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1. Introduction 1. If we want to model environments where there exist non-
In decision making problems it may happen that, after the
exploitation phase, the best alternatives are equally ranked and it
is not possible to decide which one is the best. It has been noticed
[1] that these troubles often appear when the entries of the consid-
ered fuzzy preference matrix are close to 0.5, that is, when the
experts have doubts about their preferences of some alternatives
over the others. In this situation, the systematic use of extensions
of fuzzy sets has been shown to be a really useful tool [2]. Among
those fuzzy sets, interval-valued fuzzy sets (IVFSs) [3–5] or,
equivalently, Atanassov intuitionistic fuzzy sets (AIFs) [6] play
indeed a crucial role.

In some special cases, despite the fact of using IVFSs and AIFs,
still remain problems that are similar to those encountered in
the previous ones. For these new last situations we may use the
interval-valued Atanassov intuitionistic fuzzy sets (IVAIFSs) [7].
Besides, the use of intervals to represent membership and non-
membership has, from our point of view, a double advantage:
comparable elements, it will be enough to use classical partial
orders between intervals. This is not the case in this work.

2. If we must represent ignorance [8] associated to the datum
given by an expert, we can understand the length of the inter-
vals as a representation of such ignorance. If, in these cases,
we need to be able to compare any two data, then we can use
any of the linear orders we consider here.

Once the decision of using IVAIFSs to deal with a decision mak-
ing problem has been reached, we should choose, accordingly, a
linear order between pairs of intervals. In this way, we will select
as the best option the alternative which is associated to the largest
pair of intervals, with respect to the considered linear order.

Moreover, in decision making problems we must also aggregate
the information furnished by the experts by means of aggregation
functions [9–11].

All these considerations have led us to aim the following
objectives:

(1) To use aggregation functions for building linear orders for
pairs of intervals whose end-points belong to the unit
interval.

(2) To study methods for constructing linear orders on the set of
IVAIFSs.
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(3) To deal with the exploitation phase of decision making prob-
lems through IVAIFSs, by using the previously built linear
orders.

The structure of this paper is the following. In Section 2 we
introduce the notation and recall some well-known notions. In
Sections 3,4, we construct two classes of linear orders between
pairs of intervals. Section 5 contains an application of our theoreti-
cal results to group decision making. In particular, we provide two
algorithms. Some concluding remarks as well as suggestions for
further research close the paper.

2. Previous concepts and results

We start by recalling some well-known concepts that will be
useful for subsequent developments throughout the paper.

2.1. On orders and partially ordered sets

Given a partially ordered set (poset) ðP;�Þ, we say that

(a) 1P is the top of the poset if for all x 2 P it holds x � 1P .
(b) 0P is the bottom of the poset if for all x 2 P it holds 0P � x.

In case they exist, 1P and 0P are unique.
Let Kð½0;1�Þ � R2 be given by

Kð½0;1�Þ ¼ fðx; xÞ 2 ½0;1� � ½0;1�jx 6 xg;

and let Lð½0;1�Þ be the set of all closed subintervals of the unit inter-
val, that is

Lð½0;1�Þ ¼ fxjx ¼ ½x; x� such that 0 6 x 6 x 6 1g:

There is a straightforward bijection i : Kð½0;1�Þ ! Lð½0;1�Þ given
by iððx; xÞÞ ¼ ½x; x� ¼ x. Through this bijection, the partial order on
R2; ða; bÞ�2ðc; dÞ if and only if a 6 c and b 6 d induces an equiva-
lent partial order on Lð½0;1�Þ, namely,

x �2 y iff x 6 y and x 6 y: ð1Þ

In this way, ðLð½0;1�Þ;�2Þ is a poset whose bottom and top are,
respectively, 0 ¼ ½0;0� and 1 ¼ ½1;1�. In fact, the bijection above is
a lattice isomorphism.1

We refer as ðLð½0;1�ÞÞ2, to the universe of pairs of intervals, that
is,

ðLð½0;1�ÞÞ2 ¼ fðx; yÞ ¼ ð½x; x�; ½y; y�Þ with x; x; y; y 2 ½0;1�g:

Similarly to what happens in the case of R2 and Lð½0;1�Þ, the par-
tial order on R4, given by ða1; b1; c1; d1Þ�4ða2; b2; c2; d2Þ if and only
if a1 6 a2 and b1 6 b2 and c1 6 c2 and d1 6 d2, also induces an

equivalent partial order �4 on ðLð½0;1�ÞÞ2, given by

ðx1; y1Þ �4 ðx2; y2Þ if and only if x1 6 x2 and x1 6 x2 and y1

6 y2 and y1 6 y2: ð2Þ

In this way, ððLð½0;1�ÞÞ2;�4Þ becomes a poset whose bottom and top
are, respectively, ð0;0Þ ¼ ð½0;0�; ½0; 0�Þ and ð1;1Þ ¼ ð½1;1�; ½1;1�Þ.
1 This kind of sets, namely Kð½0;1�Þ and Lð½0;1�Þ have already been used, suitably
equipped with some order and latticial structure [12,13], to construct some universal
codomain where it was possible to represent different kinds of orderings as, e.g., total
preorders, interval-orders and semiorders by means of a single function that
preserves the ordinal structure. The bijection i : Kð½0;1�Þ ! Lð½0;1�Þ has also been
considered in those approaches, and some other similar bijections and/or latticial
isomorphism as well as order isotonies have also been introduced accordingly. By the
way, another universal codomain to represent different kinds of orderings, which is
essentially equivalent to Kð½0;1�Þ, consists of triangular and symmetric fuzzy
numbers. For further information see [14–17].
Definition 2.1 [18]. An order � on Lð½0;1�Þ is said to be admissible
if it is linear and refines the order �2, i.e., it is a linear order
satisfying that for all x; y 2 Lð½0;1�Þ such that x �2 y it holds x � y.
Example 2.1. The lexicographic orders on Lð½0;1�Þ, given by

� x�lex1 y if and only if ðx< yÞ or ðx¼ y and x6 yÞ (lexicographic-1
order), and
� x�lex2 y if and only if ðx< yÞ or ðx¼ y and x6 yÞ (lexicographic-2

order), are admissible.

