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Abstract

We propose the concepts of superadditive and of subadditive transformations of aggregation functions acting on non-negative 
reals, in particular of integrals with respect to monotone measures. We discuss special properties of the proposed transforms and 
links between some distinguished integrals. Superadditive transformation of the Choquet integral, as well as of the Shilkret integral, 
is shown to coincide with the corresponding concave integral recently introduced by Lehrer. Similarly the transformation of the 
Sugeno integral is studied. Moreover, subadditive transformation of distinguished integrals is also discussed.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The concepts of subadditivity and superadditivity are very important in economics. For example, consider a pro-
duction function A : Rn+ → R+ assigning to each vector of production factors x = (x1, . . . , xn) the corresponding 
output A(x1, . . . , xn). If one has available resources given by the vector x = (x1, . . . , xn), then, the production func-
tion A assigns the output A(x1, . . . , xn). Now suppose that the resources x = (x1, . . . , xn) can be divided into k ∈ N

subgroups of production factors x = (x1, . . . , xn) = (x
(1)
1 , . . . , x(1)

n ) + . . . + (x
(k)
1 , . . . , x(k)

n ). Since the purpose of any 
production function is to maximize the use of factor inputs in production, one should check if the production output 
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∑k
i=1 A(x

(i)
1 , . . . , x(i)

n ) is greater than A(x1, . . . , xn). More in general, one can be interested in finding the “best” 
decomposition of the available resources, i.e., we should look to the quantity

A∗(x) = sup{
k∑

i=1

A(x
(i)
1 , . . . , x(i)

n ) |
k∑

i=1

(x
(i)
1 , . . . , x(i)

n ) ≤ x},

provided that 
∑k

i=1(x
(i)
1 , . . . , x(i)

n ) is an allowable (realistic) decomposition of x. Thus, either A∗(x) = A(x) for all 
x ∈ R

n+ or function A∗ should be considered – at least ideally – the “real” production function (provided that the range 
of A∗ contains only finite values, i.e., A∗(x) < ∞ for each x ∈ R

n+).1 The condition A(x) = A∗(x) for all x ∈ R
n+ is 

equivalent to the superadditivity of the production function A, i.e., for all y, x ∈R
n+ we have A(y+x) ≥ A(y) +A(x). 

Analogously, consider the situation of a system of prices represented by the function A :Rn+ → R+ assigning to each 
bundle of goods x = (x1, . . . , xn) with xi , i = 1, . . . , n, representing the quantity of the i-th item, the corresponding 
price A(x1, . . . , xn). If one wants to buy the bundle x = (x1, . . . , xn), then one can get it at the following price (possibly 
asymptotically)

A∗(x) = inf{
k∑

i=1

A(x
(i)
1 , . . . , x(i)

n ) |
k∑

i=1

(x
(i)
1 , . . . , x(i)

n ) ≥ x}.

Thus either A(x) = A∗(x) for all x ∈ R
n+ or function A∗ becomes the “real” price system considered by economic 

operators. The condition A(x) = A∗(x) for all x ∈R
n+ is equivalent to the subadditivity of the price system A, i.e., for 

all y, x ∈R
n+ we have A(y + x) ≤ A(y) + A(x).

Observe that in two above examples the superadditivity and the subadditivity of function A were related to its 
transformations A∗ and A∗, respectively. For this reason, it is important to study and discuss these transformations 
what we shall do in this paper.

For a class K of some objects, a property p determines a subclass

Kp = {K ∈K | K has property p}.
Any mapping τ : K → K is called a transformation (of objects from K), and if Kτ = {τ(K)|K ∈ K} = Kp , and 
τ(K) = K for each K ∈ Kp , τ is called a p transformation. Obviously, τ ◦ τ = τ for any p-transformation τ. Formally, 
τ can be seen as a projection from K onto Kp .

We recall some typical examples:

– For K = MS the class of monotone measures on a measurable space (X, S ), one can consider the superaddi-
tivity property. Define a transformation τ :MS → MS by τ(m) : S → [0, ∞],

τ(m)(E) = sup{
k∑

i=1

m(Ei)|(Ei)
k
i=1 is a measurable partition of E}.

Observe that considering the PAN-integral 
∫ PAN introduced in [18], see also [17], τ(m)(E) = ∫ PAN 1E dm. It 

is not difficult to check that, taking the property p = superadditivity, then τ is a superadditive transforma-
tion.

– For A[0,1],n the class of n-ary aggregation functions on [0, 1], one can consider the averaging property char-
acterizing idempotent aggregation functions. Then, for the class K ⊂ A[0,1],n of n-ary aggregation functions 

1 To the best of our knowledge, this concept of transformation of the production function from A to A∗ is original and not standard in the literature 
on production functions (see, e.g., [3]). Indeed according to Shephard [13] production function is defined as a relationship between the maximal 
technically feasible output and the inputs needed to produce that output, that corresponds to what we called “real production function” A∗ . However, 
very often production function is simply defined as a technical relationship between output and inputs without any reference to the assumption that 
such output has to be maximal with respect to the given inputs (see [12]). In this sense, we can see that, when it is possible to imagine divisibility of 
the input, the superadditive transformation of the merely technical relationship between output and inputs A gives the “real production function” A∗ . 
Observe that in economics some assumptions are considered on production functions that imply their superadditivity. More precisely, continuity, 
strict increasing monotonicity, strict quasiconcavity and A(0) = 0 are conditions usually assumed on production function. Under these conditions 
production function is superadditive ([13]; see also Theorem 3.1 in [6]).
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with continuous strictly increasing diagonal section δA : [0, 1] → [0, 1], δA(x) = A(x, . . . , x), the transformation 
τ : K → K given by τ(A)(x1, . . . , xn) = δ−1

A (A(x1, . . . , xn)) (called the idempotization in [4]) is an averaging 
transformation.

