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Preaggregation Functions: Construction
and an Application

Giancarlo Lucca, José Antonio Sanz, Graçaliz Pereira Dimuro, Benjamı́n Bedregal, Radko Mesiar,
Anna Kolesárová, and Humberto Bustince, Senior Member, IEEE

Abstract—In this paper, we introduce the notion of preaggrega-
tion function. Such a function satisfies the same boundary condi-
tions as an aggregation function, but, instead of requiring mono-
tonicity, only monotonicity along some fixed direction (directional
monotonicity) is required. We present some examples of such func-
tions. We propose three different methods to build preaggregation
functions. We experimentally show that in fuzzy rule-based clas-
sification systems, when we use one of these methods, namely, the
one based on the use of the Choquet integral replacing the prod-
uct by other aggregation functions, if we consider the minimum or
the Hamacher product t-norms for such construction, we improve
the results obtained when applying the fuzzy reasoning methods
obtained using two classical averaging operators such as the max-
imum and the Choquet integral.

Index Terms—Aggregation functions, Choquet integral, direc-
tional monotonicity, fuzzy measures, fuzzy reasoning method
(FRM), fuzzy rule-based classification systems (FRBCSs).

I. INTRODUCTION

AGGREGATION functions [1], [2] are crucial tools nowa-
days to deal with many computation problems [3]–[7].

The key property for defining them, apart from the boundary
conditions, is monotonicity and, more specifically, monotone
increasingness. However, some other statistical tools, such as
the mode, are not included in this family, although they are
useful, since, even if they are properly defined as functions,
monotonicity is violated.

The problem of relaxing the definition of monotonicity has
recently attracted a lot of interest. In [8], Wilkin and Beliakov
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proposed the notion of weak monotonicity in order to extend
the usual monotonicity property. In this case, monotonicity is
required only along the direction of the first quadrant diagonal.
This concept of weak monotonicity has been further extended
by Bustince et al. [9] by introducing the notion of directional
monotonicity, which allows monotonicity along (some) fixed
ray. In particular, directionally monotone functions encompass
weak monotone functions, as well as the mode and any aggre-
gation function.

In particular, in this paper, we consider the following
objectives.

1) To introduce the concept of preaggregation functions.
2) To study the first properties of these new functions.
3) To introduce three different methods for building preag-

gregation functions.
4) To show an application where the introduction of the new

concept of preaggregation function is justified.
To achieve these goals, we use the notion of directional mono-

tonicity. Moreover, for one of the construction methods that we
propose, in the definition of the Choquet integral, we replace
the product by the minimum or the Hamacher product t-norm,
and this way, we obtain preaggregation functions that are not
aggregation functions. We show that using these new functions
in a fuzzy rule-based classification system (FRBCS) and, in
particular, in the fuzzy reasoning method (FRM) of fuzzy as-
sociation rule-based classification model for high dimensional
problems (FARC-HD) [10], which is currently one of the most
accurate FRBCSs, the obtained results are better than both ap-
plying the classical Choquet integral and the well-known FRM
of the winning rule (WR).

This paper is organized as follows. In Section II, we present
some related preliminary concepts that are necessary to under-
stand the paper. In Section III, we introduce the notion of preag-
gregation function and discuss some properties. Three methods
of construction of preaggregation functions are described in
Section IV. The generalization of the FRM using preaggrega-
tion functions is described in detail in Section V. The experi-
mental framework and the analysis of the obtained results when
considering some of our preaggregation functions are reported
in Section VI. In Section VII, we draw the main conclusions,
and the detailed results of the experiments are available in the
Appendix.

II. PRELIMINARIES

A. Aggregation Functions

An important class of operators that are used in this paper are
the aggregation functions [1], [11].
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TABLE I
T-NORMS USED IN THIS PAPER

Name Definition

Minimum TM (x, y ) = min{x, y}
Algebraic Product TP (x, y ) = xy

Łukasiewicz TŁ(x, y ) = max{0, x + y − 1}

Drastic Product TDP(x, y ) =

⎧
⎨

⎩

x, if y = 1
y , if x = 1
0, otherwise

Nilpotent Minimum TNM(x, y ) =
{

min{x, y}, if x + y > 1
0, otherwise

Hamacher Product THP(x, y ) =
{

0, if x = y = 0
x y

x + y −x y , otherwise

Definition 2.1: A function A : [0, 1]n → [0, 1] is said to be
an n-ary aggregation function if the following conditions hold.

A1) A is increasing1 in each argument: For each
i ∈ {1, . . . , n}, if xi ≤ y, then A(x1 , . . . , xn ) ≤
A(x1 , . . . , xi−1 , y, xi+1 , . . . , xn ).

A2) A satisfies the boundary conditions: A(0, . . . , 0) = 0
and A(1, . . . , 1) = 1.

Definition 2.2: A bivariate aggregation function T :
[0, 1]2 → [0, 1] is a t-norm if, for all x, y, z ∈ [0, 1], it satisfies
the following properties:

T1) Commutativity: T (x, y) = T (y, x).
T2) Associativity: T (x, T (y, z)) = T (T (x, y), z).
T3) Boundary condition: T (x, 1) = x.
If T satisfies (T3) (and also T (1, x) = x) only, then it is called

a semicopula.
Since t-norms are associative, it is possible to extend each

t-norm T in a unique way to an n-ary operation in the usual way
by induction [12]. The bivariate t-norms that are used in this pa-
per are presented in Table I. Observe that a convex combination
of t-norms is a (commutative) semicopula, but not a t-norm, in
general, since associativity may be violated.

B. Fuzzy Measures

In this section, we recall the notion of fuzzy measure, which
is going to be a key tool for constructing some of our examples
of preaggregation functions.

In the following, consider the set N = {1, . . . , n} for an ar-
bitrary positive integer n.

Definition 2.3: A function m : 2N → [0, 1] is a fuzzy mea-
sure if, for all X,Y ⊆ N , it satisfies the following properties.

(m1) Increasingness: If X ⊆ Y , then m(X) ≤ m(Y ).
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

In the context of aggregation functions, fuzzy measures are
used to evaluate the relationship among the elements to be ag-
gregated, which represents the importance of a coalition. The
fuzzy measures considered in this paper, defined for A ⊆ N ,
are the following:

1In this paper, an increasing (decreasing) function does not need to be strictly
increasing (decreasing).

Uniform measure:

mU (A) =
|A|
n

. (1)

Dirac’s measure: For a previously fixed i ∈ N ,

mi
D (A) =

{
1, if i ∈ A
0, if i �∈ A.

(2)

Additive measure (Wmean): Take W = (w1 , . . . , wn ) ∈ [0, 1]n

such that
∑n

i=1 wi = 1. Consider

mW ({i}) = wi

Then, for |A| > 1, define

mW (A) =
∑

i∈A

wi. (3)

Symmetric measure (OWA): Take W = (w1 , . . . , wn ) ∈ [0, 1]n

such that
∑n

i=1 wi = 1. Then, for any nonempty subset A,
define

msW (A) =
|A |∑

i=1

wi. (4)

Note that this expression is different from (3), since in this
case, only the cardinal of each subset A is taken into account.

Power measure:

mP M (A) =
(
|A|
n

)q

, with q > 0. (5)

Observe also that from the considered fuzzy measures, mU ,
mi

D , and mW are additive, and mU , msW , and mP M are sym-
metric, that is, the measure of any subset A only depends on the
cardinality of A.