2.2. Extensions of fuzzy sets

Definition 2.2 [6]. Let U be a nonempty set usually called a
universe. An Atanassov’s Intuitionistic Fuzzy Set (AIFS) F over U is
given by

F ¼ fhu;lFðuÞ; mFðuÞiju 2 Ug

where lF : U ! ½0;1� defines the membership degree of the element
u 2 U to F and mF : U ! ½0;1� defines its nonmembership degree to
the same set F. Besides, the functions lF and mF satisfy that, for all
u 2 U;lFðuÞ þ mFðuÞ 6 1.

The pair ðlFðuÞ; mFðuÞÞ is called an intuitionistic pair, Lð½0;1�Þ
being the set of all possible intuitionistic pairs, i.e.,

Lð½0;1�Þ ¼ faja ¼ ða1; a2Þ; a1; a2 2 ½0;1� and a1 þ a2 6 1g:

In [6], Atanassov introduced a partial order in the universe of
AIFSs.

Definition 2.3. Let F1; F2 be two AIFSs. According to the order
given by Atanassov in [6]

F1 6 F2 if and only if for all u 2 U;lF1
ðuÞ 6 lF2

ðuÞ and mF1 ðuÞ
P mF2 ðuÞ:
Definition 2.4 [7]. Let U be a universe. An Interval-Valued
Atanassov Intuitionistic Fuzzy Set (IVAIFS) G over U is given by

G ¼ fhu;mGðuÞ;nGðuÞiju 2 Ug

where mG : U ! Lð½0;1�Þ defines the membership degree of the ele-
ment u 2 U to F and nG : U ! Lð½0;1�Þ defines its nonmembership
degree to the same universe U. Moreover, for all u 2 U, the sum of
the upper boundary values of mGðuÞ and nGðuÞ must be lower than
or equal to 1.

The pair ðmGðuÞ;nGðuÞÞ is called an interval-valued intuitionistic
pair, being LIV ð½0;1�Þ the set of all possible interval-valued intuitio-
nistic pairs, i.e.,

LIV ð½0;1�Þ ¼ fðx; yÞ; with x; y 2 Lð½0;1�Þ and xþ y 6 1g:

Remark 1. Note that LIV ð½0;1�Þ consists of special types of inter-

vals, while ðLð½0;1�ÞÞ2 is a set of all possible intuitionistic pairs.
Definition 2.5. Let G1;G2 be two IVAIFSs. According to the order
given by Atanassov in [7], G1 � G2 if and only if, for all u 2 U,

mG1ðuÞ �2 mG2ðuÞ and nG2ðuÞ �2 nG1ðuÞ;

where �2 is the partial order on Lð½0;1�Þ given in Eq. (1).
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2.3. Aggregation functions

Definition 2.6. Given a poset ðP;�PÞwith bottom 0P and top 1P , an
aggregation function M on P w.r.t the order �P (also known as an
�P-aggregation function) is a mapping M : Pn ! P satisfying

� Mð0P; . . . ;0PÞ ¼ 0P ; Mð1P; . . . ;1PÞ ¼ 1P , and
� Mðx1; . . . ; xnÞ �P Mðy1; . . . ; ynÞ for ðx1; . . . ; xnÞ �P ðy1; . . . ; ynÞ

where ðx1; . . . ; xnÞ �P ðy1; . . . ; ynÞ holds if and only if xi �P yi for all
i 2 f1; . . . ; ng.

This definition extends the usual one for the unit interval ½0;1�.
For further information see [19].

Proposition 2.1 [18]. Let B1;B2 : ½0;1�2 ! ½0;1� be two continuous
aggregation functions, such that for all ðp1; p2Þ; ðq1; q2Þ 2 Kð½0;1�Þ, the
equalities B1ðp1; p2Þ ¼ B1ðq1; q2Þ and B2ðp1; p2Þ ¼ B2ðq1; q2Þ only hold
provided that ðp1; p2Þ ¼ ðq1; q2Þ.

The order �B1;B2 on Lð½0;1�Þ, given by

x �B1 ;B2
y if and only if B1ðx; xÞ < B1ðy; yÞ or else ðB1ðx; xÞ

¼ B1ðy; yÞ and B2ðx; xÞ 6 B2ðy; yÞÞ;

is an admissible order on Lð½0;1�Þ.

The following results can be found in [9,11,20,21].

Definition 2.7. A function T : ½0;1�2 ! ½0;1� is called a t-norm if it
is symmetric, associative, increasing with respect to the
order 6 and Tðx;1Þ ¼ x for all x 2 ½0;1�.
2 Warning: notice that here the order of appearance of the A0is counts. See also Remark 2.
Definition 2.8. A function S : ½0;1�2 ! ½0;1� is called a t-conorm if
it is symmetric, associative, increasing with respect to the
order 6 and Sðx;0Þ ¼ x for all x 2 ½0;1�.

