us suppose that the FF set of offers is

S = {(1,0,0), (0,1,0), (0,0,1), (1,1,1), (2,0,0), (1,0,1), (0,1,1), (2,1,1)} ,

where (1, 0, 0), (0, 1, 0) and (0, 0, 1) represent, respectively, the basic offers hamburger, chips and coke, while, e.g., 
(1, 1, 0) represents the compound offer [hamburger + chips]. To attract the consumers, FF propose a price function 
P : S →R+, which is typically strictly sub-additive, i.e.,

P(x, y, z) <

n∑
i=1

P(xi, yi, zi),

for all (x, y, z), (xi, yi, zi) ∈ S such that (x, y, z) =∑n
i=1(xi, yi, zi), n ≥ 2. For example, P(1, 1, 1) < P(1, 0, 1) +

P(0, 1, 0) < P(1, 0, 0) + P(0, 1, 0) + P(0, 0, 1). Let us suppose that FF prices are

P(1,0,0) = 2.80, P (0,1,0) = 1.60, P (0,0,1) = 1.80, P (1,1,1) = 4.80,

P (2,0,0) = P(1,0,1) = P(0,1,1) = 3, and P(2,1,1) = 5.50.

Let us suppose also that a group of friends have to buy altogether 50 hamburgers, 30 chips and 60 cokes, and, obvi-
ously, they want to pay as little as possible by taking advantage of FF offers. This is a linear programming problem, 
which can be formalized as follows (xa is integer quantity of (1, 0, 0), Pa = P(1, 0, 0) and so on)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

PG(50,30,60) = min{xaPa + xbPb + xcPc + xaaPaa + xacPac + xbcPbc + xabcPabc + xaabcPaabc}
xa + 2xaa + xac + xabc + 2xaabc = 50
xb + xbc + xabc + xaabc = 30
xc + xac + xbc + xabc + xaabc = 60
x , x , . . . , x integer.

(5)
a b aabc
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But consider, for example, the necessity to buy 19 hamburgers, 10 chips and 10 cokes. Since 5.5 · 10 < 5.5 ·
9 + (2.8 + 1.6 + 1.8), we understand that to find the optimal solution, in equation (5) we must replace equality on 
constrains with inequality, i.e.,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

PG(50,30,60) = min{xaPa + xbPb + xcPc + xaaPaa + xacPac + xbcPbc + xabcPabc + xaabcPaabc}
xa + 2xaa + xac + xabc + 2xaabc ≥ 50
xb + xbc + xabc + xaabc ≥ 30
xc + xac + xbc + xabc + xaabc ≥ 60
xa, xb, . . . , xaabc integer.

(6)

We will return on this example later, after introducing super-decomposition based integrals.

Sub-decomposition based integrals can be considered as an optimization problem to maximize the possible profit. 
In a dual way modeling the minimization of the costs, one can introduce super-decomposition based integrals.

However, there is a crucial difference concerning the possible inputs x ∈ Rn+ to be evaluated by a super-
decomposition based integral. Indeed, for a fixed decomposition system D, D̂ = {∑k

j=1 yj | B = (yj )kj=1 ∈ D} is 
the set of maximal elements of the set of all elements x ∈ Rn+ covered by some collection B from D, i.e., a super-
decomposition based integral can be defined only on the domains D̄ ⊆ Rn+ given by D̄ = {x ∈ Rn+ | x ≤∑k

j=1 yj for 

some collection B ∈D} = ∪
y∈D̂[0, y]. Obviously, if D̃ = Rn+ then also D̄ =Rn+.

Given a base (A,D) and x ∈ D̄, it results that

0 ≤ inf {
k∑

j=1

A(yj ) | x ≤
k∑

j=1

yj , (yj )kj=1 ∈D} < ∞.

If there exists x ∈ D̄ such that inf{∑k
j=1 A(yj ) | x ≤∑k

j=1 yj , (yj )kj=1 ∈ D} > 0, (A,D) is called a base for sup-
integration (shortly,a sup-base). For example, (A,Rn) is not a base for sup-integration when considering the product 
A = Π or A = min [consider the decomposition x = (x1, 0, . . . , 0) + . . . + (0, . . . , 0, xn)].