The Choquet integral generalizes the Lebesgue integral,
which is defined with respect to additive measures. However,
the Choquet integral is defined with respect to fuzzy measures.
In this paper, we consider only the discrete Choquet integral,
related to fuzzy measures, which are defined on finite spaces.

Definition 2.4: [1, Def. 1.74] Let m : 2N → [0, 1] be a fuzzy
measure. The discrete Choquet integral of x = (x1 , . . . , xn ) ∈
[0, 1]n with respect to m is defined as a function Cm : [0, 1]n →
[0, 1], given by

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

)
· m

(
A(i)

)
(6)

where
(
x(1) , . . . , x(n)

)
is an increasing permutation on the in-

put x, that is, 0 ≤ x(1) ≤ · · · ≤ x(n) , with the convention that
x(0) = 0, and A(i) = {(i), . . . , (n)} is the subset of indices of
n − i + 1 largest components of x.

The Choquet integral combines the inputs in such a way that
the importance of the different groups of inputs (coalitions)
may be taken into account. Allowing to assign importance to all
possible groups of criteria, the Choquet integral offers greater
flexibility in the aggregation modeling. Since the weighted arith-
metic mean and OWA operators are special cases of the Choquet
integral, with respect to additive and symmetric fuzzy measures,
respectively, Choquet integral-based aggregation functions rep-
resent a larger class of aggregation functions [1], [13], [14].
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Note that the Choquet integral with respect to mW is a
weighted arithmetic mean and, with respect to msW , is an OWA
operator.2 These facts explain the acronyms we have chosen in
this study for these measures.

C. Directional Monotonicity

This section is devoted to recalling the basic concept for
our definition of preaggregation function, that of directional
monotonicity [9].

Definition 2.5: Let �r = (r1 , . . . , rn ) be a real n-dimensional
vector, �r �= �0. A function F : [0, 1]n → [0, 1] is �r-increasing if
for all points (x1 , . . . , xn ) ∈ [0, 1]n and for all c > 0 such that
(x1 + cr1 , . . . , xn + crn ) ∈ [0, 1]n , it holds

F (x1 + cr1 , . . . , xn + crn ) ≥ F (x1 , . . . , xn ) .

That is, an �r-increasing function is a function that is increas-
ing along the ray (direction) determined by the vector �r. For
this reason, we say that F is directionally monotone, or, more
specifically, directionally increasing. Note that every increasing
function (in the usual sense) is, in particular, �r-increasing, for
every nonnegative real vector �r. However, the class of direction-
ally increasing functions is much wider than that of aggregation
functions. For instance:

1) Fuzzy implication functions (see [21]) are (−1, 1)-
increasing functions. This implies that many other func-
tions, which are widely used in applications and which
can be obtained from implication functions, are also di-
rectionally increasing. This is the case, for instance, of
some subsethood measures (see [22]).

2) Many functions used for comparison of data are also direc-
tionally increasing. In particular, this is the case of those
based on componentwise comparison by means of the
Euclidean distance |x − y|, as for restricted equivalence
functions [23];

3) Weakly increasing functions (see[8]) are a particular case
of directionally increasing functions, with �r = (1, . . . , 1).

III. PREAGGREGATION FUNCTIONS

In this section, we introduce the notion of preaggregation
function and discuss some properties and construction methods.

Definition 3.1: A function F : [0, 1]n → [0, 1] is said to be
an n-ary preaggregation function if the following conditions
hold.

PA1) There exists a real vector �r ∈ [0, 1]n (�r �= �0) such that
F is �r-increasing.

PA2) F satisfies the boundary conditions: F (0, . . . , 0) = 0
and F (1, . . . , 1) = 1.

Example 3.1: Some examples of preaggregation functions
are the following.

i) Consider the mode, Mod(x1 , . . . , xn ), defined as the func-
tion that gives back the value that appears most times in
the considered n-tuple or the smallest of the values that ap-
pears most times, in case there is more than one. Then, the

2The OWA operators were first introduced by Yager [15], and several forms
and usage of OWA operators have been discussed in the literature [16]–[20].

mode is (1, . . . , 1)-increasing, and it is a particular case
of preaggregation function, which is not an aggregation
function.

ii) F (x, y) = x − (max{0, x − y})2 is, for instance, (0, 1)-
increasing, and it is an example of a preaggregation func-
tion, which is not an aggregation function.

iii) Weakly increasing functions satisfying the boundary con-
ditions (PA2) are also preaggregation functions, which
need not be aggregation functions.

iv) Take λ ∈]0, 1[. The weighted Lehmer mean Lλ : [0, 1]2 →
[0, 1], given by

Lλ(x, y) =
λx2 + (1 − λ)y2

λx + (1 − λ)y

(with convention 0/0 = 0) is (1 − λ, λ)-increasing; there-
fore, it is a preaggregation function.

v) Define A,B : [0, 1]2 → [0, 1] by

A(x, y) =
{

x(1 − x), if y ≤ 3/4
1, otherwise

and

B(x, y) =
{

y(1 − y), if x ≤ 3/4
1, otherwise.

Then, both A and B are preaggregation functions that are
not aggregation functions. In fact, A is (0, a)-increasing
for any a > 0, but for no other direction �r = (a, b), b > 0,
while B is (b, 0)-increasing for any b > 0, but for no other
direction �r = (a, b), a > 0. However, C = (A + B)/2 is
not a preaggregation function, just illustrating the fact
that the class of all preaggregation functions with a fixed
dimension n is not a convex class.

If F is a preaggregation function with respect to a vector �r,
we just say that F is an �r-preaggregation function.

Remark 3.1: Note that if A : [0, 1]n → [0, 1] is an aggrega-
tion function, then A is also a preaggregation function. In fact,
if, for a nonzero vector �r ∈ [0, 1]n , we denote by PA�r the class
of all �r-increasing preaggregation functions, then the class of
all preaggregation functions PA is the union of all these classes
PA�r , while the class of all aggregation functions is the inter-
section of all the classes PA�r . The latter intersection is the
same as the intersection over PA�ei

, where �ei = (0, ...1, ...0),
i ∈ {1, . . . , n}, is the vector having 1 as ith value, and all other
coordinates are equal to zero.

Note that the reverse of the first claim of Remark 3.1 does not
hold, as the cases considered in Example 3.1(i) and (ii) show.
Preaggregation functions that are not aggregation functions will
be called proper preaggregation functions. However, we can use
aggregation functions to obtain directionally increasing func-
tions as follows.

The next results were proved for directionally monotone func-
tions in our recent paper [9].

Proposition 3.1: Let A : [0, 1]m → [0, 1] be an aggregation
function. Let Fi : [0, 1]n → [0, 1] (i ∈ {1, . . . , m}) be a family
of m�r-preaggregation functions for the same vector �r ∈ [0, 1]n .
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Then, the function A(F1 , . . . , Fm ) : [0, 1]n → [0, 1], defined as

A(F1 , . . . , Fm )(x1 , . . . , xn )

= A(F1(x1 , . . . , xn ), . . . , Fm (x1 , . . . , xn ))

is also an �r-preaggregation function.
Proof: Due to [9, Proposition 3], only the boundary con-

ditions for the functions (F1 , . . . , Fm ) should be guaranteed.
However, their validity is obvious. �

The following corollary is straightforward.
Corollary 3.1: Let F1 , F2 : [0, 1]n → [0, 1] be two �r-

preaggregation functions for the same vector �r ∈ [0, 1]n . Then,
we have the following.

1) F1 +F2
2 is also an �r-preaggregation function.