A strictly decreasing and continuous function n : ½0;1� ! ½0;1�
such that nð0Þ ¼ 1 and nð1Þ ¼ 0 is called a strict negation. If, in
addition, it is involutive (that is, nðnðxÞÞ ¼ x for all x 2 ½0;1�), then
n is said to be a strong negation. A t-norm T is dual to a t-conorm
S (and vice versa) with respect to a strong negation n if
Tðx; yÞ ¼ nðSðnðxÞ;nðyÞÞÞ for all x; y 2 ½0;1�.

3. Admissible orders on ðLð½0;1�ÞÞ2

Although a partial order is enough to define aggregation func-
tions, some special classes of aggregations actually require to have
at hand a linear order. Examples of such classes are Choquet inte-
grals and Sugeno integrals. The order given by Atanassov for
IVAIFSs is partial, which is a undeniable handicap in the adaptation
of such classes of aggregation operators to the IVAI setup. In this

section we define the admissible linear orders on ðLð½0;1�ÞÞ2, gener-
alizing the concept of admissible orders on Lð½0;1�Þ.

Definition 3.1. An order � on ðLð½0;1�ÞÞ2 is said to be admissible if
it is a linear and refines the order �4 in Eq. (2), i.e., it is

linear order satisfying that for all ðx1; y1Þ; ðx2; y2Þ 2 ðLð½0;1�ÞÞ
2;

ðx1; y1Þ �4 ðx2; y2Þ implies ðx1; y1Þ � ðx2; y2Þ.

The elements zi ¼ ðxi; yiÞ 2 ðLð½0;1�ÞÞ
2 can be visualized in a

straightforward manner. Since xi; yi 2 Lð½0;1�Þ, each pair of inter-
vals can be drawn as a rectangle for which the first interval lies
in the horizontal axis and the second interval lies in the vertical
one. In such a representation, the following statements hold true:
� The wider the first interval, the wider the rectangle.
� The wider the second interval, the higher the rectangle.

As a consequence, the area of the rectangle will be directly pro-
portional to the width of the intervals. Furthermore, for any

z1; z2 2 ðLð½0;1�ÞÞ2; z1 �4 z2 if and only if each corner of the rectan-
gle of z2 is located above and on the right side of its corresponding
corner in the rectangle z1.

Example 3.1. Let z1 ¼ ð½0:3;0:6�; ½0:2;0:7�Þ; z2 ¼ ð½0:5;0:8�; ½0:55;
0:9�Þ; z3 ¼ ð½0:4;0:5�; ½0:3;0:35�Þ; z4 ¼ ð½0:1;0:4�; ½0:4;0:6�Þ. The

intervals can be represented in the unit square ½0;1�2 as in Fig. 1.
In that figure some visual interpretations can be drawn. For
example, we have that the intervals of z1 are wider than those of
any other zi, since its area is significantly greater. Alternatively, we
have that zi �4 z2 for i 2 f1;3;4g, since the corners of z2 are located
above and on the right side w.r.t the other rectangles. Similarly, we
can deduce that z1; z3 and z4 are incomparable in terms of �4.

In [18], Bustince et al. introduced a construction method of admis-
sible orders on Lð½0;1�Þ by using two aggregation functions. Such

method can also be generalized to handle elements in ðLð½0;1�ÞÞ2.

Proposition 3.1. Let A ¼< A1;A2;A3;A4 > be four aggregation func-

tions,2 Ai : ½0;1�4 ! ½0;1� such that for all ðp;qÞ; ðr; sÞ 2 ðLð½0;1�ÞÞ2 the
equalities Aiðp;p; q; qÞ ¼ Aiðr; r; s; sÞ for all i ¼ f1; . . . 4g only hold if
ðp;qÞ ¼ ðr; sÞ.

An admissible order �A on ðLð½0;1�ÞÞ2 can be defined as follows
ðx1; y1Þ �A ðx2; y2Þ if and only if one of the (mutually exclusive)
following conditions is satisfied.

(i) A1ðx1; x1; y1; y1Þ < A1ðx2; x2; y2; y2Þ;
(ii) A1ðx1; x1; y1; y1Þ ¼ A1ðx2; x2; y2; y2Þ and A2ðx1; x1; y1; y1Þ <

A2ðx2; x2; y2; y2Þ;
(iii) A1ðx1; x1; y1; y1Þ ¼ A1ðx2; x2; y2; y2Þ and A2ðx1; x1; y1; y1Þ ¼

A2ðx2; x2; y2; y2Þ and A3ðx1; x1; y1; y1Þ < A3ðx2; x2; y2; y2Þ;
(iv) A1ðx1; x1; y1; y1Þ ¼ A1ðx2; x2; y2; y2Þ and A2ðx1; x1; y1; y1Þ ¼

A2ðx2; x2; y2; y2Þ and A3ðx1; x1; y1; y1Þ ¼ A3ðx2; x2; y2; y2Þ and
A4ðx1; x1; y1; y1Þ 6 A4ðx2; x2; y2; y2Þ.
Proof. The order �A refines �4 since every Ai is an aggregation
function. Moreover, the linearity is assured since the four equalities
of Ai only hold simultaneously if ðx1; y1Þ ¼ ðx2; y2Þ. The transitivity
follows from the transitivity of the standard order on ½0;1�. h
Remark 2. Notice that any permutation of the aggregation func-
tions Ai also produces an admissible order different from the for-
mer one.
Remark 3. In [18] it was proven that an admissible order on
Kð½0;1�Þ cannot be induced by a single function. Clearly, this result
also holds true since we are working in a larger space.

