
Journal of the Korean Statistical Society 45 (2016) 439–450

Contents lists available at ScienceDirect

Journal of the Korean Statistical Society

journal homepage: www.elsevier.com/locate/jkss

On Hoeffding and Bernstein type inequalities for sums of
random variables in non-additive measure spaces and
complete convergence
Hamzeh Agahi a,∗, Radko Mesiar b,c, Mehran Motiee a

a Department of Mathematics, Faculty of Basic Sciences, Babol University of Technology, Babol, Iran
b Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak University of Technology,
SK-810 05 Bratislava, Slovakia
c Institute of Information Theory and Automation, Academy of Sciences of the Czech Republic, Pod vodárenskou věži 4,
182 08 Praha 8, Czech Republic

a r t i c l e i n f o

Article history:
Received 7 May 2015
Accepted 14 January 2016
Available online 15 February 2016

AMS 2000 subject classifications:
60E15
28A12

Keywords:
Hoeffding’s inequality
Bernstein’s inequality
Complete convergence
Choquet integral

a b s t r a c t

Working with real phenomena, one often faces situations where additivity assumption is
unavailable. Non-additive measures and Choquet integral are attracting much attention
from scientists in many different areas such as financial economics, economic modelling,
probability theory and statistics. Hoeffding’s and Bernstein’s inequalities are two powerful
tools that can be applied inmany studies of the asymptotic behaviour of inference problems
in probability theory, model selection, stochastic processes and economic modelling. One
thing that seems missing is the developments of Hoeffding’s and Bernstein’s inequalities
for sums of random variables in non-additive cases. The purposes of this paper are
to extend Hoeffding’s and Bernstein’s inequalities for sums of random variables from
probabilitymeasure space to non-additivemeasure space, and then establish two complete
convergence theorems for more general form.

© 2016 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

The theory of non-additive measure, which deals with the applications of Choquet integral, has a long history (Choquet,
1954; Denneberg, 1994; Pap, 1995). The concept of nonadditive measure has received an increasing interest, starting from
the paper by Choquet (1954). He extended the idea of probability measure to the concept of non-additive measure. Non-
additive measures and Choquet integral were started to attract economists’ attentions in many areas such as financial
economics, multicriteria decision making, risk measuring, option pricing, asset pricing, prospect theory and economic
modelling (Amarante, 2009; Asano & Kojima, 2013; Chateauneuf & Ventura, 2013; Chen & Kulperger, 2006; Eberlein,
Madan, Pistorius, Schoutens, & Yor, 2014; Gajdos, 2002; Ghossoub, 2015; Gilboa & Schmeidler, 1994; Greco & Rindone,
2014; Grigorova, 2014; Horie, 2013; Kast, Lapied, & Roubaud, 2014; Krätschmer, 2005; Lehrer, 2009; Leitner, 2005; Meng &
Zhang, 2014; Schmeidler, 1989; Waegenaere & Wakker, 2001). For example, in financial economics, the Choquet expected
utility (CEU) was introduced by Schmeidler (1989) in 1989. Note that due to the concept of CEU theory, two challenging
problems in financial theory, i.e., Allais’ paradox (Allais, 1953) and Ellsberg’s paradox (Ellsberg, 1961), were solved by
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Wang and Yan (2007).The main approaches to capacity identification existing in multicriteria decision making were
reviewed in Grabisch, Kojadinovic, and Meyer (2008). In 2014, Lust and Rolland (2014) proposed a sufficient condition for
a solution to be optimal for a Choquet integral in the context of multiobjective combinatorial optimization problems. Some
other applications of Choquet integral can be found in Huber and Strassen (1973, 1974), Maccheroni and Marinacci (2005)
andWasserman and Kadane (1990). Recently, therewere some generalizations of the Choquet integral (Even& Lehrer, 2014;
Klement, Mesiar, & Pap, 2010).

The concept of complete convergence in probability theory was introduced by Hsu and Robbins (1947) as follows.