2) F1F2 is also an �r-preaggregation function.
Regarding duality, we can state the following.
Proposition 3.2: Let F : [0, 1]n → [0, 1] be an �r-

preaggregation function for �r ∈ [0, 1]n . Then, the function

Fd(x1 , . . . , xn ) = 1 − F (1 − x1 , . . . , 1 − xn )

is also an �r-preaggregation function.
Proof: Obviously, Fd(0, . . . , 0) = 0 and Fd(1, . . . , 1) = 1.

Now, the result follows from [9, Proposition 3]. �
The following corollary is now straight.
Corollary 3.2: Let F be an �r-preaggregation function. Then,

the function F +F d

2 is a self-dual �r-preaggregation function.

IV. THREE METHODS OF CONSTRUCTING PREAGGREGATION

FUNCTIONS

In this section, we introduce and illustrate three methods of
constructing preaggregation functions. The first method is based
on the composition of appropriate functions, the second one is
inspired by the construction of the discrete Choquet integral, and
the third of the proposed methods is inspired by the construction
of the discrete Sugeno integral.

A. Construction of Preaggregation Functions by Composition

Fix n ∈ N. Let I be a proper subset of N = {1, . . . , n}
and consider that I = {i1 , . . . , ik} with i1 < . . . < ik . For
an n-tuple x = (x1 , . . . , xn ) ∈ [0, 1]n , its I-projection is a k-
tuple xI = (xi1 , . . . , xik

), where k is the cardinality of I .
We will use I-projections xI of points x ∈ [0, 1]n and I-
projections �rI of (geometrical) vectors �r ∈ [0, 1]n as well.
Finally, for a function F : [0, 1]n → [0, 1], let D↑(F ) = {�r ∈
[0, 1]n | F is �r-increasing}. Note that the zero vector is not
excluded now.

Proposition 4.1: Let {I1 , . . . , Ik} be a partition of N , k > 1.
For j ∈ {1, . . . , k}, let nj = |Ij | and consider functions Fj :
[0, 1]nj → [0, 1] such that Fj (1, . . . , 1) = 1. Then, for any ag-
gregation function G : [0, 1]k → [0, 1], the composite function
H : [0, 1]n → [0, 1] defined by

H(x) = G (F1 (xI1 ) , . . . , Fk (xIk
))

is�r-increasing for any vector�r ∈ [0, 1]n such that�rIj
∈ D↑(Fj ),

j = 1, . . . , k, and H(1) = 1. Moreover, if there is a j0 ∈
{1, . . . , k} such that Fj0 is a preaggregation function, and 0

is an annihilator of G, then the function H is a preaggregation
function.

Proof: Clearly, H(1) = G (F1 (1I1 ) , . . . , Fk (1Ik
)) =

G(1, . . . , 1) = 1. Moreover, if Fj0 (0, . . . , 0) = 0 for some
j0 ∈ {1, . . . , k} and 0 is an annihilator of G, then

H(0) = G
(
F1 (0I1 ) , . . . , Fj0

(
0Ij 0

)
, . . . , Fk (0Ik

)
)

= G (F1 (0I1 ) , . . . , 0, . . . , Fk (0Ik
)) = 0.

Next, consider a vector �r ∈ [0, 1]n such that �rIj
∈ D↑(Fj )

for each j = 1, . . . , k. Then, for any c > 0 and x ∈ [0, 1]n such
that also x + c�r ∈ [0, 1]n , it holds that

H(x + c�r) = G (F1 (xI1 + c�rI1 ) , . . . , Fk (xIk
+ c�rIk

))

≥ G (F1 (xI1 ) , . . . , Fk (xIk
)) = H(x)

where the inequality follows from the increasing mono-
tonicity of the aggregation function G, and the fact that
Fj

(
xIj

+ c�rIj

)
≥ Fj

(
xIj

)
, j = 1, . . . , k.

Now, suppose that Fj0 is a preaggregation function, i.e.,
Fj0 (0, . . . , 0) = 0 and Fj0 is �v-increasing for some nonzero
vector �v ∈ [0, 1]nj 0 . Due to the aforementioned facts, H satis-
fies the boundary conditions and is directionally increasing in
the direction of a nonzero vector �r ∈ [0, 1]n such that �rIj 0

= �v
and �rN \Ij 0

= (0, . . . , 0), which proves that H is a preaggrega-
tion function. �

Example 4.1: Let n = 2 and �v = (v1 , v2) ∈ ]0, 1]2 . For ob-
taining a proper preaggregation function which is �v-increasing,
it is enough to consider the weighted Lehmer mean Lλ :
[0, 1]2 → [0, 1] with λ = v2

v1 +v2
[see Example 3.1(iv)] given by

Lλ(x, y) =
v2x

2 + v1y
2

v2x + v1y
.

This fact and Proposition 4.1 allow us to construct a preag-
gregation function H , which is directionally increasing in the
direction of any a priori given vector �0 �= �r ∈ [0, 1]n .

Consider, for example, n = 4 and �r = (0.5, 0.4, 0.3, 0.7). Let
G = TM , I1 = {1, 3}, I2 = {2, 4}, F1 = L3/8 , F2 = L7/11 .
Then, H : [0, 1]4 → [0, 1] given by

H(x1 , x2 , x3 , x4) = min
{

3x2
1 + 5x2

3

3x1 + 5x3
,
7x2

2 + 4x2
4

7x2 + 4x4

}

is an �r-increasing proper preaggregation function.

B. Choquet-Like Construction Method of Preaggregation
Functions

This method is inspired in the way the Choquet integral is
built, replacing the product operation in (6) by other aggregation
functions.

Let m : 2N → [0, 1] be a fuzzy measure and M : [0, 1]2 →
[0, 1] be a function such that M(0, x) = 0 for every x ∈ [0, 1].
Taking as basis the Choquet integral, we define the function
CM

m : [0, 1]n → [0, n] by

CM
m (x) =

n∑

i=1

M
(
x(i) − x(i−1) ,m

(
A(i)

))
(7)



264 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 2, APRIL 2016

TABLE II
SOME PREAGGREGATION FUNCTIONS OBTAINED USING THE T-NORMS

T-Norm Resulting pre-aggregation function

Minimum C
T M
m (x) =

∑ n
i = 1 min

{
x( i ) − x( i−1 ) , m

(
A ( i )

)}

Łukasiewicz C
T Ł
m (x) =

∑ n
i = 1 max

{
0, x( i ) − x( i−1 ) + m

(
A ( i )

)
− 1

}

Drastic Product C D P
m (x) =

∑ n
i = 1

⎧
⎨

⎩

x( 1 ) , if i = 1
m

(
A ( i )

)
, if x( i ) − x( i−1 ) = 1

0, otherwise

Nilpotent Minimum C N M
m (x) =

∑ n
i = 1

⎧
⎨

⎩

min
{

x( i ) − x( i−1 ) , m
(
A ( i )

)}
,

if x( i ) − x( i−1 ) + m
(
A ( i )

)
> 1

0, otherwise

Hamacher Product C H P
m (x) =

∑ n
i = 1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if x( i ) = x( i−1 ) and m
(
A ( i )

)
= 0

(
x ( i ) −x ( i−1 )

)
·m

(
A ( i )

)

x ( i ) −x ( i−1 ) + m

(
A ( i )

)
−
(

x ( i ) −x ( i−1 )

)
·m

(
A ( i )

) ,

otherwise

where N = {1, . . . , n}, (x(1) , . . . , x(n)) is an increasing per-
mutation on the input x, that is, 0 ≤ x(1) ≤ · · · ≤ x(n) , with
the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is the
subset of indices of n − i + 1 largest components of x. Note
that CM

m is well defined by (7) even if the permutation is not
unique.