Definition 3. Let (A, D) be a base for sup-integration on Rn+, then the (A, D)-based super-decomposition integral is 
the functional I (A,D) : D̄ → R+ defined by

I (A,D)(x) = inf {
k∑

j=1

A(yj ) | x ≤
k∑

j=1

yj , (yj )kj=1 ∈ D}. (7)

Obviously, if D =Rn (and then D̄ =Rn+), then I (A,D) : Rn+ →R+ is an aggregation function.

Remark 3. If an aggregation function B : Rn+ → R+ is sub-additive [B(x + y) ≤ B(x) + B(y)], and if considering 
the weighting function A = B|D̃ , the couple (A,D) is a sup-base, then I (A,D)(x) ≥ B(x) for each x ∈ D̄. Obviously, 
if (x) ∈ D, then I (A,D)(x) = B(x).

Example 7. Continuing in Example 6, we can assume

D̃ = S = {(1,0,0), (0,1,0), (0,0,1), (1,1,1), (2,0,0), (1,0,1), (0,1,1), (2,1,1)} ,

and DS is the decomposition system containing all collections building with elements from S . It is clear that the 
solution of problem (6) (the minimal price that the group should pay to satisfy their constrains) is I (P,DS)(50, 30, 60). 
Using a linear programming solver it results

I (P,S)(50,30,60) = 10 · Paabc + 30 · Pac + 20 · Pbc = 205.
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Example 8. Let us consider the probabilistic sum (this is a weighting function and a t-conorm) B : [0, 1]2 → R+
given by B(x, y) = x + y − xy and the decomposition system D[0,1]n = {(xj )kj=1 ∈ Rn | xj ∈ [0, 1]n j = 1, . . . , k}. 
Then D̃[0,1]n = [0, 1]n, D̄[0,1]n =Rn+, and I (B,D[0,1]n ) : R2+ →R+ is given by

I (B,D[0,1]n )(x, y) =
{

(k + 1)(x + y − k) − xy if (x, y) ∈ [k, k + 1]2 for some k ∈N,

max (x, y) otherwise.

Observe that I (B,D[0,1]n ) can be seen as a pseudo-addition on [0, ∞] (when extended by monotonicity also for infinite 
inputs), [16,8], I (B,D) = (〈k, k + 1, B〉 | k ∈ N0), i.e., it is associative, commutative aggregation function on R2+ with 
neutral element e = 0. Let us note that I (B,D[0,1]n )(x, y) + I(B,D[0,1]n )(x, y) = x + y for all x, y ∈ [0, ∞], i.e., our 
integrals solves Frank’s functional equation [4,8] on [0, ∞].

4. Relation with some other integrals

Let N = {1, . . . , n} be a finite set and let m : 2N → R+ be a monotone measure. Even and Lehrer [3] consider 
a decomposition set H being a non-empty set of finite systems1 of subsets of N , that is H = {C1, . . . ,Ck}, with 

Ci =
(
Ei

j

)mi

j=1
for all i = 1, . . . , k, being Ei

j ⊆ N for all j = 1, . . . , mi . The H-decomposition integral is given by

IH,m(x) = sup {
k∑

j=1

ajm(Ej ) | (Ej )
k
j=1 ∈H, a1, . . . , ak ≥ 0,

k∑
j=1

aj 1Ej
≤ x}. (8)

It is not difficult to check that then IH,m = I(Am,DH), where the decomposition system DH is defined by DH =
{(aj 1Ej

)kj=1 | (Ej )
k
j=1 ∈ H, a1, . . . , ak ≥ 0}, and the weighting function Am : D̃H → R+ is given by Am(c · 1E) =

c · m(E). Thus our approach extends the proposal of Even and Lehrer [3]. In particular, it holds:

– if H = {(E)|E ⊆ N}, then I(Am,DH) is the Shilkret integral [15];
– if H = {(Ej )

k
j=1 | (Ej )

k
j=1 is a chain}, then I(Am,DH) is the Choquet integral [2];

– if H = {(Ej )
k
j=1 | {E1, . . . , Ek} is a partition of N}, then I(Am,DH) is the PAN integral [17]; if m is additive, then 

the classical Lebesque integral is recovered;
– if H = {(Ej )

k
j=1 | Ej ⊆ N, j = 1, . . . , k}, I(Am,DH) is the concave integral [9].