Definition 1.1. A sequence of randomvariables {Tn, n ≥ 1}defined on a fixedprobability space (Ω, F , P) is said to converge
completely to a constant θ (write Tn → θ completely) if for any ϵ > 0,

∞
n=1

P (|Tn − θ | > ϵ) < ∞.

The result of Hsu–Robbins is a fundamental theorem in probability theory. Hsu and Robbins proved that the sequence of
arithmetic means of independent and identically distributed (i.i.d.) random variables converges completely to the expected
value if the variance of the summands is finite. Erdös (1949) proved that the converse is also correct. Clearly, the complete
convergence is a very important tool in establishing almost sure convergence by using the Borel–Cantelli lemma. However,
the complete convergence and almost sure convergence do not say anything about the speed of convergence to θ . The
answer to this problem is provided by two of the fundamental inequalities in probability theory such as Hoeffding’s tail
inequality (Hoeffding, 1963) and Bernstein’s inequality (Bernstein, 1946). For work of a related nature, see Pinelis (2008)
and the references therein. Let us begin with the classical Hoeffding’s tail inequality.

Theorem 1.2 (Hoeffding’s Tail Inequality). Let X1, . . . , Xn be independent bounded random variables such that Xi falls in the
interval [ai, bi] with probability one. Then for any t > 0, we have

P


n

i=1

(Xi − E [Xi]) > t


≤ exp

 −2t2
n

i=1
(bi − ai)2

 ,

P


n

i=1

(Xi − E [Xi]) < −t


≤ exp

 −2t2
n

i=1
(bi − ai)2

 .

Clearly, Hoeffding’s inequality gives an exponential bound on the probability of the deviation between the average of
n independent bounded random variables and its mean. The study of this inequality has led to interesting applications in
probability theory and statistics (Boucher, 2009; From& Swift, 2013; Glynn &Ormoneit, 2002;Miasojedow, 2014; Ormoneit
& Glynn, 2001; Serfling, 1980; Yao & Jiang, 2012), decision theory (Duda, Jaworski, Pietruczuk, & Rutkowski, 2014), time
series (Tang, 2007), combinatorics and the theory of random graphs (McDiarmid, 1989). For example, in 2014, a novel
application of Hoeffding’s inequality to decision trees construction for data streams was proposed by Duda et al. in Duda
et al. (2014). In 2009, Boucher obtained a new version of this inequality for Markov chains Glynn and Ormoneit (2002).
Later on, in 2014, Hoeffding’s inequalities for geometrically ergodic Markov chains on general state space were proved by
Miasojedow (2014). Recently, Tang (2007) proved an extension of Hoeffding’s inequality in a class of ergodic time series.
Also, new extensions of this inequality for panel data were proposed by Yao and Jiang (2012) in 2012.

Theorem 1.3 (Bernstein’s Inequality). Let X1, . . . , Xn be independent real-valued randomvariableswith zeromean (i.e.,E [Xi] =

0), and assume that |Xi| ≤ k < ∞ for each i ≥ 1, where k is a positive constant. Then for any t ∈ (0, nk), we have

P


n

i=1

Xi > t


≤ exp

 −t2

2
n

i=1
E

X2
i


+

2
3kt

 ,

P


n

i=1

Xi < −t


≤ exp

 −t2

2
n

i=1
E

X2
i


+

2
3kt

 .
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Bernstein’s inequality provides a tail bound for sums of independent random variables with a bounded range. Extensive
studies of this inequality have been done in various fields such as model selection problem (Baraud, 2010; Massart, 2007),
stochastic processes (Dzhaparidze & Zanten, 2001; Gao, Guillin, & Wu, 2014). For example, Baraud (2010) proposed a
Bernstein type inequality for suprema of randomprocesseswith applications tomodel selection in non-Gaussian regression.
Bernstein type inequalities for local martingales were derived in Dzhaparidze and Zanten (2001).