Henceforward, we use the order generated by four aggregation
functions (in Proposition 3.1). Thus, all the ideas to be introduced
till the end of this section refer to such family of admissible orders
named 4-admissible.

Example 3.2. The lexicographic orders can be constructed from
the four projections.



Fig. 1. Pairs of intervals.
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1. The standard lexicographic order: let Ai be the aggregation
function that maps to the ith component (i.e. the ith projection).
In that case, ðx1; y1Þ �A ðx2; y2Þ if and only if
� (x1 < x2), or
� (x1 ¼ x2 and x1 < x2), or
� (x1 ¼ x2; x1 ¼ x2 and y1 < y2), or
� (x1 ¼ x2; x1 ¼ x2; y1 ¼ y2 and y1 6 y2).

2. The reversed lexicographic order: let Ai be the aggregation func-
tion that maps to the ð5� iÞth component (i.e. the ð5� iÞth pro-
jection). In that case, ðx1; y1Þ �A ðx2; y2Þ if and only if
� (y1 < y2), or
� (y1 ¼ y2 and y1 < y2), or
� (y1 ¼ y2; y1 ¼ y2 and x1 < x2), or
� (y1 ¼ y2; y1 ¼ y2; x1 ¼ x2 and x1 6 x2).

3. Any other permutation of the projections gives rise to an admis-
sible order where we compare the components in a predeter-
mined order.
Proposition 3.2. Let A ¼< A1;A2;A3;A4 > be four aggregation func-
tions given by

Aiðx1; x1; y1; y1Þ ¼ aix1 þ bix1 þ ciy1 þ diy1;

with ai; bi; ci; di 2 ½0;1�; ai þ bi þ ci þ di ¼ 1 and

jDj ¼

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

���������

���������
– 0:

Then (and only then), the order generated by the aggregation functions
Ai is a 4-admissible order.
Proof. The functions Ai are weighted arithmetic means. Let

ð½x1; x1�; ½y1; y1�Þ; ð½x2; x2�; ½y2; y2�Þ 2 ðLð½0;1�ÞÞ2, such that

aix1 þ bix1 þ ciy1 þ diy1 ¼ aix2 þ bix2 þ ciy2 þ diy2;

for i 2 f1; . . . ;4g. Because of the regularity of D, both linear systems
have a unique and common solution, i.e., ðx1; x1; y1; y1Þ ¼
ðx2; x2; y2; y2Þ. The result now follows from Proposition 3.1. h
Example 3.3. Let A contain the following aggregation functions:

� A1ðx1; x1; y1; y1Þ ¼ 3
8 x1 þ 3

8 x1 þ 1
8 y1 þ 1

8 y1;

� A2ðx1; x1; y1; y1Þ ¼ 10
20 x1 þ 5

20 x1 þ 3
20 y1 þ 2

20 y1;

� A3ðx1; x1; y1; y1Þ ¼ 1
20 x1 þ 10

20 x1 þ 8
20 y1 þ 1

20 y1;

� A4ðx1; x1; y1; y1Þ ¼ 1
4 x1 þ 1

4 x1 þ 1
4 y1 þ 1

4 y1.

Since jDj ¼ �0:0069, the order generated by A, as in Proposition
3.1, is a 4-admissible order.
Remark 4. Notice that the value of the determinant is close to 0
but this is due to the fact that all the elements of the matrix are
smaller than 1.

The construction of admissible orders through a 4-tuple of
weighted arithmetic means has an interesting geometrical inter-
pretation. If we consider A in the form of the corresponding four
weighting vectors which generate A1; . . . ;A4, i.e.,

A 	 R ¼ f< a1; b1; c1;d1 >;< a2; b2; c2;d2 >;< a3; b3; c3; d3 >;

< a4; b4; c4; d4 >g

the condition in Proposition 3.2 means that R is a basis of the vector
space R4. Hence, to any basis R of R4 which consists of weighting
vectors there is a unique admissible order �A constructed by means
of the corresponding weighted means.
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Finally, after changing the basis, the values of interval-valued

intuitionistic pairs in the new basis, (which are now in ½0;1�4),
are ordered through the standard lexicographic order.

Proposition 3.3. Let a tuple A ¼ A1; . . . ;A4h i of aggregation functions

generate an admissible order �A. Let Bi : ½0;1�2 ! ½0;1�; i 2 f1; . . . ;4g
be four aggregation functions such that

� Aiðx; x; y; yÞ ¼ Biðx; xÞ for i 2 f1;2g, and
� Ajðx; x; y; yÞ ¼ Bjðy; yÞ for j 2 f3;4g.

Then, ðx1; y1Þ �A ðx2; y2Þ if and only if

(i) (x1 
B1 ;B2 x2), or
(ii) (x1 ¼ x2 and y1 �B3 ;B4

y2),

where �Bi ;Bj
is the order on Lð½0;1�Þ generated in Proposition 2.1.
Proof. It is straightforward.
Notice that, if we use B1 ¼ B3 and B2 ¼ B4, the result is a

4-admissible order where we combine the standard lexicographic
order with the order �B1 ;B2 . The resulting order acts as follows: first
we compare the intervals using �B1 ;B2 and, only if they are equal,
we compare the second interval with that same order (�B1 ;B2 ). For
instance, the standard lexicographic order can be seen as the
composition of the lexicographic-1 order between intervals
combined with itself.