Observe that the above mentioned transformations imply interesting consequences. For example, considering the 
superadditive transformation τ for any monotone measure m ∈MS , for any S -measurable function f : X → [0, ∞], 
it holds

PAN∫
f dm =

PAN∫
f dτ(m),

and τ(m) is the smallest superadditive measure from MS bounded from below by m.
On the other hand, considering the above mentioned averaging transformation τ, for any strict triangular norm (in 

its n-ary form) T : [0, 1]n → [0, 1] generated by an additive generator f : [0, 1] → [0, ∞], τ(T ) : [0, 1]n → [0, 1] is 
the related quasi-arithmetic mean generated by f ,

τ(T )(x1, . . . , xn) = f −1(
1

n

n∑
i−1

f (xi)).

Based on τ, one can generalize quasi-arithmetic means considering weakly increasing continuous t-norm T :
[0, 1]n → [0, 1], i.e., T = (〈aj , bj , Tj 〉/j ∈ J ) is an ordinal sum with strict summands, for more details see [7]. 
If fj is an additive generator of Tj , j ∈ J , then

τ(T )(x1, . . . , xn) =
{

f −1
j ( 1

n

∑n
i=1 fj (|xi |j )) if min{x1, . . . , xn} ∈]aj , bj [ for some j ∈ J

min {x1, . . . , xn} otherwise,

where |x|j = min{bj , max{aj , x}}.
Our main aim is to study superadditive and subadditive transformations of aggregation functions acting on [0, ∞[=

R+, in particular of some distinguished integrals. The paper is organized as follows. In next Section 2 we recall basic 
preliminaries concerning aggregation functions on R+, and in particular we recall some integrals here. Section 3 brings 
the proposal of a superadditive transformation including the study of its properties and some illustrative examples. 
In Section 4, a subadditive transformation is proposed and discussed. Section 5 is devoted to the examination of 
relationships between the superadditive transformations of some distinguished integrals. In Section 6, we discuss 
subadditive transformations of distinguished integrals. Note that here the role of the underlying measure is important 
to ensure the existence of subadditive transformations. Finally some concluding remarks are added.

2. Aggregation functions on R+

Let us consider the sets N = {1, . . . , n} and R+ = [0, +∞[. For all E ⊆ N , 1E is the vector of Rn+ whose ith 
component equals 1 if i ∈ E and equals 0 otherwise. 0 = (0, . . . , 0) indicates the null vector.

An aggregation function A on Rn+ is a monotone function A : R
n+ → R+ such that A(0) = 0 and

supx∈Rn+ A(x) > 0, [4]. Note that we have relaxed the constraint supx∈Rn+ A(x) = +∞ considered in [4] to cover 
integrals considered in this paper, in particular the Sugeno integral [16].

An aggregation function A on Rn+ is said to be

– idempotent, if for all λ ∈R+, A(λ1N) = λ;
– homogeneous, if for all λ > 0 and for all x ∈R

n+, A(λx) = λA(x);
– concave (convex), if for all for all x, y ∈ R

n+ and for all λ ∈ [0, 1],
A(λx + (1 − λ)y) ≥ λA(x) + (1 − λ)A(y)[
Aλx + (1 − λ)y) ≤ λA(x) + (1 − λ)A(y)

] ;
– superadditive, (subadditive) if for all x, y ∈R

n+
A(x) + A(y) ≤ A(x + y)

[
A(x) + A(y) ≥ A(x + y)

]
.
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An aggregation function A being superadditive (subadditive) and homogeneous is called superlinear (sublinear). 
Observe that any superlinear (sublinear) aggregation function is concave (convex), while the inverse is not true (e.g., 
f (x) = √

x is concave but it neither homogeneous nor superadditive). In fact, for homogeneous aggregation function 
on Rn+, the concavity (convexity) is equivalent to the superadditivity (subadditivity).

Typical examples of aggregation functions on Rn+ are:

– weighted sums, W(x1, . . . , xn) = ∑n
i=1 wixi , with weights wi ∈ R+ and at least one non-zero weight; these 

aggregation functions satisfy all above mentioned properties (and they are unique with these properties);
– the smallest idempotent aggregation function min, min(x1, . . . , xn) = min{x1, . . . , xn}, is homogeneous, superad-

ditive, concave, and superlinear;
– the greatest idempotent aggregation function Max, Max(x1, . . . , xn) = max{x1, . . . , xn}, is homogeneous, subad-

ditive, convex, and sublinear;

– the geometric mean G, G(x1, . . . , xn) = n

√∏n
i=1 xi , is idempotent, homogeneous, superadditive, concave, and 

superlinear;

– the quadratic mean Q, Q(x1, . . . , xn) =
√

1
n

∑n
i=1 x 2

i , is idempotent, homogeneous, convex, and sublinear;

– define D : R2+ → R+ by D(x, y) = x2 + √
y. Then D is a binary aggregation function which has none of the 

above mentioned properties.

Typical aggregation functions are integrals. Definitions of integrals are based on special set-functions, namely 
measures. A measure μ on N is a monotone (w.r.t. set inclusion) function μ : 2N → R+ satisfying the condition 
μ(∅) = 0 and μ(N) > 0.

The Choquet integral [2] of x ∈R
n+ with respect to the measure μ is defined as:

Ch∫
x dμ =

maxi∈N xi∫
0

μ({i ∈ N : xi ≥ t})dt.