Now, we have the following result.
Theorem 4.1: Let M : [0, 1]2 → [0, 1] be a function such

that for all x, y ∈ [0, 1] it satisfies M(x, y) ≤ x, M(x, 1) = x,
M(0, y) = 0 and M is (1,0)-increasing. Then, for any fuzzy
measure m, CM

m is a preaggregation function that is idempotent
and averaging, i.e.,

min(x1 , . . . , xn ) ≤ CM
m (x1 , . . . , xn ) ≤ max(x1 , . . . , xn ).

Proof: Note that

CM
m (x1 , . . . , xn ) =

n∑

i=1

M
(
x(i) − x(i−1) ,m

(
A(i)

))

≤
n∑

i=1

(x(i) − x(i−1))

= x(n) = max(x1 , . . . , xn ).

From these two inequalities, idempotency follows. Besides

min(x1 , . . . , xn ) = x(1) = M
(
x(1) − x(0) ,m

(
A(1)

))

≤ CM
m (x1 , . . . , xn ).

Finally, take �r = �1 = (1, . . . , 1). Note that in (7), for i ≥ 2, it
follows that, for any c > 0,

M
(
x(i) + c − (x(i−1) + c),m

(
A(i)

))

= M
(
x(i) − x(i−1) ,m

(
A(i)

))

whereas, for i = 1

M
(
x(1) + c − x(0) ,m

(
A(1)

))
= M

(
x(1) + c,m

(
A(1)

))

≥ M
(
x(1) ,m

(
A(1)

))
.

Therefore, CM
m is �1-increasing. �

Remark 4.1: Under the constraints of Theorem 4.1, we can-
not ensure the monotonicity of CM

m , i.e., CM
m is, in general, a

proper preaggregation function. To see it, observe the following.
1) Take M(x, y) = TM (x, y). Consider N = {1, 2, 3, 4}

and the uniform measure m = mU given in (1). Then,
we have that

CTM
m (0.05, 0.1, 0.7, 0.9) = 0.8, whereas

CTM
m (0.05, 0.1, 0.8, 0.9) = 0.7.

Therefore, CTM
m is not an increasing function, and hence,

it is not an aggregation function.
2) Consider the Łukasiewicz t-norm TŁ(x, y) =

max{0, x + y − 1}. Again, for N = {1, 2, 3, 4} and the
uniform measure m = mU , we have that

C
TŁ
m (0.05, 0.1, 0.7, 0.9) = 0.15 , whereas

C
TŁ
m (0.05, 0.2, 0.7, 0.9) = 0.05 .

Therefore, C
TŁ
m is not an increasing function, and hence,

it is not an aggregation function. Analogous counterex-
amples can be found for the cases of the drastic product,
the Hamacher product, or the nilpotent minimum t-norms.

Consider N = {1, . . . , n} and a fuzzy measure m : 2N →
[0, 1]. In Table II, we present the value of CT

m , which are preag-
gregation functions but not aggregation functions, for the dif-
ferent t-norms given in Table I.

C. Sugeno-Like Construction Method of Preaggregation
Functions

In this section, we follow the notation of Definition 2.4. Recall
that the formula for the discrete Sugeno integral Sm : [0, 1]n →
[0, 1] can be written as

Sm(x) =
n∨

i=1

min
{
x(i) ,m

(
A(i)

)}
.
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Inspired by this formula, for any function M : [0, 1]2 → [0, 1],
we define the function SM

m : [0, 1]n → [0, 1] by the formula

SM
m (x) =

n∨

i=1

M
(
x(i) ,m

(
A(i)

))
. (8)

We prove a sufficient condition for M ensuring that SM
m is a

preaggregation function for any fuzzy measure m.
Proposition 4.2: Let M : [0, 1]2 → [0, 1] be a function in-

creasing in the first variable, and let for each y ∈ [0, 1],
M(0, y) = 0 and M(1, 1) = 1. Then, SM

m defined in (8) is a
preaggregation function for any fuzzy measure m.

Proof: It is easy to check that, for any m,

SM
m (0) =

n∨

i=1

M
(
0,m

(
A(i)

))
= 0

and

SM
m (1) =

n∨

i=1

M
(
1,m

(
A(i)

))

= M(1,m(A(1))) = M(1, 1) = 1.

Moreover, for vector �1 = (1, . . . , 1), we get

SM
m (x + c�1) =

n∨

i=1

M
(
x(i) + c,m

(
A(i)

))

≥
n∨

i=1

M
(
x(i) ,m

(
A(i)

))
= SM

m (x)

i.e., SM
m is �1-increasing, which completes the proof that SM

m is
a preaggregation function. �

Note that any function M satisfying the constraints of Propo-
sition 4.2 is, in fact, a binary (1, 0)-increasing preaggregation
function that satisfies M(0, y) = 0 for each y ∈ [0, 1].

Example 4.2: (i) Let M : [0, 1]2 → [0, 1] be any aggrega-
tion function. Then, SM

m : [0, 1]n → [0, 1] is also an aggregation
function, independently of m.

(ii) Consider the function F , F (x, y) = x|2y − 1|. Note that
F is a proper preaggregation function which satisfies the con-
straints of Proposition 4.2, and thus, for any m, the func-
tion SF

m : [0, 1]n → [0, 1], SF
m(x) =

∨n
i=1 F

(
x(i) ,m

(
A(i)

))
is

a preaggregation function (even an aggregation function thought
F is not).

For example, for n = 2, m({1}) = 1/3, m({2}) = 3/4,
we get

SF
m(x, y) =

⎧
⎪⎨

⎪⎩

x ∨ y

2
, if x ≤ y

y ∨ x

3
, if x > y.

V. FUZZY REASONING METHOD USING PREAGGREGATION

FUNCTIONS

In this section, we present a generalization of the FRM pro-
posed by Barrenechea et al. [24], using the proposed preaggre-
gation functions, which are the result of combining different

t-norms and fuzzy measures. To do so, we first explain the
components of standard FRBCSs, and then, the new FRM is
introduced.

A classification problem consists of m training examples
xp = (xp1 , . . . , xpn , yp), with p = 1, . . . , m, where xpi , with
i = 1, . . . , n, is the value of the ith attribute variable and
yp ∈ C = {C1 , C2 , . . . , CM } is the label of the class of the
pth training example.

Among all the techniques used to face classification prob-
lems, one of the most used are the FRBCSs [25], since they
allow the inclusion of all the available information in the sys-
tem modeling, generating an interpretable model, and providing
accurate results. The two main components of FRBCSs are the
following.

1) The Knowledge Base containing the Rule Base and the
Data Base, where the fuzzy inference rules and the mem-
bership functions are stored, respectively.

2) The Fuzzy Reasoning Mechanism, which is used to clas-
sify examples using the information available in the
Knowledge Base.

The choice of the aggregation function plays a crucial role
in FRBCSs [26], [27], since it determines the behavior of the
FRM [28]. This is due to the fact that in the FRM, the local
information given by each fuzzy rule is aggregated to provide
global information, which is associated with each class of the
problem [27]–[31]. Finally, the example is assigned to the class
having the maximum global information.

The usage of the maximum as the aggregation function in the
FRM to obtain the global information is very common in the lit-
erature, which is known as the FRM of the WR [27], [28], [32],
[33]. However, whenever one considers, for each class, just the
information given by a single fuzzy rule having the highest com-
patibility with the example, the available information provided
by the remaining fuzzy rules of the system is ignored.