The couple (A, ν) is defined a fuzzy capacity [9] if (1, . . . , 1) ∈ A ⊆ [0, 1]n and ν : A → R+ is monotonic, con-
tinuous, and there is a positive K such that for every a = (a1, . . . , an) ∈ A, it holds ν(a) ≤ K

∑n
i=1 ai . The concave 

integral of x ∈ Rn+ with respect to the fuzzy capacity (A, ν) [9] is

cav∫
xd(A,ν) = sup

{
k∑

i=1

αiν(ai ) | ai ∈ A,αi ≥ 0, i = 1, . . . , n and
k∑

i=1

αiai ≤ x

}
.

If we consider X = {α · a | α ≥ 0 and a ∈ A}, DX = {(xi )ki=1 ∈ Rn | xi ∈ X} and the weighting function B : X → R+
defined by B(α · a) = α · ν(a) then, it results I(B,DX)(x) = ∫ cav

xd(A,ν) for all x ∈ Rn+.
For several other integrals covered by our approach we recommend [3,12].
Recently introduced superadditive integral [7] deals with a fixed decomposition system D = Rn, and then the 

weighting function A defined on D̃ = Rn+ is just an aggregation function. The superadditive integral A∗ : Rn+ → R+
is given by A∗(x) = sup({∑k

j=1 A(yj ) |∑k
j=1 yj ≤ x}). Obviously, A∗ = I(A,Rn).

In the framework of super-decomposition based integrals, we recall that, for a monotone measure m:

1 Effectively, Even and Lehrer [3] speak about sets whereas we speak about systems. Precisely, they define a collection C to be a set of subsets 
of N , i.e. C ⊆ 2N , and then they consider sets of collections. However their approach can be equivalently given using systems and this allow us to 
demonstrate that our approach is more general.
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– if H = {(Ej )
k
j=1 | (Ej )

k
j=1 is a chain}, then I (Am,DH) is the Choquet integral;

– if H = {(Ej )
k
j=1 | Ej ⊆ N, j = 1, . . . , k} \{(∅)}, then I (Am,DH) is the convex integral recently introduced in [11].

Also the subadditive integral A∗ : Rn+ → R+ introduced in [7] can be seen as super-decomposition based integral, 
A∗ = I (A,Rn).

4.1. The Choquet integral with respect to a level dependent capacity

An example of an integral which cannot be considered a sub-decomposition based integral is the Choquet integral 
with respect to a level dependent capacity [6]. Given a set of criteria N = {1, . . . , n}, a level dependent capacity is an 
index set (νt )t∈R+ such that for all t ∈ R+, νt : 2N → [0, 1] is a capacity. The Choquet integral of x = (x1, . . . , xn) ∈
Rn+ with respect to the level dependent capacity (νt )t∈R+ is given by Chl(x, νt ) =

∫∞
0 νt ({i ∈ N | xi ≥ t})dt . 

In this case the integral brings too much information to be modeled via a decomposition of the integrated function, 
x = y1 + . . . + yk , and weights assigned to addends w(y1),...,w(yn). Consider the following example. Given N =
{1, 2, 3}, and x = (3, 2, 5) it results Chl(x, νt ) =

∫ 2
0 νt ({1,2,3})dt + ∫ 3

2 νt ({1,3})dt + ∫ 5
3 νt ({3})dt . This integral de-

composition “suggests” the vector decomposition x = (3, 2, 5) = (2 −0)(1, 1, 1) +(3 −2)(1, 0, 1) +(5 −3)(0, 0, 1) =
(2 − 0)1N + (3 − 2)1{1,3} + (5 − 3)1{3}, however to apply the decomposition approach we should assign weights to 
terms (a, b, E) ∈R2+ × 2N with a ≤ b, being these weights 

∫ b

a
νt (E)dt .