The Sugeno integral [16] of x ∈R
n+ with respect to the measure μ is defined as:

Su∫
x dμ = max

{
min{xi,μ({j ∈ N : xj ≥ xi})} : i = 1, . . . , n

}
.

The Shilkret integral [14] of x ∈ R
n+ with respect to the measure μ is defined as:

Sh∫
x dμ = max

{
xiμ({j ∈ N : xj ≥ xi}) : i = 1, . . . , n

}
.

The concave integral [9] of x ∈R
n+ with respect to the measure μ is defined as:

cav∫
x dμ = sup

⎧⎨
⎩

∑
T ⊆N

αT μ(T ) :
∑
T ⊆N

αT 1T ≤ x, αT ≥ 0 for all T ⊆ N

⎫⎬
⎭ .

The convex integral [10] of x ∈ R
n+ with respect to the measure μ is defined as:

con∫
x dμ = inf

⎧⎨
⎩

∑
T ⊆N

αT μ(T ) :
∑
T ⊆N

αT 1T ≥ x, αT ≥ 0 for all T ⊆ N

⎫⎬
⎭ .

The PAN integral [17] of x ∈R
n+ with respect to the measure μ is defined as:

PAN∫
x dμ = sup

⎧⎨
⎩

k∑
j=1

ajμ(Aj ) :
k∑

j=1

aj 1Aj
≤ x, {Aj }k1 being a partition of N

⎫⎬
⎭ .
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The downward PAN integral of x ∈ R
n+ with respect to the measure μ is defined as:

PAN↓∫
x dμ = inf

⎧⎨
⎩

k∑
j=1

ajμ(Aj ) :
k∑

j=1

aj 1Aj
≥ x, {Aj }k1 being a partition of N

⎫⎬
⎭ .

3. Superadditive transformations of aggregation functions

Definition 1. Given an aggregation function A on Rn+ and x ∈ R
n+, if

A∗(x) := sup{
k∑

j=1

A(yj ) : yj ∈R
n+ such that

k∑
j=1

yj ≤ x} < +∞, (Fin)

then A∗(x) is called a superadditive transformation of x with respect to A.

Let us note that, in Definition 1, when looking for the supremum of all possible sums 
∑k

j=1 A(yj ) (
∑k

j=1 yj being 
not greater than x), the integer k is not fixed.

In general, the symbol A∗(x) indicates the sup in condition (Fin) and, by definition, for any x, y ∈ R
n+, if y ≤ x, 

then A∗(y) ≤ A∗(x) ≤ +∞.
We say that an aggregation function A : Rn+ → R+ admits superadditive transformation on Rn+ if the condition 

(Fin) is satisfied for all x ∈ R
n+. Denote by K∗

n the class of all aggregation functions which admit superadditive 
transformation on Rn+.

Theorem 1. Let A :Rn+ → R+ be an aggregation function. Then A ∈K∗
n, i.e.,

sup{
k∑

j=1

A(yj ) : yj ∈R
n+ such that

k∑
j=1

yj ≤ x} < +∞, ∀ x ∈ R
n+ (1)

if and only if

A∗(1N) = sup{
k∑

j=1

A(yj ) : yj ∈ R
n+ such that

k∑
j=1

yj ≤ 1N } < +∞. (2)

In other words, a necessary and sufficient condition ensuring that A admits superadditive extension on Rn+ is that 
(Fin) holds for the constant vector 1N .

Proof. Obviously, we need only to prove the sufficiency. By the monotonicity of A∗ it is sufficient to prove that 
A∗(x) < ∞ for any x ∈ N

n. Define |x| = ∑n
i=1 xi for any x ∈N

n, and put Km = max{A∗(x) | x ∈ N
n, |x| = m}. The 

proof is complete if we show that Km < ∞ for any m ∈ N. We prove this statement by induction. By the assumption, 
K1 < ∞. Let Km < ∞ (induction step), and let x ∈ N

n such that |x| = m + 1. If xi ≤ 1 for any i = 1, . . . , n, then 
A∗(x) ≤ A∗(1N) < ∞. If xi > 1 for some i = 1, . . . , n, put x′ = (x1, . . . , xi − 1, . . . , xn). Let 

∑k
j=1 yj = x (from 

the monotonicity it is sufficient to consider the equality). Then there exists 0 ≤ l ≤ k such that 
∑l

j=1 yj ≤ x′ and ∑l+1
j=1 yj > x′, where we consider the sum over the empty index set to be equal to 0. Then, we can write

k∑
j=1

yj =
l∑

j=1

yj + yl+1 +
k∑

j=l+2

yj ,

where we admit that some of the sums on the right side of the equality can have the empty index set (this is the case 
if l = 0 or l = k − 1). Since 

∑l
j=1 yj ≤ x′ and also 

∑k
j=l+2 yj ≤ x′, we simply find that

k∑
A(yj ) ≤ 2A∗(x′) + A(x) ≤ 2Km + A(x).
j=1
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Then, A∗(x) ≤ 2Km + A(x) < ∞ by the induction step Km < ∞ and the fact that A(x) < ∞. Hence, from the 
previous result, we obtain that A∗(x) < ∞ for any x ∈ N

n such that |x| = m + 1, which implies Km+1 < ∞. �
Observe that the input 1N in Theorem 2 can be replaced by an arbitrary vector x from Rn+ with full support (i.e., 

xi > 0 for i = 1, . . . , n), and in particular by ε1N with ε arbitrarily small but positive. Based on Theorem 2, also the 
next result, dealing directly with the underlying aggregation function A, can be introduced.

Theorem 2. An aggregation function A : Rn+ → R+ is an element of K∗
n if and only if there is a constant p ∈]0, ∞[

such that A(x, . . . , x) ≤ p · x for all x ∈ [0, 1].