Denote by xp = (xp1 , . . . , xpn ) the n-dimensional vector of
attribute values corresponding to an example xp . The fuzzy rules
that are used in this study are of the following form:

Rule Rj :

If xp1 is Aj1 and . . . and xpn is Ajn then xp in Ck
j with RWj

(9)
where Rj is the label of the jth rule, Aji is an antecedent fuzzy
set modeling a linguistic term, Ck

j is the label of the consequent
fuzzy set Ck modeling the class associated with the rule Rj ,
with k ∈ {1, . . . , M}, and RWj ∈ [0, 1] is the rule weight [34].

Let xp = (xp1 , . . . , xpn ) be a new example to be classified,
L the number of rules in the rule base, and M the number of
classes of the problem. The new FRM using preaggregation
functions presents the following steps.

Matching degree: It is the strength of the activation of the
if-part of the rules for the example xp , which is computed using
a t-norm T ′ : [0, 1]n → [0, 1]:

μAj
(xp)= T ′(μAj 1 (xp1), . . . , μAj n

(xpn )), with j = 1, . . . , L.
(10)
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Association degree: It is the association degree of the example
xp with the class of each rule in the rule base, given by

bk
j (xp) = μAj

(xp) · RWk
j , with k = Class(Rj ),

j = 1, . . . , L. (11)

Example classification soundness degree for all classes: In
this step, we apply preaggregation functions [see (7)] to combine
the association degrees calculated in the previous step, obtaining
the classification soundness degrees, defined by

Yk (xp) = CT
m

(
bk
1 (xp), . . . , bk

L (xp)
)
, with k = 1, . . . ,M

(12)
where CT

m is the obtained preaggregation, which is the result
of combining a bivariate t-norm T : [0, 1]2 → [0, 1] and a fuzzy
measure m : 2N → [0, 1].

Since, whenever bk
i (xp) = 0, it holds that

CT
m(bk

1 (xp), . . . , bk
L (xp))

= CT
m(bk

1 (xp), . . . , bk
j−1(xp), bk

j+1(xp), . . . , bk
L (xp))

then, for practical reasons, only bk
j > 0 are considered in (12).

Classification: A decision function F : [0, 1]M →
{1, . . . , M} defined over the example classification soundness
degrees of all classes and determining the class corresponding
to the maximum soundness degree is given by

F (Y1 , . . . , YM ) = min
k=1...M

k such that Yk = max
w=1,...,M

(Yw ).

(13)
In practical applications, it is sufficient to consider

F (Y1 , . . . , YM ) = arg max
k=1,...,M

(Yk ). (14)

Barrenechea et al. proposed to use the classical Choquet in-
tegral (product t-norm) instead of preaggregation in (12). They
also considered tuning the exponent of the power measure using
an evolutionary algorithm [24]. Specifically, they used the CHC
evolutionary model [35], which was used to define the most
suitable exponent to be used for each class.3 We denote this
proposal as power measure genetically adjusted (Power GA).

VI. ANALYSIS OF THE APPLICATION OF PREAGGREGATION

FUNCTIONS IN CLASSIFICATION PROBLEMS

This section is aimed at providing an application of preag-
gregation functions in real-world problems. Specifically, as in-
troduced in Section V, we consider to introduce this new theory
to extend the FRM proposed by Barrenechea et al. [24], which
was applied to tackle classification problems.

The aim of the experimental study is to see whether the usage
of preaggregation functions in this FRM allows the results of
the classical Choquet integral (product t-norm) to be enhanced.
To do so, we test the performance of the FRM using 30 different
preaggregation functions, which are all the possible combina-
tions among the six t-norms shown in Table I and the five fuzzy
measures (see Section II) considered in this paper. Finally, as
it was done in [24], we also analyze if the best FRM (the best

3See [24] for a detailed explanation of the evolutionary algorithm.

TABLE III
DATASETS USED IN THIS STUDY

Id. Dataset # Inst #Att #Class

App Appendiciticis 106 7 2
Bal Balance 625 4 3
Ban Banana 5300 2 2
Bnd Bands 365 19 2
Bup Bupa 345 6 2
Cle Cleveland 297 13 5
Eco Ecoli 336 7 8
Gla Glass 214 9 6
Hab Haberman 306 3 2
Hay Hayes-Roth 160 4 3
Iri Iris 150 4 3
Led Led7digit 500 7 10
Mag Magic 1902 10 2
New Newthyroid 215 5 3
Pag Pageblocks 5472 10 5
Pho Phoneme 5404 5 2
Pim Pima 768 8 2
Rin Ring 740 20 2
Sah Saheart 462 9 2
Sat Satimage 6435 36 7
Seg Segment 2310 19 7
Tit Titanic 2201 3 2
Two Twonorm 740 20 2
Veh Vehicle 846 18 4
Win Wine 178 13 3
Wis Wisconsin 683 11 2
Yea Yeast 1484 8 10

preaggregation) is able to enhance the results of the well-known
FRM of the WR, that is, the usage of the maximum to aggre-
gate the information in the third step of the FRM described in
Section V. Consequently, we want to show that the usage of
preaggregation functions allows the results obtained with two
classical averaging operators to be enhanced.

In the remainder of this section, we first explain the adopted
experimental framework (see Section VI-A), and then, we
present the results as well as their corresponding analysis (see
Section VI-B).

A. Experimental Framework

We use 27 real-world datasets selected from the KEEL dataset
repository [36]. Table III summarizes the properties of these
datasets, showing, for each dataset, the identifier (Id.) as well as
the name (Dataset), the number of instances (#Inst), the number
of attributes (#Att), and the number of classes (#Class). The
magic, page-blocks, penbased, ring, satimage, and twonorm
datasets have been stratified sampled at 10% in order to reduce
their size for training. Examples with missing values have been
removed, e.g., in the wisconsin dataset.

We adopt the model proposed in [24], [37], and [38], that is,
a fivefold cross-validation model, where a dataset is split in five
partitions randomly, each partition with 20% of the examples,
and a combination of four of them is then used for training
and the other is used for testing. This process is repeated five
times by using a different partition to test the system each time.
For each partition, the output is computed as the mean of the
numbers of correctly classified examples divided by the total
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number of examples for each partition, that is, the accuracy
rate. Then, we consider the average result of the five partitions
as the final classification rate of the algorithm. This procedure is
a standard for testing the performance of classifiers [39], [40].

We use FARC-HD [10] to accomplish the fuzzy rule learning
process. We have considered the following configuration: the
product t-norm as the conjunction operator T ′, the Certainty
Factor as the rule weight RWj , five linguistic labels per vari-
able, 0.05 for the minimum support, 0.8 as the threshold for
the confidence, the depth of the search trees is limited to 3, and
the parameter determining the number of fuzzy rules that cover
each example, kt , is set to 2. For the genetic process, we have
used populations composed of 50 individuals, 30 bits per gen
for the Gray codification (for incest prevention), and 20,000 as
the maximum number of iterations. Finally, for the Dirac fuzzy
measure, the value of the variable i used to decide if i ∈ A, for
A ⊆ N = {0, . . . , n}, we adopt the median value, is given by

i =

⎧
⎪⎨

⎪⎩

n + 1
2

, if n is odd

n

2
+ 1, if n is even.

In order to give statistical support to the analysis of the results,
we consider the usage of hypothesis validation techniques [41],
[42]. Specifically, we use nonparametric tests, since the initial
conditions that guarantee the reliability of the parametric tests
cannot be performed [43].