These inequalities, which are based on bounded independent random variables, are two powerful tools that can be
applied in many areas such as laws of large numbers and asymptotics of inference problems. The importance of these
inequalities have been demonstrated inmany studies of the asymptotic behaviour of sums of independent bounded random
variables, such as the laws (weak and strong) of large numbers and the probability of large deviations. One thing that seems
missing is the developments of Hoeffding’s and Bernstein’s inequalities for sums of random variables in non-additive cases.
The difficulty is how to formulate these inequalities for sums of random variables in non-additive measure space and that
is what is done in the current work.

The purposes of this paper are mainly to extend Hoeffding’s and Bernstein’s inequalities for sums of random variables
from probability measure space to non-additive measure space, and then establish two complete convergence theorems for
more general form.

The rest of the paper is organized as follows. Some notions and definitions that are useful in this paper are given in
Section 2. In Section 3, we state the main results of this paper.

2. Definitions and notations

In this section, we recall some basic well-known definitions and notations that we will use in the proofs of our results.
Let (Ω, F ) be a fixed measurable space. A set function µ : F → [0, ∞] is called a monotone measure whenever

µ (∅) = 0, µ(Ω) > 0 and µ(A) ≤ µ(B) whenever A ⊆ B, moreover, µ is called real if ∥µ∥ = µ (Ω) < ∞ and µ is said to
be an additive measure if µ (A ∪ B) = µ (A) + µ (B), whenever A ∩ B = ∅. µ is called a monotone probability (or capacity)
if ∥µ∥ = 1. Notice that a capacity with σ -additivity assumption is called a probability measure. The conjugate µ of a real
monotone measure µ is defined by µ (A) = ∥µ∥ − µ(Ω \ A), A ∈ F . Note that a monotone measure µ is also submodular
(2-alternating) whenever µ (A ∪ B) + µ (A ∩ B) ≤ µ (A) + µ (B) for all A, B ∈ F . µ is said to be continuous from below if
An ∈ F , An ⊂ An+1 for n ∈ N such that A :=


∞

n=1 An ∈ F implies limn→∞ µ (An) = µ (A). µ is said to be continuous from
above if An ∈ F , An ⊃ An+1 for n ∈ N such that A :=


∞

n=1 An ∈ F and µ(A1) < ∞ implies limn→∞ µ (An) = µ (A). A
monotone measure being continuous both from below and from above is called continuous.

Given a real monotone measure space (Ω, F , µ), we denote the elements of Ω by ω and we put {X ≥ t} =

{ω : X (ω) ≥ t} for any t > 0. The (asymmetric) Choquet integral (expectation) ofX with respect to a realmonotonemeasure
µ is defined by

ℑµ [X] =

 0

−∞

[µ ({X > t}) − ∥µ∥] dt +


+∞

0
µ ({X > t}) dt.

The Choquet integral was introduced in Choquet (1954), see also Denneberg (1994) and Pap (1995). Some basic properties
of Choquet expectation are summarized in Denneberg (1994), we cite some of them:

• ℑµ [IA] = µ (A);
• ℑµ [βX] = βℑµ [X] for any real β ≥ 0 (positive homogeneity);
• ℑµ [X + β] = ℑµ [X] + β ∥µ∥ for any real β (traslatability), moreover, by traslatability (put X = 0), we have

ℑµ [βIΩ ] = β ∥µ∥ for any real β;
• ℑµ [−X] = −ℑµ [X] (asymmetry);
• ℑµ [X] ≤ ℑµ [Y ] whenever X ≤ Y (monotonicity);
• If µ = P, then ℑµ [X] = E [X].

To obtain our main results, we need the following definition. Note that the concept of acceptability in probability theory
was introduced by Giuliano, Kozachenko, and Volodin (2008) in 2008.