Proof. For the sufficiency, due to Theorem 2, it is enough to show that A∗(1N) is finite. Due to the monotonicity of 
A, it is obvious that for any y = (y1, . . . , yn) from [0, 1]n it holds A(y) ≤ p · ∑n

i=1 yi . Therefore, if 
∑k

j=1 yj ≤ 1N

then

k∑
j=1

A(yj ) ≤
k∑

j=1

p ·
n∑

i=1

y
j
i ≤ n · p

what ensures A∗(1N) ≤ n · p < ∞.
To see the necessity, suppose that for each p ∈]0, ∞[ there is x ∈]0, 1] such that A(x, . . . , x) > p · x. Then, 

there is a sequence (xm)m∈N such that A(xm, . . . , xm) > m · xm, for any m ∈ N. If [ 1
xm

] is the integer part of 1
xm

we have that for each m ∈ N, A∗(1N) + A(1N) ≥ A∗(1N) + A(xm, . . . , xm) ≥ A∗([ 1
xm

]xm · 1N) + A(xm, . . . , xm) ≥
[ 1
xm

]A(xm, . . . , xm) + A(xm, . . . , xm) > ([ 1
xm

] + 1)xm · m ≥ m, and then A∗(1N) > m − A(1N) for all m ∈ N, i.e., 
A∗(1N) = ∞. Due to Theorem 2, A /∈ K∗

n. �
Remark 1. Note that the interval [0, 1] considered in Theorem 2 can be replaced by an interval [0, ε] with ε > 0
arbitrarily small, i.e., the properties of an aggregation function A related to its superadditive extendibility depends on 
the properties of A in some neighborhood of point (0, . . . , 0).

Remark 2. Observe that by Theorem 2 we get that if the Lipschitz condition holds in a neighborhood of (0, . . . , 0)

with positive Lebesgue measure, then A ∈K∗
n.

Next corollaries individuate large classes of aggregation functions admitting superadditive extension.

Corollary 1. Let A : Rn+ → R+ be an aggregation function such that there exists k > 0 for which A(x) ≤ k
∑n

i=1 xi

holds for any x = (x1, . . . , xn) ∈ R
n+. Then, A ∈K∗

n.

Corollary 2. Let A : Rn+ → R+ be an aggregation function such that there exists k > 0 for which A(x) ≤ k · maxi xi

holds for any x = (x1, . . . , xn) ∈ R
n+. Then, A ∈K∗

n.

Corollary 3. Let A : Rn+ → R+ be an aggregation function such that A/k is idempotent for some k ∈]0, ∞[. Then 
A ∈K∗

n.

The proof of previous corollaries is not difficult: Corollary 1 follows from Theorem 2, considering the constant 
n · k; Corollary 2 follows from Corollary 1, and Corollary 3 follows from Theorem 2, where we require that A/p is 
subidempotent on [0, 1].

Now we give some examples of aggregation function which do not satisfy condition (Fin). This is the case of any 
aggregation function which is non-continuous in 0 = (0, . . . , 0). For example, let us consider the aggregation function 
A : Rn+ → R+ defined for all x = (x1, . . . , xn) ∈ R

n+ by

A(x) =
{

0 if xi = 0 for all i = 1, . . . , n

max x + 1 else.
(3)
i i
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Since we can decompose vector 1N in a denumerable sum 1N = ∑∞
k=1(

1
2k , . . . , 1

2k ) and since A( 1
2k , . . . , 1

2k ) = 1
2k + 1, 

then we can make the sum 
∑n

k=1 A( 1
2k , . . . , 1

2k ) as large as desired.
Another class of aggregation functions which do not satisfy condition (Fin) is given by aggregation function with 

partial derivatives which are not bounded in neighborhood of 0 = (0, . . . , 0), such as A(x1, . . . , xn) = ∑n
i=1

√
xi .

Proposition 1. For any aggregation function A on Rn+, A ∈ K∗
n, it holds

– A∗(x) ≥ A(x), for all x ∈R
n+,

– A∗(0) = 0, and
– A∗(x) ≥ A∗(y) for all x, y ∈ R

n+ such that x ≥ y, i.e., A∗ is an aggregation function on Rn+ and A∗ ≥ A.

Proof. The proof follows directly from the definition of the function A∗ when considering A ∈K∗
n. �

Proposition 2. Let A ∈K∗
n. Then A∗ is a superadditive aggregation function on Rn+. Moreover

A∗(x) = min{C(x) : C(y) ≥ A(y), ∀ y ∈R
n+},

where the minimum is taken over all the superadditive aggregation functions on Rn+ bounded from below by A.

Proof. By Proposition 1, A∗ is an aggregation function. For any x, y ∈ R
n+, if 

∑k
j=1 uj ≤ x and 

∑p

j=1 vj ≤ y, then ∑k
j=1 uj + ∑k

j=1 vj ≤ x + y, and thus

A∗(x) + A∗(y)

= sup {
k∑

j=1

A(uj )|
k∑

j=1

uj ≤ x} + sup {
p∑

j=1

A(vj )|
p∑

j=1

vj ≤ y}

= sup {
k∑

j=1

A(uj ) +
p∑

j=1

A(vj )|
k∑

j=1

uj ≤ x and
p∑

j=1

vj ≤ y}

≤ sup {
r∑

j=1

A(zj )|
r∑

j=1

zj ≤ x + y} = A∗(x + y),

proving the superadditivity of A∗.
Let C : Rn+ → R+ be a superadditive aggregation function with C(x) ≥ A(x) for all x ∈ R

n+. Let x be a vector 
from Rn+. For each decomposition 

∑k
i=1 xi = x, with x1, . . . , xk ∈ R

n+ we have that 
∑k

i=1 A(xi ) ≤ ∑k
i=1 C(xi ) ≤

C(
∑k

i=1 xi ) = C(x), and then C(x) is an upper bound of the set whose A∗(x) is the supremum, which implies 
A∗(x) ≤ C(x).