Alternatively, notice that, if Aiðx; x; y; yÞ ¼ Biðy; yÞ for i 2 f1;2g,
and Ajðx; x; y; yÞ ¼ Bjðx; xÞ for j 2 f3;4g, then the resulting order is
also 4-admissible.

A well-known class of binary aggregation functions is that of
Atanassov’s operators Ka given by Kaða; bÞ ¼ aþ aðb� aÞ with
a 2 ½0;1�.

In our particular case, the inputs being intervals, an Atanassov’s
operator acting on the endpoints of the intervals yields a point
inside the corresponding intervals. h
Example 3.4. Let a1;a2;a3;a4 2 ½0;1�, with a1 – a2 and a3 – a4. Let
A ¼< A1; . . . ;A4 > be four aggregation functions given by

� Aiðx1; x1; y1; y1Þ ¼ Kai
ðx1; x1Þ, for i 2 f1;2g, and

� Ajðx1; x1; y1; y1Þ ¼ Kaj
ðy1; y1Þ, for j 2 f3;4g.

The tuple A generates a 4-admissible order that renders in
ðx1; y1Þ �A ðx2; y2Þ if and only if

� (x1 
Ka1 ;Ka2
x2), or

� (x1¼Ka1 ;Ka2
x2 and y1 �Ka3 ;Ka4

y2).
From the construction in Example 3.4, we can retrieve
some well-known orders. For example, if fa1;a2g ¼ f0;1g and
fa3;a4g ¼ f0;1g, we obtain lexicographic orders. Moreover, all
these 4-admissible orders are particular examples of the construc-
tion in Proposition 3.2, with c ¼ d ¼ 0 for A1;A2 and a ¼ b ¼ 0 for
A3 and A4.

In [18] it was proven that given an a 2 ½0;1Þ then all admissible
orders �a;b on Lð½0;1�Þwith b > a coincide. Then, different aggrega-
tion functions could generate the same admissible order. This also
affects to admissible orders generated as in Proposition 3.2. For
instance,
jD1j ¼

1
2

1
2 0 0

0 1 0 0
0 0 1

2
1
2

0 0 0 1

���������

���������
– 0; jD2j ¼

1
2

1
2 0 0

1
3

1
3 0 0

0 0 1
2

1
2

0 0 1
3

2
3

���������

���������
– 0

generate the same order.

4. IVAIF-admissible order on LIV ð½0;1�Þ

The admissible orders defined in Section 3 refine the partial
order �4. However, any of them could also refine the partial order
given by Atanassov for IVAIFS [7]. In this section, we define a new
family of linear orders with a crucial additional feature, namely,
they refine Atanassov’s partial order.

We remind the reader that in Atanassov’s partial order, given
two elements ðx1; y1Þ; ðx2; y2Þ 2 LIV ð½0;1�Þ,

ðx1; y1Þ � ðx2; y2Þ if and only if x1 6 x2; x1 6 x2; y1

P y2; and y1 P y2: ð3Þ
Definition 4.1. An order � on LIV ð½0;1�Þ is said to be an IVAIF-
admissible order if it is a linear order and refines the partial order
given by Atanassov for IVAIFS (Eq. (3)).

Notice that, if we have an IVAIF-admissible order on LIV ð½0;1�Þ,
as in Definition 4.1, then the bottom of ðLIV ð½0;1�Þ;�Þ is ð0;1Þ and
the top is ð1;0Þ.

As in Section 3, we can generate a visualization of the elements

in LIV ð½0;1�Þ � ðLð½0;1�ÞÞ2 that captures the behaviour of the admis-
sible orders in Definition 4.1. Following the visualization rules in
Fig. 1 we have that, for any two elements z1; z2 in
LIV ð½0;1�Þ; z1 � z2 if and only if the corners of z2 are individually
located below and to the right of those of z1. For example, in
Fig. 2, we have given z1 ¼ ð½0:1;0:4�; ½0:1;0:6�Þ; z2 ¼ ð½0:3;0:55�;
½0:05;0:25�Þ; z3 ¼ ð½0:05;0:2�; ½0:15;0:25�Þ 2 LIV ð½0;1�Þ. Visually, it is
evident that z1 � z2 and z3 � z2, but also that z1 and z3 are not
comparable with the partial order in Definition 4.1. Notice that,
in this visualization, no element is allowed to be in the grey zone
of the rectangle in Fig. 2 due to the restrictions in the definitions
of the membership and nonmembership degrees in an interval-val-
ued intuitionistic pair.

In the sequel, two different constructions of IVAIF-admissible
orders are introduced.

Proposition 4.1. Let B ¼< B1;B2;B3;B4 > be four aggregation func-

tions Bi : ½0;1�4 ! ½0;1� which generate the orders �B1 ;B2 and �B3 ;B4 on
Lð½0;1�Þ as in Proposition 2.1. Then the order relation �IV

B given by

ðx1; y1Þ �IV
B ðx2; y2Þ if and only if x1 
B1 ;B2 x2 or ðx1

¼ x2 and y2 �B3 ;B4
y1Þ;

is an IVAIF-admissible order.
Proof. The linearity of �IV
B is straight as LIV ð½0;1�Þ � ðLð½0;1�ÞÞ2. In

addition, it refines the partial order given by Atanassov due to
the fact that the order relation, �B3 ;B4