Definition 2.1. Given a real monotone measure space (Ω, F , µ). A finite collection of random variables X1, X2, . . . , Xn is
said C-Choquet acceptable if there exists a constant C > 0 such that for any real λ,

ℑµ


exp


λ

n
i=1

Xi


≤ C

n
i=1

ℑµ [exp (λXi)] . (2.1)

An infinite sequence of random variables {Xn, n ≥ 1} is C-Choquet acceptable if every finite subcollection is C-Choquet
acceptable. Note that a sequence {Xn, n ≥ 1} of random variables is Choquet acceptable if (2.1) holds when C = 1.

Remark 2.2. It is clear that if µ = P is a probability measure and C = 1, then we have the concept of acceptability in
probability theory introduced in Giuliano et al. (2008).
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Example 2.3. Let Ω = [0, 1], X1(ω) = ω, X2(ω) = 1 − ω, X3(ω) = 2ω for ω ∈ Ω . Let F be the class of all Borel sets
in [0, 1], and µ (B) =

1+m2(B)
2 for B ∈ F , where m is the Lebesgue measure. Let C = 2. It is easy to see that X1, X2, X3 are

2-Choquet acceptable.
(i) For λ > 0,

ℑµ [exp(λX1)] =


+∞

0
µ


ω|eλω > t


dt

=

 eλ

0
µ


ω|ω >

1
λ
ln t


dt

=

 eλ

0

1 + m2
 1

λ
ln t, 1


2

dt =

 eλ

0

1 +

1 −

1
λ
ln t
2

2
dt

=
1

2λ2
eλ

λ2

+ 2

,

and

ℑµ [exp(λX2)] =


+∞

0
µ


ω|eλ(1−ω) > t


dt

=


+∞

0
µ ({ω|λ (1 − ω) > ln t}) dt

=

 eλ

0
µ


ω|1 −

1
λ
ln t > ω


dt =

 eλ

0
µ


0, 1 −

1
λ
ln t


dt

=

 eλ

0

1 + m2

0, 1 −

1
λ
ln t


2
dt =

 eλ

0

1 +

1 −

1
λ
ln t
2

2
dt

=
1

2λ2
eλ

λ2

+ 2

,

and

ℑµ [exp(λX3)] =


+∞

0
µ


ω|e2λω > t


dt =

 e2λ

0
µ


ω|ω >

1
2λ

ln t


dt

=

 e2λ

0
µ


1
2λ

ln t, 1


dt =

 e2λ

0

1 + m2
 1

2λ ln t, 1


2
dt

=

 e2λ

0

1 +

1 −

1
2λ ln t

2
2

dt =
1

4λ2


e2λ + 8λ2e2λ


.

Then, for λ > 0,

ℑµ


exp


3

i=1

λXi


= ℑµ


eλX1eλX2eλX3


= ℑµ


e2(λω)eλ


= eλ

ℑµ


e2λω


= eλ

ℑµ


eλX3


= eλ 1

4λ2


e2λ + 8λ2e2λ


≤ 2


1

2λ2
eλ

λ2

+ 2
2 1

4λ2


e2λ + 8λ2e2λ


= C

3
i=1

ℑµ [exp(λXi)] .

(ii) For λ < 0,

ℑµ [exp(λX1)] =


+∞

0
µ


ω|eλω > t


dt

=

 1

0
µ


ω|eλω > t


dt =

 1

0
µ


ω|ω <

1
λ
ln t


dt

=

 1

0
µ


0,

1
λ
ln t


dt =

 1

0

1 + m2

0, 1

λ
ln t


2
dt

=

 1

0

1 +
 1

λ
ln t
2

2
dt =

1
2λ2


λ2

+ 2


=
1
λ2

+
1
2
,
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and

ℑµ [exp(λX2)] =


+∞

0
µ


ω|eλ(1−ω) > t


dt

=

 1

0
µ


ω|1 − ω <

1
λ
ln t


dt

=

 1

0
µ


ω|1 −

1
λ
ln t < ω


dt

=

 1

0
µ


1 −

1
λ
ln t, 1


dt

=

 1

0

1 + m2

1 −

1
λ
ln t, 1


2

dt

=

 1

0

1 +
 1

λ
ln t
2

2
dt =

1
2λ2


λ2

+ 2

.