Now, the superadditivity of A∗ yields the desired result, that A∗(x) = min{C(x) : C ≥ A, C is superadditive
aggregation function on R

n+}. �
Observe that if A /∈ K∗

n then there is no superadditive aggregation function B on Rn+ dominating A (i.e., B ≥ A). 
Equivalently, elements of K∗

n are just aggregation functions on Rn+ admitting a dominating superadditive aggre-
gation function on Rn+. Note also that for any A ∈ K∗

n, A∗ is an aggregation function in the sense of [4], i.e., 
supx∈R A∗(x) = +∞.

Now we are ready to introduce a superadditive transformation of aggregation functions from K∗
n.

Theorem 3. Define a mapping τ∗ :K∗
n → K∗

n by τ∗(A) = A∗. Then τ∗ is a superadditive transformation.

Proof. Due to Proposition 1, τ∗(A) = A∗ is an aggregation function on Rn+ for any A ∈ K∗
n. Moreover, based on 

the ideas in the proof of Theorem 2, it is not difficult to check that for each A ∈ K∗
n, (A

∗)∗(1N) is finite and hence 
A∗ ∈ K∗

n, showing that the transformation τ∗ is well defined. Finally, for any superadditive A ∈ K∗
n, by induction we 

have A(
∑k

j=1 yj ) ≥ ∑k
j=1 A(yj ), and thus τ∗(A) = A∗ = A. �
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We list now some additional properties and examples of the introduced superadditive transformation.

– A is superadditive if and only if A∗ = A;
– A∗∗ = A∗;
– if A ≥ B then A∗ ≥ B∗;
– if A ≥ B ≥ C and A∗ = C∗, then B∗ = A∗;
– if A ≥ B ≥ D, A ≥ C ≥ D, and A∗ = D∗, then (λB + (1 − λ)C)∗ = A∗ for all λ ∈ [0, 1];
– if A = min, then A∗ = A (observe that Minimum is superadditive);
– if A = Max, then A∗(x) = ∑n

i=1 xi ; moreover, for any A between max and sum, we have that A∗ is the sum;
– if A is modular, i.e., if A(x) = ∑n

i=1 fi(xi) then A∗ is modular, A∗(x) = ∑n
i=1 f ∗

i (xi), where for i = 1, . . . , n, 
fi ∈K∗

1 ∪ {0} and 0∗ = 0;
– if A is maxitive, i.e., if A(x) = maxi fi(xi) then A∗ is modular, A∗(x) = ∑n

i=1 f ∗
i (xi), where for i = 1, . . . , n, 

fi ∈K∗
1 ∪ {0} and 0∗ = 0;

– for A ∈ K∗
n, and c ∈]0, ∞[, define Ac :Rn+ →R+ by Ac(x) = cA( x

c
). Then Ac ∈K∗

n and (Ac)
∗ = (A∗)c;

– for the power root operators Ap : Rn+ → R
n+ given by Ap(x1, . . . , xn) = ( 1

n

∑n
i=1 x

p
i )1/p , p ∈ R\{0}, it holds 

A∗
p = Ap if and only if p ≤ 1, while, for p > 1, we have A∗

p(x1, . . . , xn) = 1
n1/p · ∑n

i=1 xi ;
– for D introduced in Section 2, D /∈ K∗

2.

In the case of aggregation on R2+, A, B and C being aggregation functions, it can be shown that for compos-
ite functions A(B, C)∗ ≤ A∗(B∗, C∗) (due to monotonicity), but the equality need not hold. For example, consider 
A(x, y) = x + y, B(x, y) = x2 + y2, C(x, y) = g(x) + g(y), where g : [0,∞[ → [0,∞[ is given by

g(x) =
{

2x − x2 if x ≤ 1
1 else,

then A∗ = A, B∗ = B , C∗(x, y) = 2x + 2y, i.e., A(B, C)∗(x, y) = min (2x, x2 + 1) + min (2y, y2 + 1) <

A∗(B∗, C∗)(x, y) = 2x + 2y + x2 + y2. Interesting is also, on R3+, the following relation between median, mini-
mum and maximum:

Med∗(x, y, z) = min

{
x + y + z

2
,min(x, y, z) + Med(x, y, z)

}
. (4)

Remark 3. Observe that (K∗
n, ≤) is a lattice and the superadditive transformation is a closure operator on it.

Remark 4. Consider a homogeneous aggregation function A ∈ K∗
n. It is not difficult to check that then also A∗

is homogeneous, and that it is the smallest superlinear aggregation function dominating A. Moreover, there exists 
W ⊆R

n+ such that

A∗(x) = min{
n∑

i=1

xiwi : w ∈ W }.