, has been reversed.
In particular, if B1 ¼ B3 and B2 ¼ B4, then �B1 ;B2 ¼ �B3 ;B4 and,

consequently, the same order is used to compare both intervals
although in the second one the order is reversed. h
Proposition 4.2. Let A ¼< A1;A2;A3;A4 > be four aggregation func-

tions, Ai : ½0;1�4 ! ½0;1� such that for all ðp1; p2; p3; p4Þ;



Fig. 2. Visual representation of interval-valued intuitionistic pairs. The white zone represents the subset of LIV ð½0;1�Þ in which such pairs are allowed.
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ðq1; q2; q3; q4Þ 2 ½0;1�
4 the equalities Aiðp1; p2; p3; p4Þ ¼ Aiðq1; q2;

q3; q4Þ for all i 2 f1; . . . ;4g only hold if ðp1; p2; p3; p4Þ ¼ ðq1; q2; q3; q4Þ.
An IVAIF-admissible order �IV

A on LIV ð½0;1�Þ, is defined as follows:

ðx1; y1Þ �IV
A ðx2; y2Þ if and only if one of the following (mutually

exclusive) conditions is satisfied.

(i) A1ðx1; x1;1� y1;1� y1Þ < A1ðx2; x2;1� y2;1� y2Þ,
(ii) A1ðx1; x1;1� y1;1� y1Þ ¼ A1ðx2; x2;1� y2;1� y2Þ and

A2ðx1; x1;1� y1;1� y1Þ < A2ðx2; x2;1� y2;1� y2Þ,
(iii) A1ðx1; x1;1� y1;1� y1Þ ¼ A1ðx2; x2;1� y2;1� y2Þ,

A2ðx1; x1;1� y1;1� y1Þ ¼ A2ðx2; x2;1� y2;1� y2Þ, and
A3ðx1; x1;1� y1;1� y1Þ < A3ðx2; x2;1� y2;1� y2Þ,

(iv) A1ðx1; x1;1� y1;1� y1Þ ¼ A1ðx2; x2;1� y2;1� y2Þ,
A2ðx1; x1;1� y1;1� y1Þ ¼ A2ðx2; x2;1� y2;1� y2Þ,
A3ðx1; x1;1� y1;1� y1Þ ¼ A3ðx2; x2;1� y2;1� y2Þ, and
A4ðx1; x1;1� y1;1� y1Þ 6 A4ðx2; x2;1� y2;1� y2Þ.
Proof. The linearity is warranted because the equalities only hold
if ðx1; x1;1� y1;1� y1Þ ¼ ðx2; x2;1� y2;1� y2Þ.

To check the second condition (that of refining the partial order)
in the statement of Definition 4.1, notice that if

x1 6 x2; x1 6 x2; y1 P y2; and y1 P y2:

then

x1 6 x2; x1 6 x2;1� y1 6 1� y2; and 1� y1 6 1� y2;

so consequently Aiðx1; x1;1� y1;1� y1Þ 6 Aiðx2; x2;1� y2;1� y2Þ for
all i 2 f1; . . . ;4g.

From now on we name the order generated by four aggregation
functions (as in Proposition 4.2) 4-IVAIF-admissible order. h
Remark 5. Given y 2 Lð½0;1�Þ, it follows that ð1� y;1� yÞ 2
L�ð½0;1�Þ, where
L�ð½0;1�Þ ¼ fsjs ¼ ðs1; s2Þ such that 0 6 s2 6 s1 6 1g:

Then in Proposition 4.2 it is enough that to see, given ðp1;q1Þ ¼
ð½p1;p1�; ðq1; q1ÞÞ; ðp2;q2Þ ¼ ð½p2;p2�; ðq2; q2ÞÞ 2 Lð½0;1�Þ � L�ð½0;1�Þ,the
equalities Aiðp1;p1; q1; q1Þ ¼ Aiðp2;p2; q2; q2Þ hold if and only if
ðp1;q1Þ ¼ ðp2;q2Þ.

However, in order to simplify notation we have imposed a
slightly stronger restriction. Anyway, all the given examples in
Section 3 satisfy it.

Let a tuple A ¼ A1; . . . ;A4h i of aggregation functions generate an

admissible order. Let Bi : ½0;1�2 ! ½0;1� be four aggregations such
that

� Aiðx; x; y; yÞ ¼ Biðx; xÞ for i 2 f1;2g, and
� Ajðx; x; y; yÞ ¼ Bjðy; yÞ for j 2 f3;4g,

Then the orders �IV
A and �IV

B may be different. To guarantee that
they are actually different it is enough that B3ðy1; y1Þ < B3ðy2; y2Þ
and simultaneously B3ð1� y1;1� y1Þ > B3ð1� y2;1� y2Þ hold true
for some y1; y2 2 Lð½0;1�Þ.

For instance, let B3ðy; yÞ ¼ yy. Here, we have that for
y1 ¼ ½0:2;0:2� and y2 ¼ ½0:1;0:9�

B3ð0:2;0:2Þ ¼ 0:04 < 0:09 ¼ B3ð0:1;0:9Þ
B3ð0:8;0:8Þ ¼ 0:64 > 0:09 ¼ B3ð0:9;0:1Þ:
Proposition 4.3. Let a1;a2;a3;a4 2 ½0;1�, with a1 – a2 and a3 – a4.
If

� Aiðx; x; y; yÞ ¼ Kai
ðx; xÞ for i 2 f1;2g, and

� Ajðx; x; y; yÞ ¼ Kaj
ðy; yÞ for j 2 f3;4g,

then the tuple A ¼ A1; . . . ;A4h i generates a 4-IVAIF admissible order
that is equal to �IV