And

ℑµ [exp(λX3)] =


+∞

0
µ


ω|e2λω > t


dt

=

 1

0
µ


ω|e2λω > t


dt =

 1

0
µ


ω|ω <

1
2λ

ln t


dt

=

 1

0
µ


0,

1
2λ

ln t


dt =

 1

0

1 + m2

0, 1

2λ ln t


2
dt

=

 1

0

1 +
 1
2λ ln t

2
2

dt =
1

4λ2


2λ2

+ 1


=
1

4λ2
+

1
2
.

Therefore, for λ < 0,

ℑµ


exp


3

i=1

λXi


= ℑµ


eλωeλ(1−ω)e2λω


= eλ

ℑµ


e2λω


= eλ

ℑµ [exp(λX3)] = eλ


1

4λ2
+

1
2


≤ 2


1
λ2

+
1
2

2  1
4λ2

+
1
2


= C

3
i=1

ℑµ [exp(λXi)] .

(iii) For λ = 0,

ℑµ


exp


3

i=1

λXi


= 1 =

3
i=1

ℑµ [exp(λXi)] .

So, X1, X2, X3 are 2-Choquet acceptable.

3. Main results

In this section, we discuss three issues. The first is Hoeffding’s inequality for sums of random variables in non-additive
measure space. The second is a generalization of Bernstein’s inequality for sumsof randomvariables in non-additivemeasure
space. Finally, two complete convergence theorems for more general form are proposed.

3.1. Hoeffding’s inequality

Theorem 3.1. Let {Xn, n ≥ 1} be a sequence of C-Choquet acceptable random variables. Assume that there exist two sequences
of real numbers {an, n ≥ 1} and {bn, n ≥ 1} such that ai ≤ Xi ≤ bi for each i ≥ 1 and µ is a real monotone measure. Then for
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any ϵ > 0 and n ≥ 1, we have

µ


n

i=1


Xi −

ℑµ [Xi]
∥µ∥


> ϵ


≤ C ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

 , (3.1)

µ


n

i=1


Xi −

ℑµ [Xi]
∥µ∥


< −ϵ


≤ C ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

 .

Finally, if µ is additive, then we have

µ

 n
i=1


Xi −

ℑµ [Xi]
∥µ∥

 > ϵ


≤ 2C ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

 .

Proof. The proof is carried out in two steps.
(a) Let ∥µ∥ = 1. Because of convexity of function f (x) = ehx where h > 0, we have

ehXi ≤
Xi − ai
bi − ai

ehbi +
bi − Xi

bi − ai
ehai , for ai ≤ Xi ≤ bi.

Then by monotonicity, positive homogeneity, traslatability, we have

ℑµ


ehXi


6 ℑµ


ehbi − ehai

bi − ai
(Xi − ai) + ehai


(by monotonicity)

= ℑµ


ehbi − ehai

bi − ai
(Xi − ai)


+ ehai (by traslatability)

=
ehbi − ehai

bi − ai


ℑµ [Xi − ai]


+ ehai (by positive homogeneity)

=
ehbi − ehai

bi − ai


ℑµ [Xi] − ai


+ ehai (by traslatability)

=
bi − ℑµ [Xi]

bi − ai
ehai +

ℑµ [Xi] − ai
bi − ai

ehbi .