5. Particular decomposition based integrals

Inspired by set decomposition systems recalled in Section 4, one can define particular vector decomposition sys-
tems. Namely we can consider:

– for a fixed k ∈N, Dk = {(yj )kj=1 | yi and yj are comonotone for any i, j ∈ {1, . . . , k}}. Note that if each yj = aj ·
1Ej

for aj > 0 and Ej �= ∅, then (yj )kj=1 ∈Dk if and only if (Ej )
k
j=1 is a chain in N , compare set decomposition 

system for the Choquet integral; and we denote D∞ =⋃∞
k=1 Dk ;

– for a fixed k ∈ {1, . . . , n}, D(k) = {(yj )kj=1 | suppyj ∩ suppyi = ∅ whenever i �= j}; these decomposition systems 
are related to set decomposition system inducing PAN-integral;

– for a fixed k ∈ N, D(k) = {(yj )kj=1}; clearly, D(∞) = ⋃∞
k=1 D(k) = Rn, and these decomposition systems are 

related to the concave (convex) integral.

Note that for k = 1, D1 =D(1) =D(1) = {(y) | y ∈ Rn+}, and then D̃1 =Rn+. For any aggregation (weighting) function 
A : Rn+ → R+ it holds I(A,D1) = I (A,D1) = A. Moreover, I(A,D(∞)) = A∗ and I (A,D(∞)) = A∗, compare [7].

We turn our attention to the decomposition system D∞ (recall its relation to the Choquet integral). Due to Schmei-
dler [13,14], Choquet integral can be characterized by the comonotone additivity. Recall that two vectors x, y ∈ Rn+
are comonotone whenever (xi − xj )(yi − yj ) ≥ 0 for any i, j ∈ {1, . . . , n}. The mutual comonotonicity of a collection 
C = (yj )kj=1 ∈ D∞ means that there is a common chain (Er)

n
r=1 in N such that each yj , j ∈ {1, . . . , k}, can be ex-

pressed as a linear combination yj =∑n
r=1 ar,j · 1Er , with non-negative constants ar,j . Moreover for any set E ⊆ N , 

the minimal values of set {yj
i | i ∈ E}, j = 1, . . . , k, are attained in a single coordinate iE ∈ E. This observation has 

an important consequence formalized in the next Lemma.

Lemma 2. Let x, z ∈Rn+ be comonotone and let x =∑k
j=1 yj , z =∑m

i=1 ui , where (yj )kj=1 and (ui )mi=1 are comono-

tone systems. Then also ((yj )kj=1, (u
i )mi=1) is a comonotone system.

Based on Lemma 2, we have the next characterization of I(A,D∞).

Theorem 2. Let A : Rn+ → R+ be an aggregation function such that S(A,D∞) = Rn. Then I(A,D∞) is the small-
est comonotone superadditive aggregation function dominating A, and for each x ∈ Rn+, I(A,D∞)(x) = min{C(x) |
C ≥ A, C is a comonotone superadditive aggregation function}.



46 S. Greco et al. / Fuzzy Sets and Systems 287 (2016) 37–47
Proof. We only prove the comonotone superadditivity of I(A,D∞), while the rest of proof can be done similarly as in 
[7] (Proposition 2). Fix a comonotone couple x, z ∈Rn+. Based on Lemma 2, (it implies the first inequality)