Indeed, it is well known (see [5,1]) that a function B : Rn →R is superlinear if and only if there exists a compact and 
convex subset C of R+ such that

B(x) = min{
n∑

i=1

xici : c ∈ C}

for all x ∈ C. Moreover C is unique.
Observe that the median operator Med is a homogeneous aggregation function from K∗

n. After a short processing 
of formula (4), we have an equivalent expression for Med∗(x, y, z), namely

Med∗(x, y, z) = min

{
x + y + z

2
, x + y, x + z, y + z)

}
, (5)

i.e., the set W of weighting vectors related to the ternary median operator is given by W = {(0.5, 0.5, 0.5), (1, 1, 0),

(1, 0, 1), (0, 1, 1)}, and the related compact convex set C is just the convex closure of W .
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4. Subadditive transformation of aggregation functions

In defining superadditive transformation of an aggregation function A(x), we act from below, by looking for the 
supremum of sums 

∑k
j=1 A(yj ), 

∑k
j=1 yj being not greater than x. We can reverse these passages, acting from above, 

and by looking for the infimum of sums 
∑k

j=1 A(yj ), 
∑k

j=1 yj being not smaller than x. Although some results are 
quite similar to those of previous Section 3, for the sake of completeness, we propose them here.

Definition 2. Given an aggregation function A on Rn+ and x ∈ R
n+, if

inf{
k∑

j=1

A(yj ) : yj ∈ R
n+ such that

k∑
j=1

yj ≥ x} > 0, (pos)

then the subadditive transformation of x with respect to A is given by

A∗(x) = inf{
k∑

j=1

A(yj ) : yj ∈R
n+ such that

k∑
j=1

yj ≥ x}.

If (pos) is not satisfied then A∗(x) = 0.

Condition (pos) is a non-triviality condition, to avoid that A∗(x) collapses into zero. Take, for example, the prod-
uct �, or the minimum min, we have that the inf in condition (pos) is zero, and then these aggregation functions do 
not yield an aggregation function A∗. However, similarly as in the case of Theorem 2, one can show that if

inf{
k∑

j=1

A(yj ) : yj ∈ R
n+ such that

k∑
j=1

yj ≥ 1N } = 0

then

inf{
k∑

j=1

A(yj ) : yj ∈ R
n+ such that

k∑
j=1

yj ≥ x} = 0

for any x ∈R
n+.

We say that an aggregation function A on Rn+ admits subadditive transformation if condition (pos) is satisfied for 
some (at least one) x ∈ R

n+. Due to the above observations it is evident that A admits subadditive transformation if 
and only if A∗(1N) > 0. We denote the class of all such aggregation functions on Rn+ by Kn∗ .

Next Proposition 3 represents a characterization of subadditive aggregation functions, by establishing that A∗ is 
the greatest subadditive aggregation function not greater than A. For the proof, the reader can follow the line of proof 
of Propositions 1 and 2.

Proposition 3. For any aggregation function A on Rn+,

– A∗ ≤ A,
– A∗(0) = 0, and
– A∗(x) ≥ A∗(y) for all x, y ∈ R

n+ such that x ≥ y,
– A∗ is subadditive.

Moreover

A∗(x) = max{C(x) : C(y) ≤ A(y), ∀ y ∈R
n+},

where the maximum is taken over all the subadditive aggregation functions on Rn+ bounded from above by A.
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Now we are ready to introduce a subadditive transformation τ∗ on Kn∗

Theorem 4. Define a mapping τ∗ :Kn∗ → Kn∗ by τ∗(A) = A∗. Then τ∗ is a subadditive transformation.

Proof. Due to Proposition 3, τ∗(A) is an aggregation function on Rn+ for any A ∈ Kn∗ . Moreover, (A∗)∗(1N) =
A∗(1N) and thus τ∗(A) ∈ Kn∗ , i.e., τ∗ is well defined. It is not difficult to check that τ∗(A) = A∗ is subadditive 
and (A∗)∗ = A∗. Moreover, each subadditive aggregation function A ∈ Kn∗ and τ∗(A) = A (proof is similar as in 
Theorem 3). Summarizing, τ∗ is a subadditive transformation on Kn∗ . �

Recall that if A /∈ Kn∗ then there is no subadditive aggregation function B on Rn+ dominated by A (formally, then 
A∗ ≡ 0). We list some properties and examples:

– A is subadditive if and only if A∗ = A;
– A∗∗ = A∗;
– if A ≥ B then A∗ ≥ B∗;
– if A ≥ B ≥ C and A∗ = C∗, then B∗ = A∗;
– if A ≥ B ≥ D, A ≥ C ≥ D, and A∗ = D∗, then (λB + (1 − λ)C)∗ = A∗ for any λ ∈ [0, 1];
– Max∗ = Max (i.e., Max is subadditive);
– if A is modular, i.e., if A(x) = ∑n

i=1 fi(xi) then A∗ is modular, A∗(x) = ∑n
i=1(fi)∗(xi), where for i = 1, . . . , n, 

fi ∈K1∗ ∪ {0} and 0∗ = 0;
– if A is maxitive, i.e., if A(x) = maxi fi(xi) then A∗ is also maxitive, A∗(x) = Maxi (fi)∗(xi), where for i =

1, . . . , n, fi ∈K1∗ ∪ {0} and 0∗ = 0;
– for A ∈ Kn∗ , c ∈]0, ∞[, also Ac ∈Kn∗ (see Section 4). Then (Ac)∗ = (A∗)c;
– for the power root operators, Ap ∈Kn∗ if and only if p > 0; if p ∈]0, 1], then (Ap)∗(x) = 1

n1/p

∑n
i=1 xi , while for 

p ≥ 1 it holds (Ap)∗ = Ap;
– the ternary median Med does not admit a subadditive transformation, Med /∈K3∗;
– for D introduced in Section 2, D ∈ K2∗ and D(x, y) = √

y.

Remark 5. Observe that the subadditive transformation is a closure operator on the lattice (Kn∗, ≥).

Remark 6. Consider a homogeneous aggregation function A ∈ Kn∗ . It is not difficult to check that then also A∗ is 
homogeneous, and that it is the greatest convex aggregation function dominated by A. Note that A∗ is sublinear. 
Moreover, analogous to what happens with superadditive transformation, there exists W ⊆R

n+ such that

A∗(x) = max{
n∑

i=1

xiwi : w ∈ W }.