So, by positive homogeneity, we have

ℑµ


exp


h

Xi − ℑµ [Xi]


6 exp


−hℑµ [Xi]

 bi − ℑµ [Xi]
bi − ai

ehai +
ℑµ [Xi] − ai

bi − ai
ehbi


. (3.2)

Now, for any h > 0, Markov’s inequality implies that

µ


n

i=1


Xi − ℑµ [Xi]


> ϵ


≤ exp (−hϵ) ℑµ


exp


h

n
i=1


Xi − ℑµ [Xi]



= exp (−hϵ)


n

i=1

exp

−hℑµ [Xi]


ℑµ


exp


h

n
i=1

Xi



≤ C exp (−hϵ)


n

i=1

exp

−hℑµ [Xi]

 n
i=1

ℑµ (exp (hXi)) (by (2.1))

= C exp (−hϵ)
n

i=1

ℑµ


exp


h

Xi − ℑµ [Xi]


≤ C exp (−hϵ)

n
i=1

exp

−hℑµ [Xi]

 bi − ℑµ [Xi]
bi − ai

ehai +
ℑµ [Xi] − ai

bi − ai
ehbi


, (by (3.2))

= C exp (−hϵ)
n

i=1

exp (U (hi)) , (3.3)
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where U (hi) = −hisi + ln(1 − si + siehi), si =
ℑµ[Xi]−ai

bi−ai
, hi = h(bi − ai). Now, using the Taylor theorem of U (hi) about 0,

one can easily observe that

U (hi) ≤
h2(bi − ai)2

8
.

Therefore, by (3.3), we have

µ


n

i=1


Xi − ℑµ [Xi]


> ϵ


6 C exp


−hϵ +

h2

8

n
i=1

(bi − ai)2


.

Taking h =
4ϵn

i=1(bi−ai)2
, we obtain

µ


n

i=1


Xi − ℑµ [Xi]


> ϵ


≤ C exp

 −2ϵ2

n
i=1

(bi − ai)2

 .

(b) Let ∥µ∥ ≠ 1 and µ′
=

µ

∥µ∥
. Part (a) implies that

µ


n

i=1


Xi −

ℑµ [Xi]
∥µ∥


> ϵ


= ∥µ∥ µ′


n

i=1


Xi −

ℑ
µ′∥µ∥ [Xi]
∥µ∥


> ϵ



= ∥µ∥ µ′


n

i=1


Xi − ℑ

µ′

[Xi]


> ϵ


≤ C ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

 .

So, by parts (a) and (b), (3.1) follows immediately. Now, replacing Xi by −Xi in the above statement gives

µ


n

i=1


−Xi −

ℑµ [−Xi]
∥µ∥


> ϵ


= µ


−

n
i=1


Xi −

ℑµ [Xi]
∥µ∥


> ϵ



≤ C ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

 .

Finally, if µ is additive, then we have

µ

 n
i=1


Xi −

ℑµ [Xi]
∥µ∥

 > ϵ


= µ


n

i=1


Xi −

ℑµ [Xi]
∥µ∥


> ϵ


+ µ


n

i=1


Xi −

ℑµ [Xi]
∥µ∥


< −ϵ



≤ C ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

+ µ


n

i=1


−Xi −

ℑµ [−Xi]
∥µ∥


> ϵ



= 2C ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

 . �

Corollary 3.2. Let {Xn, n ≥ 1} be a sequence of Choquet acceptable random variables. If there exist two sequences of real numbers
{an, n ≥ 1} and {bn, n ≥ 1} such that ai ≤ Xi ≤ bi for each i ≥ 1 and µ is a real monotone measure, then for any ϵ > 0 and
n ≥ 1, we have

µ


n

i=1


Xi −

ℑµ [Xi]
∥µ∥


> ϵ


≤ ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

 ,
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µ


n

i=1


Xi −

ℑµ [Xi]
∥µ∥


< −ϵ


≤ ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

 .

Finally, if µ is additive, then we have

µ

 n
i=1


Xi −

ℑµ [Xi]
∥µ∥

 > ϵ


≤ 2 ∥µ∥ exp

 −2ϵ2

n
i=1

(bi − ai)2

 .