B being B ¼ hKa1 ;Ka2 ;Ka3 ;Ka4 i.
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Proof. The fact that the aggregation functions satisfy the condi-
tions to generate a 4-IVAIF order is a simple calculation. To prove
the equality between the two orders notice that in this case the
conditions iÞ and iiÞ of the order �IV

A are exactly equal to
x1�Ka1 ;Ka2

x2. Then, it is enough to prove that for all c,

Kcð1� a1;1� b1Þ < Kcð1� a2;1� b2Þ

is equivalent to Kcða1; b1Þ > Kcða2; b2Þ.
But

Kcð1� a1;1� b1Þ <Kcð1� a2;1� b2Þ
() 1� a1 þ cð1� b1 � ð1� a1ÞÞ< 1� a2 þ cð1� b2 � ð1� a2ÞÞ
() 1� a1 þ cða1 � b1Þ< 1� a2 þ cða2 � b2Þ
() a2 � cða2 � b2Þ< a1 � cða1 � b1Þ
() a2 þ cðb2 � a2Þ< a1 þ cðb1 � a1Þ
() Kcða2 ;b2Þ<Kcða1;b1Þ;

so the proof is complete. h
Example 4.1. Let �IV
A be the order generated by A ¼

< K0:25;K0:75;K0:25;K0:75 >. Consider the elements z1 ¼ ð½0:15;
0:35�; ½0:2;0:5�Þ and z2 ¼ ð½0:15;0:35�; ½0:1;0:9�Þ 2 LIV ð½0;1�Þ. Since
their membership degrees are identical we only need to compare
their nonmembership degrees.

In fact,

K0:25ð0:2;0:5Þ ¼ 0:2þ 0:25 � ð0:5� 0:2Þ ¼ 0:275 < 0:3

¼ 0:1þ 0:25 � ð0:9� 0:1Þ ¼ K0:25ð0:1;0:9Þ

and ð½0:15;0:35�; ½0:1;0:9�Þ �IV
A ð½0:15;0:35�; ½0:2;0:5�Þ.
5. Application to decision making

Decision making problems may be summarized as follows. We
have a set of p alternatives:

Z ¼ fz1; � � � ; zpg

and a set of n > 2 experts:

E ¼ fe1; � � � ; eng:

Each of the latter provides her/his preferences on the former
set of alternatives by means of a preference relation in the following
way:

rel ¼

� rðelÞ12 � � � rðelÞ1p

rðelÞ21 � � � � rðelÞ2p

� � � � � � � � � �
rðelÞp1 � � � � � � �

0
BBB@

1
CCCA: ð4Þ

Here rðelÞij, with i – j, expresses to what extent the expert l (with
l 2 f1; � � � ;ng) prefers the alternative zi over the alternative zj.

We must reach a decision of selecting either an alternative or a
set of alternatives, which is (are) optimal as regards the experts
assessments.

In [20], it is stated that the resolution of a group decision mak-
ing problem consists of two steps:

(1) Uniform representation of information. In this phase, the
heterogeneous information for the problem (the information
can be represented by means of preference orderings or util-
ity functions or fuzzy preference relations) is translated into
homogeneous information by means of different trans-
formation functions (see [22]).

(2) Application of a selection procedure. This procedure consists
of two phases:
(2.1) Aggregation phase. A collective preference structure is
built from the set of individual homogeneous prefer-
ence structures.

(2.2) Exploitation phase. A given method is applied to the
collective preference structure to obtain a selection
of alternatives.

We use the theoretical developments in previous sections in the
exploitation phase of the group decision making problem consid-
ered by Nayagam [23]. In particular, we consider the adaptation
of this problem done by Zhang et al. [24]. In this adptation, authors
consider that there exists a panel with four possible alternatives for
investment:

(1) z1 is a car company,
(2) z2 is a food company,
(3) z3 is a computer company,
(4) z4 is an arms company.

It is necessary to choose the best company for investment.
Let the data in [24] be our collective preference matrix. In the

exploitation phase we use the voting method which consists in
aggregating the values in each row of the collective matrix Rc in
such a way that, at the end, we have as many values (pairs of inter-
vals) as rows. Since these latter values are not comparable through
the partial order, we will select the alternative associated to the
largest pair, according to a considered linear order.

Rc ¼

� ð½0:4;0:5�; ½0:3;0:4�Þ ð½0:4;0:6�; ½0:2;0:4�Þ ð½0:1;0:3�; ½0:5;0:6�Þ
ð½0:6;0:7�; ½0:2;0:3�Þ � ð½0:6;0:7�; ½0:2;0:3�Þ ð½0:4;0:8�; ½0:1;0:2�Þ
ð½0:3;0:6�; ½0:3;0:4�Þ ð½0:5;0:6�; ½0:3;0:4�Þ � ð½0:4;0:5�; ½0:1;0:3�Þ
ð½0:7;0:8�; ½0:1;0:2�Þ ð½0:6;0:7�; ½0:1;0:3�Þ ð½0:3;0:4�; ½0:1;0:2�Þ �

0
BBB@

1
CCCA:

To aggregate the values of each row of Rc we use the concept of
interval-valued intuitionistic t-norms.

Definition 5.1. A mapping T : ðLIV ð½0;1�ÞÞ2 ! LIV ð½0;1�Þ is an
interval-valued intuitionistic t-norm if it is symmetric, associative,
increasing with respect to the partial order � given by Atanassov
(also called monotone) and Tððx; yÞ; ð1;0ÞÞ ¼ ðx; yÞ.