In fact, we use the aligned Friedman test [44] to detect sta-
tistical differences among a group of results and to show how
good a method is with respect to the others. In this method,
the algorithm achieving the lowest average ranking is the best
one. Furthermore, we apply the post-hoc Holm’s test [45] to
study whether the best method rejects the equality hypothesis
with respect to its partners. The post-hoc procedure allows us to
know whether a hypothesis of comparison could be rejected at
a specified level of significance α. Specifically, we compute the
adjusted p-value (APV) to take into account that multiple tests
are conducted. As a result, we can directly compare the APV
with the level of significance α so as to be able to reject the null
hypothesis.

Finally, we also consider the usage of the Wilcoxon test [46]
in order to perform pairwise comparisons.

B. Experimental Results

The summary of the results provided by all the different con-
figurations of the FRM, i.e., all the preaggregation functions,
is introduced in Table IV. Each column of this table shows the
results obtained using the fuzzy measure reported in its top cell
using the six t-norms, which are shown by rows. The number
in each cell is the average of the accuracy rate obtained in the
27 datasets by the corresponding preaggregation function. The
best result for each fuzzy measure is highlighted in boldface.
The number in brackets is the number of datasets in which each
t-norm has obtained the best performance for each fuzzy mea-
sure (ties are excluded). The detailed results obtained in each
dataset are available in the Appendix.

TABLE IV
AVERAGED RESULTS OBTAINED BY THE DIFFERENT PREAGGREGATION

FUNCTIONS CONSIDERED IN THE STUDY

Uniform Dirac Wmean OWA Power GA

Product 78.68 (7) 78.01 (3) 78.12 (4) 77.33 (4) 78.55 (5)
Minimum 78.85 (7) 77.81 (0) 78.75 (7) 78.33 (10) 79.00 (7)
Łukasiewicz 76.61 (1) 77.81 (1) 76.92 (0) 76.44 (1) 78.14 (0)
Drastic 76.66 (0) 77.81 (0) 76.66 (1) 76.66 (2) 76.66 (1)
Nilpotent 76.88 (1) 77.81 (0) 76.76 (3) 76.60 (1) 78.78 (5)
Hamacher 79.16 (8) 77.81 (1) 79.19 (10) 78.61 (7) 79.42 (7)

From these results, we can observe two situations.
1) The performance of the product, minimum, and Hamacher

is, in general, clearly better than that of Łukasiewicz,
Drastic product, and Nilpotent minimum.

2) The performance of all the t-norms using the Dirac’s mea-
sure is almost the same.

The reason implying the low performance of Łukasiewicz,
Drastic product, and Nilpotent product is that after aggregating
a set of values, the obtained one is similar to that obtained if we
aggregated them using the minimum function (not the preag-
gregation associated with the minimum), which usually obtains
poor results. The explanation is as follows: Let x and y be the
result of the fuzzy measure and the subtraction of the elements
to be aggregated using the Choquet integral, respectively.

1) Łukasiewicz: x + y − 1 is lower than 0 on half of its do-
main. Therefore, most of the time we do not add anything,
which implies obtaining the minimum or a value close to
it.

2) Drastic product: The value of the fuzzy measure is never
1 (except when we have all the elements), and it is very
difficult to have a difference between two values to be
aggregated equal to 1. Therefore, most of the time we add
0.

3) Nilpotent minimum: In the same way as Łukasiewicz, on
half of the domain, x + y is greater than 1. Consequently,
we also add 0 most of the times.

Regarding the behavior of the Dirac’s measure, the simi-
lar behavior among all the t-norms is due to the fact that
this measure returns always either 1 or 0. Furthermore, it is
known that T (x(i) − x(i−1) , 0) = 0 and T (x(i) − x(i−1) , 1) =
x(i) − x(i−1) , for any t-norm T . Consequently, the selected t-
norm T does not have a great influence on the results of the
preaggregation functions.

Due to the aforementioned poor results obtained when apply-
ing Łukasiewicz, Drastic product, and Nilpotent minimum, we
focus the remainder of the analysis on the product, minimum,
and Hamacher t-norms.

From the results in Table IV, we can observe that, with the ex-
ception of the Dirac’s fuzzy measure, the results of the Hamacher
t-norm are better than those of the minimum t-norm, which in
turn are better than the ones of the product. This trend is also
present, in general, on the number of datasets in which each of
these t-norms obtain the best result.
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TABLE V
ALIGNED FRIEDMAN AND HOLM TESTS TO COMPARE THE DIFFERENT PREAGGREGATION FUNCTIONS

Uniform Dirac WMean OWA Power GA

Product 42.94 (0.21) 38.13 51.09 (0.002) 53.91 (0.003) 50.78 (0.004)
Minimum 45.13 (0.21) 43.38 (0.771) 42.13 (0.054) 35.24 (0.828) 41.20 (0.112)
Hamacher 50.22 41.18 (0.771) 29.78 33.85 31.02

TABLE VI
WILCOXON TEST TO COMPARE THE PRODUCT (R+ ) VERSUS

THE MINIMUM (R−)

Comparison R+ R− p-value

Uniform+Prod versus Uniform+Min 195.5 182.5 0.925
Dirac+Prod versus Dirac+Min 214 164 0.625
WMean+Prod versus WMean+Min 135.5 242.5 0.200
OWA+Prod versus OWA+Min 107.5 270.5 0.004
Power GA+Prod versus Power GA+Min 132 249 0.148

In order to support the previous findings, we carry out a sta-
tistical test to compare, for each fuzzy measure, the product,
minimum, and Hamacher t-norms. To do so, we have used the
Aligned Friedman test as well as the Holm’s post-hoc test. The
results of these statistical techniques are reported in Table V,
where in each column, we find the different fuzzy measures,
whereas the three t-norms are shown in rows. The number in
each cell is the average rank computed with the aligned Fried-
man test, and the number in brackets is the APV computed with
the Holm’s test. The best t-norm for each fuzzy measure is the
one with the less rank, which stressed in boldface, whereas the
APV is underlined in case of statistical differences in favor to
the best t-norm.

From the results in Table V, we can observe that the usage of
the Hamacher t-norm provides the best behavior for all the fuzzy
measures, with the exception of the one defined by Dirac due
to the previous mentioned behavior. In fact, we find statistical
differences with respect to the product when using the additive
(WMean), symmetric (OWA), and Power GA fuzzy measures
and a low APV when using the uniform measure. Therefore, we
can conclude that the usage of the Hamacher t-norm allows us
to enhance the results of the product.

Furthermore, we also want to analyze if the minimum is also
appropriate when compared with the usage of the product. To do
so, we compare, for each fuzzy measure, the results provided by
the product versus the ones of the minimum. To perform these
comparisons, we have applied the Wilcoxon’s test to conduct
such pairwise comparisons. The obtained results are introduced
in Table VI, where we can observe that when using the additive
(WMean), symmetric (OWA), and Power GA fuzzy measures
there is a trend in favor to the minimum, whereas in the two
remainder fuzzy measures, the behavior of these two t-norms is
similar.