3.2. Bernstein’s inequality

Theorem 3.3. Let {Xn, n ≥ 1} be a sequence of C-Choquet acceptable random variables. Assume that |Xi| ≤ k < ∞ for each
i ≥ 1, where k is a positive constant, ℑµ [Xi] = 0 and µ is a real submodular monotone measure such that µ is continuous from
below. Then for any ϵ > 0 and n ≥ 1, we have

µ


n

i=1

Xi > ϵ


≤ C ∥µ∥ exp

 −ϵ2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3kϵ

 , (3.4)

µ


n

i=1

Xi < −ϵ


≤ C ∥µ∥ exp

 −ϵ2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3kϵ

 .

Finally, if µ is additive, then we have

µ

 n
i=1

Xi

 > ϵ


≤ 2C ∥µ∥ exp

 −ϵ2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3kϵ

 .

Proof. The proof is carried out in two steps.
(a) Let ∥µ∥ = 1. Since µ is submodular and continuous from below, for any t > 0, by Taylor’s expansion, ℑµ [Xi] = 0,

i = 1, 2, . . . , n, monotonicity, traslatability and positive homogeneity, we have

ℑµ


etXi


= ℑµ


1 + tX1 +

∞
j=2

(tXi)
j

j!



6 1 +

∞
j=2

ℑµ


|tXi|

j
j!

. (3.5)

Introduce the notation

Zi (t) =

∞
j=2

2t j−2
ℑµ


|Xi|

j
j!ℑµ


X2
i

 , i = 1, 2, . . . , n. (3.6)

Then (3.5), (3.6) and the inequality 1 + x 6 ex imply that

ℑµ


etXi


6 exp


t2ℑµ


X2
i


2

Zi (t)


.

Denote γ =
k
3 andMn =

kϵ
3
n

i=1 ℑµ


X2
i

 + 1. Choosing t > 0 such that tγ < 1 and

tγ 6
Mn − 1
Mn

=
γ ϵ

γ ϵ +

n
i=1

ℑµ


X2
i

 .
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Clearly, for i = 1, 2, . . . , n and j > 2,

|Xi|
j
= |Xi|

j−2
|Xi|

2 6 kj−2
|Xi|

2 .

So, by monotonicity, we have

ℑµ


|Xi|

j 6 kj−2
ℑµ


X2
i


6

1
2
γ j−2j!ℑµ


X2
i


,

which implies that for i = 1, 2, . . . , n,

Zi (t) =

∞
j=2

2t j−2
ℑµ


|Xi|

j
j!ℑµ


X2
i

 6

∞
j=2

(tγ )j−2
=

1
1 − tγ

6 Mn.

Now, Markov’s inequality implies that

µ


n

i=1

Xi > ϵ


≤ exp (−tϵ) ℑµ


exp


t

n
i=1

Xi



≤ C exp (−tϵ)
n

i=1

ℑµ (exp (tXi)) (by (2.1))

6 C exp


−tϵ +

t2Mn

2

n
i=1

ℑµ


X2
i


. (3.7)

Taking t =
ϵ

Mn
n

i=1 ℑµ


X2
i

 =
ϵ

γ ϵ+
n

i=1 ℑµ


X2
i

 . Clearly, tγ < 1 and

tγ 6
γ ϵ

γ ϵ +

n
i=1

ℑµ


X2
i

 .
Substituting t =

ϵ

Mn
n

i=1 ℑµ


X2
i

 into the right-hand side of (3.7), we have

µ


n

i=1

Xi > ϵ


≤ C exp

−
ϵ2

2 kϵ
3 + 2

n
i=1

ℑµ


X2
i


 .

(b) Let ∥µ∥ ≠ 1 and µ′
=

µ

∥µ∥
. Part (a) implies that

µ


n

i=1

Xi > ϵ


= ∥µ∥ µ′


n

i=1

Xi > ϵ



≤ C ∥µ∥ exp

−
ϵ2

2 kϵ
3 + 2

n
i=1

ℑµ′


X2
i




= C ∥µ∥ exp

 −ϵ2

2
n

i=1
ℑ µ

∥µ∥


X2
i


+

2
3kϵ



= C ∥µ∥ exp

 −ϵ2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3kϵ

 .