It is easy to see that, if we take the classical product t-norm,
TPðx; yÞ ¼ x � y, and its dual t-conorm with respect to the standard
negation, SPðx; yÞ ¼ xþ y� x � y, the following expression is an
interval-valued intuitionistic t-norm: Tððx; yÞ; ðz; tÞÞ ¼ ð½x � z; x � z�;
½yþ t � y � t; yþ t � y � t�Þ.

Applying T to each row of Rc we get a new matrix, say Rg, given
by:

Rg ¼

z1 ¼ ð½0:016;0:090�; ½0:720;0:856�Þ
z2 ¼ ð½0:144;0:392�; ½0:424;0:608�Þ
z3 ¼ ð½0:060;0:180�; ½0:559;0:748�Þ
z4 ¼ ð½0:126;0:224�; ½0:271;0:552�Þ

0
BBB@

1
CCCA:

In this setting, as regards the partial order �, it follows

z1 � z3 � z2 and z1 � z3 � z4;

but z2 and z4 are not comparable.
For this reason we consider the 4-IVAIF-admissible order �IV

A

defined through the following aggregation functions.

� A1ðx1; x1; y1; y1Þ ¼ 2
20 x1 þ 2

20 x1 þ 8
20 y1 þ 8

20 y1

� A2ðx1; x1; y1; y1Þ ¼ 10
20 x1 þ 5

20 x1 þ 3
20 y1 þ 2

20 y1

� A3ðx1; x1; y1; y1Þ ¼ 1
20 x1 þ 10

20 x1 þ 8
20 y1 þ 1

20 y1

� A4ðx1; x1; y1; y1Þ ¼ 1
4 x1 þ 1

4 x1 þ 1
4 y1 þ 1

4 y1.
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With this order, we have z1 �IV
A z3 �IV

A z2 �IV
A z4 and the selected

firm is arms company.
However, as it happened in [18] different 4-IVAIFS-admissible

orders can lead to different rankings and hence the selection of the
best alternative for a given decision making problem can be forced.
For instance, in our case if we take �IV

A with
A ¼< K0:25;K0:75;K0:25;K0:75 > it comes out that the best alternative
is the second one, since z1 �IV

A z3 �IV
A z4 �IV

A z2. Nevertheless, for the
order ð½x1; x1�; ½y1; y1�Þ �IV

A ð½x2; x2�; ½y2; y2�Þ if and only if

� (x1 < x2), or
� (x1 ¼ x2 and x1 < x2), or
� (x1 ¼ x2; x1 ¼ x2 and y1 > y2), or else
� (x1 ¼ x2; x1 ¼ x2; y1 ¼ y2 and y1 P y2)

we have that z1 �IV
A z3 �IV

A z4 �IV
A z2 and the best alternative is

the second one.
To cope with this situation the following algorithm takes differ-

ent 4-IVAIFS-admissible orders into account simultaneously.

(1) To select several linear orders built with the methods devel-
oped in the previous sections.

(2) For each order, to apply in the exploitation phase the voting
method with the same aggregations. For instance,
T ¼ ðTP ; SPÞ.

(3) To select the alternative which appears as the best placed in
the majority of all the so-obtained rankings.

In our considered problem, the chosen alternative through this
algorithm is the second one. That is, we must invest our money in a
food company. Clearly, the nature of the problem will impose the
number of linear orders to be considered and/or the conditions that
will force us to use alternative methods.

6. Conclusions

In this work we have studied how to construct linear orders
between pairs of intervals on Lð½0;1�Þ that can be used to construct
linear orders in Atanassov interval-valued intuitionistic fuzzy sets.
We have applied this operator to group decision making problems
giving two algorithms, the first one for a particular linear order and
the second one which mixes different linear orders.

As a possible development for future research, somewhat
related to the main ideas introduced throughout the present
manuscript, we point out the introduction of different orderings
on families of intervals of the real line could be also analyzed from
the point of view of extensions of the canonical ordering of the real
line to a superset (namely, Lð½0;1�Þ) following a suitable set of cri-
teria established a priori. The real line can be immediately embed-
ded into Lð½0;1�Þ by just considering each real number x as the
degenerate interval ½x; x�.

A similar typical problem corresponds to the extension of linear
orders from a finite set to its power set. Indeed, although it is always
possible to extend a linear order from a given finite set U to its
power set, a typical question that gave rise to some classical papers
from the 1970s on (see e.g. [25–28]), is whether or not it is possible
to perform an extension that follows a list of criteria imposed a
priori. Sometimes, the extension is not possible because the criteria
used are, so-to-say, contradictory. But, in addition, there are other
situations in which the extension is not possible because of a com-
binatorial explosion which, due to the bigger cardinality of the
power set of U, does not leave room to rank all the terms of the
power set in an extended linear order, accomplishing all the cri-
teria. Perhaps the most famous result in this direction is the so-
called Kannai–Peleg impossibility theorem (see [26]).
However, when the extension does not affect to the whole
power set, but to some suitable superset (smaller than the power
set), perhaps it may still happen that an extension accomplishing
aprioristic criteria is possible, after all. As far as we know, an analy-
sis of this kind where we start with the canonical order of the real
line (instead of a linear order on a finite set), and try to extend it to
the set of closed intervals of real numbers, following some list of
criteria that have been set beforehand, is an open problem.

We leave for future works the interpretation of the length of the
intervals in a given decision making problem and its relation with
ignorance functions and possibility theory.
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