Finally, we want to study whether the results obtained by the
best preaggregation function are able to improve those provided
by the well-known FRM of the WR, that is, the usage of the

TABLE VII
RESULTS IN TESTING PROVIDED BY CARD_GA+HAM AND WR

Dataset WR Power GA+Ham

App 84.89 82.99
Bal 82.08 82.72
Ban 84.30 85.96
Bnd 68.56 72.13
Bup 61.16 65.80
Cle 55.23 55.58
Eco 75.61 80.07
Gal 63.11 63.10
Hab 71.22 72.21
Hay 79.46 79.49
Iri 94.67 93.33
Led 69.80 68.60
Mag 79.60 79.76
New 94.42 95.35
Pag 94.52 94.34
Pho 82.01 83.83
Pim 75.38 73.44
Rin 90.00 88.79
Sah 67.31 70.77
Sat 80.40 80.40
Seg 92.99 93.33
Tit 78.87 78.87
Two 84.32 85.27
Veh 67.62 68.20
Win 94.36 96.63
Wis 96.49 96.78
Yea 56.54 56.53
Mean 78.70 79.42

TABLE VIII
WILCOXON TEST TO COMPARE THE POWER MEASURE GENETICALLY

ADJUSTED METHOD WITH THE HAMACHER T-NORM (R+ ) VERSUS THE

CLASSICAL FRM OF THE WR (R−)

Comparison R+ R− p-value

Power GA+Ham vs. WR 267.5 110.5 0.06

maximum to aggregate the information. According to Table IV,
we select the preaggregation function resulting of the combi-
nation among the Power GA fuzzy measure and the Hamacher
t-norm (Power GA+Ham), since it provides the best average
result. The results provided by this preaggregation function as
well as those obtained with the WR are reported in Table VII,
where the best result for each dataset is highlighted in boldface.
From these results, it can be observed that the global behavior
of Power GA+Ham is better than that of the WR. This is due
to the fact that Power GA+Ham provides the best result in 17
out of the 27 datasets considered in the study. We also apply
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the Wilcoxon’s test to support these findings, whose obtained
results are shown in Table VIII. According to the statistical re-
sults, we can confirm with a high level of confidence that the
usage of Power GA+Ham is better than that of the WR.

VII. CONCLUSION

In this paper, based on the notion of an aggregation function,
we have introduced the concept of a preaggregation function. We
have described three construction methods for such functions. In
particular, one of them derives from the Choquet integral by us-
ing other t-norms in the place of the product t-norm considered
in the standard definition of the Choquet integral. Furthermore,
we have proposed to apply this specific instance of preaggrega-
tion in the FRM of FRBCSs to aggregate the local information
given by each fuzzy rule of the system.

In the experimental study, we have shown that the usage
of the Hamacher or even the minimum t-norms allows one
to improve the results obtained when applying the classical
Choquet integral, that is, when using the product t-norm. More-
over, we have checked that the preaggregation providing the
best results, which is obtained combining the Hamacher t-norm
and the power measure genetically learnt, enhances the results
achieved by the well-known FRM of the WR, that is, applying
the maximum as the aggregation function. Therefore, the preag-
gregation functions introduced in this paper can offer greater
flexibility for FRBCSs, enlarging the scope of the application
of the approach proposed by Barrenechea et al. [24].

Future work is concerned with the study of the properties
satisfied by the preaggregation functions, and the usage of over-
lap functions [6], [7], [47]–[49] for the generalization of the
Choquet integral, also using a fuzzy interval approach [50]–
[54], as, e.g., in [31], [33], and [55].

APPENDIX

The tables in this appendix present the obtained results in
each dataset considering the different t-norms, for each fuzzy
measure. Each table contains the results obtained with a different
fuzzy measure:

1) Table IX: results of the uniform measure for the six
t-norms.

2) Table X: results of the Dirac’s fuzzy measure for the six
t-norms.

3) Table XI: results of an additive fuzzy measure for the six
t-norms.

4) Table XII: results of the ordered weighted averaging fuzzy
measure for the six t-norms.

5) Table XIII: results of the genetic uniform fuzzy measure
for the six t-norms.

The structure of these five tables is as follows: In each row,
we find a dataset, and in each column, we introduce a different
t-norm. The best result for each dataset is stressed in boldface.

TABLE IX
DETAILED RESULTS IN TESTING USING THE UNIFORM MEASURE

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

App 86.80 84.89 87.75 83.03 82.12 85.89
Bal 78.24 82.24 75.04 76.80 77.12 80.96
Ban 84.45 83.38 82.70 82.72 81.91 84.19
Bnd 64.00 70.24 64.07 65.56 63.81 69.96
Bup 64.35 63.19 63.77 63.48 65.22 65.80
Cle 57.57 55.55 55.24 56.89 52.51 56.90
Eco 78.28 76.20 72.91 75.61 75.61 79.17
Gal 65.90 63.58 62.62 62.17 62.16 64.47
Hab 74.50 72.53 73.51 73.20 73.84 72.87
Hay 81.00 78.69 78.77 78.77 79.52 79.49
Iri 94.00 94.00 94.00 92.67 94.67 93.33
Led 68.20 68.80 67.40 67.00 68.40 69.00
Mag 79.02 79.49 76.50 77.28 76.97 80.65
New 94.42 95.35 93.02 92.56 92.56 94.88
Pag 94.16 93.80 93.61 94.34 94.16 94.34
Pho 83.14 81.92 80.18 79.70 79.81 83.33
Pim 72.26 74.74 71.62 72.65 72.40 74.48
Rin 85.81 88.24 78.38 78.11 79.59 87.43
Sah 70.97 70.55 68.83 68.61 69.70 69.68
Sat 84.50 81.80 77.76 78.38 76.36 79.47
Seg 92.60 93.07 90.00 90.69 89.74 93.25
Tit 78.87 78.87 78.87 78.87 78.87 78.87
Two 80.54 83.24 77.84 77.70 76.22 82.70
Veh 63.53 68.56 66.78 64.89 65.72 69.03
Win 94.37 93.81 88.71 88.73 95.49 95.51
Wis 95.90 96.05 95.02 95.32 94.44 95.76
Yea 56.94 56.26 53.44 53.97 56.94 56.00
Mean 78.68 78.85 76.61 76.66 76.88 79.16

TABLE X
DETAILED RESULTS IN TESTING USING THE DIRAC’S MEASURE

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

Dataset Product Minimum Lukasewitz Drastic Nilpo Hamacher
App 80.17 80.17 80.17 80.17 80.17 80.17
Bal 78.24 78.24 77.60 78.24 78.08 78.24
Ban 84.09 84.09 84.09 84.09 84.09 84.09
Bnd 70.67 65.97 65.97 65.97 65.97 65.97
Bup 64.06 64.06 64.06 64.06 64.06 64.06
Cle 55.56 55.56 55.56 55.56 55.56 55.56
Eco 77.70 77.70 77.70 77.70 77.70 77.70
Gal 64.98 64.98 64.98 64.98 64.98 64.98
Hab 71.23 71.23 71.23 71.23 71.23 71.23
Hay 78.69 78.69 79.46 78.69 78.69 78.69
Iri 93.33 93.33 93.33 93.33 93.33 93.33
Led 68.00 68.00 68.00 68.00 68.00 68.20
Mag 77.86 77.86 77.86 77.86 77.86 77.86
New 93.02 93.02 93.02 93.02 93.02 93.02
Pag 94.52 94.52 94.52 94.52 94.52 94.52
Pho 82.33 82.33 82.33 82.33 82.33 82.33
Pim 72.52 72.52 72.52 72.52 72.52 72.52
Rin 84.59 84.59 84.59 84.59 84.59 84.59
Sah 70.97 68.82 68.82 68.82 68.82 68.82
Sat 79.84 78.85 78.85 78.85 78.85 78.85
Seg 91.04 91.04 91.04 91.04 91.04 91.04
Tit 79.06 79.06 79.06 79.06 79.06 79.06
Two 82.30 82.30 82.30 82.30 82.30 82.30
Veh 62.35 64.66 64.66 64.66 64.66 64.66
Win 96.06 96.06 96.06 96.06 96.06 96.06
Wis 95.90 95.90 95.90 95.90 95.90 95.90
Yea 57.21 57.21 57.21 57.21 57.21 57.21
Mean 78.01 77.81 77.81 77.81 77.80 77.81
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TABLE XI
DETAILED RESULTS IN TESTING USING AN ADDITIVE MEASURE (WMEAN)