448 H. Agahi et al. / Journal of the Korean Statistical Society 45 (2016) 439–450

So, by parts (a) and (b), (3.4) follows immediately. Now, replacing Xi by −Xi in the above statement, gives

µ


−

n
i=1

Xi > ϵ


≤ C ∥µ∥ exp

 −ϵ2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3kϵ

 .

Finally, if µ is additive, then we have

µ

 n
i=1

Xi

 > ϵ


≤ 2C ∥µ∥ exp

 −ϵ2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3kϵ

 . �

Corollary 3.4. Let {Xn, n ≥ 1} be a sequence of Choquet acceptable random variables. If |Xi| ≤ k < ∞ for each i ≥ 1, where
k is a positive constant, ℑµ [Xi] = 0 and µ is real submodular monotone and continuous from below, then for any ϵ > 0 and
n ≥ 1, we have

µ


n

i=1

Xi > ϵ


≤ ∥µ∥ exp

 −ϵ2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3kϵ

 , (3.8)

µ


n

i=1

Xi < −ϵ


≤ ∥µ∥ exp

 −ϵ2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3kϵ

 .

Finally, if µ is additive, then we have

µ

 n
i=1

Xi

 > ϵ


≤ 2 ∥µ∥ exp

 −ϵ2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3kϵ

 .

3.3. On the complete convergence

In the following part, we discuss two complete convergence theorems for more general form. To prove these theorems,
we use Hoeffding’s inequality in Theorem 3.1 and Bernstein’s inequality in Theorem 3.3 which obtained in previous parts.
Before proceeding further, we need the following definition.

Definition 3.5. A sequence of random variables {Xn}
∞

n=1 defined on a fixed real monotone measure space (Ω, F , µ) is said
to converge µ-completely to a constant K if for all ϵ > 0,

∞
n=1

µ (|Xn − K | > ϵ) < ∞.

In order to prove out results in this section, we need to define the following space of sequences

ζ =


{an} :

∞
n=1

ηan < ∞ for any 0 < η < 1


.

Theorem 3.6. Let {Xn, n ≥ 1} be a sequence of Choquet acceptable random variables. If |Xi| ≤ k < ∞ for each i ≥ 1, where k
is a positive constant and µ is an additive measure, then for every {αn} ∈ ζ ,

(nαn)
−1
2

n
i=1


Xi −

ℑµ [Xi]
∥µ∥


→ 0 µ-completely as n → ∞. (3.9)
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Proof. For any ϵ > 0, Corollary 3.2 implies that

∞
n=1

µ

 n
i=1


Xi −

ℑµ [Xi]
∥µ∥

 > (nαn)
1
2 ϵ


≤ 2 ∥µ∥

∞
n=1


exp


−ϵ2

2k2

αn

< ∞,

which implies (3.9). �

Theorem 3.7. Let {Xn, n ≥ 1} be a sequence of Choquet acceptable random variables. If |Xi| ≤ b < ∞ for each i ≥ 1, where
b is a positive constant, ℑµ [Xi] = 0, µ is additive and continuous from below and

n
i=1 ℑµ


X2
i


= O (αn) for some {αn} ∈ ζ ,

then

α−1
n

n
i=1

Xi → 0 µ-completely as n → ∞. (3.10)

Proof. For any ϵ > 0, Corollary 3.4 implies that

∞
n=1

µ

 n
i=1

Xi

 > αnϵ


≤ 2 ∥µ∥

∞
n=1

exp

 −α2
nϵ

2

2
∥µ∥

n
i=1

ℑµ


X2
i


+

2
3bϵαn


≤ 2 ∥µ∥

∞
n=1

exp (−Kαn) < ∞,

which implies (3.10). Here, K is a positive number not depending on n. �

4. Conclusions

We have studied Hoeffding’s and Bernstein’s inequalities for sums of random variables in non-additive measure space.
Based on these results, we have also presented two complete convergence theorems in more general form.
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