Indeed, it is well known (see [5]) that a function B : Rn → R is sublinear if and only if there exists a compact and 
convex subset C of R+ such that

B(x) = max{
n∑

i=1

xici : c ∈ C}

for all x ∈ C. Moreover C is unique.

5. Superadditive transformations of integrals

All integrals introduced in Section 2 admit superadditive transformation. This fact follows from Theorem 2. Indeed 
denoting any of the introduced integrals with respect to a measure μ as Iμ it holds Iμ(1N) ≤ n · μ(N) < +∞. 
Moreover, as noted in [9], the concave integral is homogeneous and concave, hence also superadditive, and thus 
(
∫ cav

x dμ)∗ = ∫ cav
x dμ, i.e., the concave integral is invariant under the superadditive transformation τ∗.

Next Theorem 5 and the following Corollary 4 establish that each integral bounded from above by the concave 
integral and greater than the Shilkret integral, admits the concave integral as superadditive transformation.
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Theorem 5. The concave integral is the superadditive extension of the Shilkret integral, i.e., 
(∫ Sh

x dμ
)∗ = ∫ cav

x dμ.

Proof. By definition 
∫ Sh

x dμ ≤ ∫ cav
x dμ and since the concave integral is superadditive, 

(∫ Sh
x dμ

)∗ ≤ ∫ cav
x dμ. 

Moreover, it holds

cav∫
x dμ = sup

⎧⎨
⎩

∑
A⊆N

αAμ(A) |
∑
A⊆N

αA1A = x

⎫⎬
⎭

= sup

⎧⎨
⎩

∑
A⊆N

Sh∫
αA1Adμ |

∑
A⊆N

αA1A = x

⎫⎬
⎭ ≤

⎛
⎝

Sh∫
x dμ

⎞
⎠

∗

. �

Corollary 4. Given a measure μ : 2N →R+, for each integral Iμ (or aggregation function) such that 
∫ Sh

dμ ≤ Iμ ≤∫ cav
dμ, we have that Iμ

∗ = ∫ cav
dμ.

Remark 7. Observe that there are many integrals between the Shilkret and the concave integrals, for example the 
Choquet and the PAN integrals. For several other examples see [15,11]. For all these integrals, due to Corollary 4, 
their τ∗-transform gives the corresponding concave integral.

Next Theorem 6 shows that also the Sugeno integral admits the concave integral as superadditive extension, but 
with respect to a transformed measure.

Theorem 6. Let ν be a measure, and consider a transformed measure μν defined by

μν(T ) =
{

1 if ν(T ) > 0
0 if ν(T ) = 0,

then we have that 
(∫ Su xdν

)∗ = ∫ cav
x dμν .

Proof. Based on the definition of the Sugeno integral, for any measure ν and any positive constant c ∈]0, ∞[, ∫ Su
x dcν = c

∫ Su x
c
dν, and thus (

∫ Su
x dcν)∗ = c(

∫ Su x
c
dν)∗. Consider first a normed measure (capacity, fuzzy mea-

sure) ν, ν(N) = 1. Then

Su∫
x dν ≤

Su∫
x dμν ≤

cav∫
x dμν,

and therefore⎛
⎝

Su∫
x dν

⎞
⎠

∗

≤
⎛
⎝

cav∫
x dμν

⎞
⎠

∗
=

cav∫
x dμν.

By definition

cav∫
x dμν = sup

⎧⎨
⎩

∑
T ⊆N

αT μν (T ) |
∑
T ⊆N

αT 1T ≤ x

⎫⎬
⎭ . (6)

Given the nature of μν , in the expression (6), we have the following equality between sums∑
T ⊆N

αT μν (T ) =
∑
T ⊆N

αT ν(T )>0

αT . (7)
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Now consider αT 1T such that αT ν(T ) > 0 and decompose such vector into the r-sum, r ∈N,

αT 1T = αT

r
1T + . . . + αT

r
1T

r being large enough to be αT /r < ν(T ). By definition 
∫ Su

(αT /r)1T dν = αT /r . Thus, every αT in every sum of 

type (7) can be expressed as sum of Sugeno integral w.r.t. ν, and then 
∫ cav

x dμν ≤
(∫ Su

x dν
)∗

, which conclude 

the proof for normed measures. If ν(N) �= 1, we put c = 1
ν(N)

and then cν is a normed measure. The statement 
immediately follows from the homogeneity of concave integral and the equality μcν = μν . �
6. Subadditive transformations of integrals

For each integral I introduced in Section 2, Iμ(x) = 0 whenever μ(suppx) = 0, where the support suppx = {i ∈
N |xi > 0}. Therefore, for a fixed measure μ, if there is a partition {E1, . . . , Ek} of N such that μ(E1) = . . . = μ(Ek) =
0 evidently (Iμ)∗(1N) = 0, and thus Iμ /∈ Kn∗ (compare with the superadditive case, when Iμ ∈ Kn∗ , independently of 
the integral I and the measure μ). Observe that measures with the above property do not dominate any subaddi-
tive measure. Therefore when considering the subadditive transformation of integrals, we will deal with measures 
dominating some subadditive measure only, and we will call such measures “strong measures”.

Note that the convex integral is homogeneous and subadditive [10], and thus, for any strong measure μ, 
(
∫ con

x dμ)∗ = ∫ con
x dμ, i.e., the concave integral with respect to a strong measure μ is invariant under the sub-

additive transformation τ∗.
For any integral I satisfying Iμ(c · 1E) = c · μ(E) it is evident that (Iμ(x))∗ ≤ ∫ con

x dμ.
This holds, in particular, for the Shilkret and the Choquet integrals. Moreover, due to the fact that the Choquet 

integral is always dominating the convex integral, we have an immediate result.