I(A,D∞)(x + z) = sup{
p∑

r=1

A(vr ) |
p∑

r=1

vr = x + z, (vr )
p

r=1 ∈ D∞}

≥ sup{
k∑

j=1

A(yj ) +
m∑

i=1

A(ui ) |
k∑

j=1

yj = x,

m∑
i=1

ui = z, (yj )kj=1, (ui )mi=1 ∈D∞}

≥ sup{
k∑

j=1

A(yj ) |
k∑

j=1

yj = x, (yj )kj=1 ∈ D∞}

+ sup{
m∑

i=1

A(ui ) |
m∑

i=1

ui = z, (ui )mi=1 ∈D∞}

= I(A,D∞)(x) + I(A,D∞)(z). �
Example 9. Define A : R2+ → R+ by A(x, y) = max (ln(1 + x), ln(1 + y)). Then A∗(x, y) = I(A,D(∞)) (x, y) =
x + y, and I(A,D∞)(x, y) = max {x, y}. Observe that max is not superadditive but it is comonotone superadditive.

A similar result can be shown where considering D(∞) decomposition system. We omit its proof due to its sim-
plicity.

Theorem 3. Let A : Rn+ → R+ be an aggregation function such that S(A,D(∞)
) = Rn. Then I(A,D(∞)) is the smallest 

aggregation function which is superadditive for vectors with disjoint supports, i.e., I(A,D(∞))(x + z) ≥ I(A,D(∞))(x) +
I(A,D(∞))(z) whenever x ∧ z = 0.

Similar results can be shown for the super-decomposition based integrals.

6. Conclusions

In this paper we have studied decomposition approaches to integration generalizing previous works (see [12], [3]
and [11]). Our general approach to integration is based on three steps: (a) sub/super sum decomposition of integrated 
functions; (b) weighting of the addend functions used in decompositions; (c) sum aggregation of these weighted 
addend functions and choice of extremal elements (sup/ inf) to define the integral. The final integral depends (other 
that on the choice of sub/super-decomposition) on the set of allowable functions used to decompose the integrated 
function in step (a), and on the weighting function used to weigh addend functions in step (b). Note that this approach 
can be further generalized by replacing standard addition in step (c) with a pseudo-addition. For example taking any 
decomposition system D such that D̃ = {c · 1E | c ∈ [0, ∞], E ⊆ N}, and putting as pseudo-addition max, and as 
weighting function A(c · 1E) = c · m(E) being m : 2N → R+ a measure, the resulting integral is the Shilkret integral; 
if A(c · 1E) = min(c, m(E)), Sugeno integral is obtained. D̃ can be finite, consider Ali Baba in the cave with precious 
things from God, only their weight matters, since his donkey can take only x kg. Ali Baba can take any good he wants, 
but only one. In this case we have D̃ = {g1, . . . , gk}, gi are all possible precious goods in the cave, characterized by 
their weight gi and, then, the weighting function is A(d) = d , and thus Imax

(A,D)
(x) = max{gi | gi ≤ x}. Note that if 

Ali Baba has no limitation in the number of goods but only in the weight x, we have to use our approach based 
on addition, and then I(A,D)(x) = max{∑i∈I gi | ∑i∈I gi ≤ x} and, then, surely I(A,D)(x) ≥ Imax

(A,D)
(x). This last 

example recalls a very famous example in literature, the so called knapsack problem [10]. The knapsack problem or 
rucksack problem is a problem in combinatorial optimization, where, given a set of items, each with a mass and a 
value, we have to determine the number of each item to include in a collection so that the total weight is not greater 
than a given limit and the total value is as large as possible. The knapsack problem has been studied for more than 
a century (for example in combinatorics or in the field of resource allocation), and it is straightforward that it can be 
faced by using our sub-decomposition based integration.
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Let us note that in the last step of our construct method for decomposition integrals, we choose the extremal 
elements of the set of weighted addend functions, that is I(A,D)(x) = sup{. . .} and I (A,D)(x) = inf{. . .} and this to 
link our integrals to optimization problems that usually arise in economics. Once again, a further generalization is to 
define the decomposition integral not as the extremal element of the set of all weighted sums of integrated function 
decompositions, but as a representative element of this set, and, finally, we could consider as integral the whole set, 
following an approach á la Aumann [1].
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