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

Dataset Product Minimum Lukasewitz Drastic Nilpo Hamacher
App 82.08 83.94 82.08 83.03 83.98 85.84
Bal 78.08 81.60 75.52 76.80 74.56 81.12
Ban 83.85 84.02 83.30 82.72 82.11 84.47
Bnd 61.33 71.32 69.83 65.56 68.20 67.99
Bup 64.35 61.16 65.22 63.48 65.80 65.51
Cle 57.56 55.24 54.86 56.89 56.22 57.92
Eco 79.46 78.86 73.53 75.61 76.19 76.49
Gal 63.54 64.05 62.62 62.17 63.57 64.02
Hab 72.54 70.91 73.19 73.20 70.24 72.21
Hay 77.98 78.69 78.77 78.77 79.52 79.49
Iri 93.33 94.00 93.33 92.67 94.00 93.33
Led 68.40 68.20 67.80 67.00 67.80 69.40
Mag 80.55 80.76 76.08 77.28 76.97 80.02
New 93.95 94.88 92.56 92.56 92.56 94.42
Pag 94.34 94.16 93.97 94.34 94.71 94.34
Pho 82.51 82.11 79.44 79.70 79.90 82.25
Pim 73.56 74.86 72.40 72.65 71.75 75.78
Rin 85.68 88.24 76.89 78.11 78.65 88.78
Sah 65.59 69.27 70.57 68.61 67.97 71.21
Sat 81.40 78.23 78.85 78.38 77.91 79.78
Seg 92.12 92.21 90.00 90.69 89.61 92.86
Tit 78.87 78.87 78.87 78.87 78.87 78.87
Two 82.03 83.65 77.97 77.70 75.14 85.41
Veh 70.00 68.67 64.89 64.89 64.42 69.86
Win 94.40 95.48 94.37 88.73 92.11 93.81
Wis 95.76 95.75 95.46 95.32 95.02 97.07
Yea 56.00 57.21 54.58 53.97 54.79 56.00
Mean 78.12 78.75 76.92 76.66 76.76 79.19

TABLE XII
DETAILED RESULTS IN TESTING USING A SYMMETRIC MEASURE (OWA)

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

Dataset Product Minimum Lukasewitz Drastic Nilpo Hamacher
App 83.03 82.99 82.12 83.03 88.66 84.85
Bal 78.88 82.56 77.28 76.80 74.72 80.80
Ban 84.55 83.23 82.21 82.72 82.79 83.23
Bnd 61.33 68.26 64.95 65.56 66.61 68.56
Bup 62.90 61.74 65.51 63.48 63.19 66.67
Cle 53.20 55.23 53.54 56.89 55.56 56.21
Eco 76.20 75.90 73.82 75.61 75.03 74.12
Gal 63.09 62.64 61.23 62.17 64.03 67.74
Hab 73.19 71.89 74.48 73.20 72.88 71.57
Hay 78.75 79.49 78.77 78.77 78.77 79.49
Iri 92.00 93.33 92.00 92.67 91.33 92.00
Led 67.60 68.20 67.00 67.00 67.00 68.40
Mag 79.49 79.18 77.71 77.28 76.97 80.13
New 91.63 90.70 92.09 92.56 91.63 91.16
Pag 94.34 95.25 94.16 94.34 94.16 94.34
Pho 81.98 81.92 79.03 79.70 79.87 82.72
Pim 72.65 75.00 73.05 72.65 73.18 73.56
Rin 81.89 86.76 75.54 78.11 77.97 86.49
Sah 69.89 70.99 68.18 68.61 69.03 69.25
Sat 79.84 78.54 77.29 78.38 76.98 79.00
Seg 92.21 91.56 90.00 90.69 90.39 92.03
Tit 78.87 78.87 78.87 78.87 78.87 78.87
Two 81.35 86.35 77.03 77.70 74.59 88.78
Veh 64.12 66.08 64.30 64.89 62.29 66.07
Win 93.25 94.37 94.35 88.73 91.59 94.37
Wis 95.17 96.34 95.46 95.32 94.88 96.05
Yea 56.47 57.68 53.91 53.97 55.12 56.13
Mean 77.33 78.33 76.44 76.66 76.60 78.61

TABLE XIII
DETAILED RESULTS IN TESTING USING THE POWER MEASURE GENETICALLY

ADJUSTED (POWER GA)

Dataset Product Minimum Lukasiewicz Drastic Nilpotent Hamacher

App 80.13 81.17 81.17 83.03 83.98 82.99
Bal 82.40 82.72 80.32 76.80 81.28 82.72
Ban 86.32 85.28 84.40 82.72 84.21 85.96
Bnd 64.00 70.25 71.02 65.56 69.37 72.13
Bup 66.96 61.16 65.22 63.48 64.06 65.80
Cle 55.58 56.26 55.20 56.89 54.54 55.58
Eco 76.51 78.57 74.72 75.61 77.41 80.07
Gal 64.02 64.96 64.49 62.17 64.51 63.10
Hab 72.52 71.87 73.18 73.20 73.84 72.21
Hay 79.49 77.95 77.98 78.77 78.75 79.49
Iri 91.33 92.67 92.00 92.67 94.00 93.33
Led 68.20 68.80 68.20 67.00 68.40 68.60
Mag 78.86 80.23 79.39 77.28 79.55 79.76
New 94.88 93.95 93.49 92.56 93.95 95.35
Pag 94.16 94.16 94.70 94.34 94.89 94.34
Pho 82.98 82.61 81.25 79.70 81.11 83.83
Pim 74.60 76.04 74.09 72.65 74.47 73.44
Rin 90.95 90.27 88.65 78.11 89.19 88.78
Sah 68.82 71.65 70.56 68.61 70.55 70.77
Sat 79.84 79.47 78.07 78.38 79.63 80.40
Seg 93.46 92.42 90.74 90.69 90.39 93.33
Tit 78.87 78.87 78.87 78.87 78.87 78.87
Two 84.46 84.86 83.78 77.70 85.00 85.27
Veh 64.71 68.44 62.53 64.89 64.90 68.20
Win 93.79 95.51 93.78 88.73 97.16 96.63
Wis 97.22 96.63 95.76 95.32 96.63 96.78
Yea 55.73 56.33 56.33 53.97 56.47 56.53
Mean 78.55 79.00 78.14 76.66 78.78 79.42
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approach to interval-valued Choquet integrals and the problem of ordering
in interval-valued fuzzy set applications,” IEEE Trans. Fuzzy Syst., vol.
21, no. 6, pp. 1150–1162, Dec. 2013.

Giancarlo Lucca received the Undergraduate and
Master’s degrees from the Universidade Federal do
Rio Grande, Natal, Brazil. He is currently working
toward the Ph.D. degree with the Universidad Publica
de Navarra, Pamplona, Spain, under the advising of
Prof. H. Bustince.



272 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 24, NO. 2, APRIL 2016
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