Proposition 4. Let μ be a strong measure. Then, for any x ∈R
n+,

(

Ch∫
x dμ)∗ =

con∫
x dμ.

On the other hand, the subadditive transformation of the Shilkret integral can be strictly smaller than the convex 
integral.

Example 1. Let n = 2, i.e., N = {1, 2}, and let the measure μ : 2N → R
+ be given by μ({1}) = μ({2}) = 2, μ(N) = 3.

Then μ is a strong measure, and for x = (1, 2) we have (
∫ Sh

x dμ)∗ = min{∫ Sh
x dμ, 

∫ Sh
(1, 0) dμ +∫ Sh

(0, 2) dμ} = min {4,2 + 4} = 4, while 
∫ con

x dμ = min{1 · μ(N) + 1 · μ({2}), 2 · μ(N), 1 · μ({1}) + 2 · μ({2})} =
min{3 + 2, 6, 2 + 4} = 5

We have the next analogues of Theorem 5 and Corollary 4, whose proofs are trivial and therefore omitted.

Theorem 7. For a fixed strong measure μ : 2N → R+, define a mapping Aμ : Rn+ → R+ by Aμ(x) = (maxi xi) ·
μ(suppx). Then Aμ ∈Kn∗ , and (Aμ)∗(x) = ∫ con

x dμ.

Corollary 5. Let μ be a fixed strong measure on N . For any aggregation function A satisfying 
∫ con

x dμ ≤ A(x) ≤
Aμ(x) for all x ∈R

n+, it holds A ∈Kn∗ , and A∗(x) = ∫ con
x dμ.

Recall that the Choquet integral satisfies the constraints from Corollary 5, as well as several integrals introduced 
and discussed in [11] see also [8].

Concerning the Sugeno integral, we have the next interesting result.

Proposition 5. Let μ : 2N → R+ be a measure. Then the Sugeno integral with respect to μ is subadditive, and thus 
(
∫ Su

x dμ)∗ = ∫ Su
x dμ for all x ∈ R

n+, if and only if μ is subadditive.
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Proof. The sufficiency of the subadditivity for the Sugeno integral to get the subadditivity of a measure immediately 
follows from the properties of the Sugeno integral. We must prove that the subadditivity of the Sugeno integral is also 
a necessary condition for the subadditivity of the measure. Let μ be a subadditive measure, we have to show that for 
any x, y ∈ R

n+,

Su∫
(x + y) dμ ≤

Su∫
x dμ +

Su∫
y dμ.

Denote a = ∫ Su
x dμ, b = ∫ Su

y dμ. Then μ({x ≥ a + ε}) ≤ a and μ({y ≥ b + ε}) ≤ b for each ε > 0, and thus 
μ({x + y ≥ a + b + 2ε}) ≤ μ({x ≥ a + ε} ∪ {y ≥ b + ε}) ≤ μ({x ≥ a + ε}) + μ({y ≥ b + ε}) ≤ a + b, where the 
second inequality follows from the subadditivity of μ. Consequently, 

∫ Su
(x+y) dμ ≤ a+b, proving the subadditivity 

of the discussed Sugeno integral. �
In general, for any strong measure μ, there is the greatest subadditive measure μ∗ dominated by μ. Indeed,

μ∗ : 2N →R+ is given by

μ∗(E) = min{
k∑

i=1

μ(Ei)|{E1, . . . ,Ek} is a partition of E}.

Obviously, (
∫ Su

x dμ)∗ ≥ ∫ Su
x dμ∗ for each x ∈ R

n+. We conjecture that even the equality holds, i.e., 

(
∫ Su

x dμ)∗ = ∫ Su
x dμ∗, in general. Observe that if n = 2, our conjecture is true.

7. Concluding remarks

We have introduced and studied superadditive and subadditive transformations of (n-ary) aggregation functions 
on R+. Interestingly, these transformations relate several distinguished integrals. So, for example, the superadditive 
transformation of the Choquet (or of the Shilkret) integral yields just the related concave integral based on the same 
measure. In the case of Sugeno integral, its superadditive transformation remains the Sugeno integral, but with respect 
to a transformed measure. Similar results are valid for subadditive transformations (in the case of Sugeno integral, we 
have formulated a conjecture; note that this conjecture is true for n = 2).

Our approach is related in some particular cases with the integral with respect to a fuzzy capacity proposed 
by Lehrer in [9]. Indeed, for any non-decreasing positively homogeneous function ν : [0, 1]n → R+, ν(1N) > 0, 
it is evident that the function Aν : Rn+ → R+ given by Aν(x) = cν(x

c
), where c = maxi xi , x �= (0, . . . , 0), and 

Aν(0, . . . , 0) = 0, is a homogeneous aggregation function. Then Aν ∈ K∗
n, and A∗

ν coincide with Lehrer’s concave 
integral with respect to the fuzzy capacity ν.

Note that our work can be considered as the theoretical background for constructing aggregation functions with 
given properties – in our case the super/subadditivity was considered. Our approach can be taken also as an optimiza-
tion problem, with potential real applications. However, in real life situation, we often have only a partial information 
about the aggregation function A, i.e., A is known only on a subdomain of Rn+. This is, for example, the case of 
measures which can be seen as instances of aggregation functions known on inputs from {0, 1}n (subsets of N are 
identified with the corresponding characteristic vectors). A deeper study of super/subadditive extensions in such cases 
will be a challenging topic for the further investigation.
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