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Abstract

In this work, we introduce a method for constructing capacities using overlap indexes between the fuzzy sets which are generated 
from the inputs of the considered problem. We also use these capacities to aggregate information by means of the Choquet integral 
in a fuzzy rule-based classifier. We observe that with these capacities the obtained results are better than those obtained with other 
measures.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

For some problems, the solution may be improved in two different ways:

(a) employing representations of information that take the inherent imprecision in data into account [19,22,39], and
(b) using information fusion mechanisms adapted to such representations [6,7,11].

These strategies were, for instance, applied to the calculation of the volume of clinically significant regions in the 
brain [50] and to the biometric recognition from digital fingerprints [40].
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In many problems, it is crucial to find a relation between groups of data. Such relation can be expressed, for 
instance, in terms of an appropriate fuzzy measure or capacity that is capable to detect the links between data [43].

In this work, we focus on the latter problem. In particular, our main goal is to describe a method to build capacities 
[43,49] from the data (inputs) of a given problem.

The main idea is as follows: after constructing fuzzy sets from the data (inputs) of the problem, we establish links 
between these fuzzy sets in terms of overlap indexes [8,19,25] that are derived from overlap functions [10,7,34]. 
Finally, capacities are defined on the basis of these overlaps.

The notion of an overlap function appears in image processing and classification settings as a way to measure 
to what extent a given element belongs to two (in the original bidimensional case) or three or more (in the multidi-
mensional case) considered classes. The interest of using bidimensional overlap functions for classification was made 
clear in [7], where they were used to define an analog of preference structures in those situations where associativity is 
not required or even natural. Moreover, they can also be used for approximate reasoning, as shown in [25]. Basically, 
a bidimensional overlap function is a continuous aggregation function which vanishes whenever any of the inputs is 
equal to zero and which equals one only when both inputs are 1. In particular, continuous t-norms without divisors of 
zero are examples of overlap functions [10].

These capacities are used for the aggregation of information through the use of Choquet integrals. Note that, in 
this way, the resulting aggregation function can be adapted to the specific problem at hand. To illustrate our approach, 
we apply interpretable Fuzzy Rule-Based Classification Systems (FRBCSs) [32] to some benchmark classification 
problems [20]. In this setting, the aggregation of the information plays a key role since it determines the character of 
the Fuzzy Reasoning Method (FRM) [15].

Specifically, we apply the Choquet integral to aggregate the local information given by each fuzzy rule of the 
system. The fuzzy sets used to construct the associated fuzzy measure are the rule weights and consequently, it 
expresses the interaction among the rules of the different classes. Furthermore, we propose an evolutionary method to 
learn a different capacity for each class of the problem. The quality of the proposal is tested using 40 datasets selected 
from the KEEL dataset repository [1]. We compare our approach with 6 classifiers, namely SGERD [41], SLAVE [28], 
C4.5 [44], CART [5], RIPPER [14] and FURIA [30], and we use statistical tests to support our conclusions.

This paper is organized as follows: after providing some preliminaries, we analyse some properties of overlap 
functions and indexes. In Sections 4 and 5, we present a method for constructing capacities from overlap indexes. 
In Sections 6 and 7, we study the main properties of our constructions. Section 8 presents the FRM in which we 
apply Choquet integrals defined in terms of our measures to FRBCSs. Section 9 exhibits both the results obtained 
by our approach in a set of well-known classification problems and the statistical analysis. Finally, we present some 
conclusions, future research directions and references.

2. Preliminaries

Given a set U , we denote its cardinality by card(U).
Recall that, given a referential set (or universe) U , a fuzzy set A over U corresponds to a function μA:

μA : U → [0,1] .

More precisely, a fuzzy set A is given by the graph of the function μA, called the membership function of A:

{(i,μA(i)) | i ∈ U} .

For simplicity, we write A(i) instead of μA(i) in this work.
Given a referential set U , we denote by FS(U) the space of all fuzzy sets defined over U . In this work, we only 

deal with finite referential sets. Henceforth, let U = {1, . . . , n}.
FS(U) can be endowed with a partial order ⊆ as follows. For A, B ∈ FS(U), A ⊆ B if and only if A(i) ≤ B(i) for 

every i ∈ U . Similarly, a partial order on [0, 1]n is given as follows: (x1, . . . , xn) ≤ (y1, . . . , yn) if and only if xi ≤ yi

for every i ∈ U . Together with these partial orders, FS(U) and [0, 1]n constitute lattices, that is, all pair-wise infima 
and suprema exist in FS(U) and [0, 1]n, respectively.
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Let L1 and L2 be lattices. A function f : L1 → L2 is said to be increasing if x ≤ y implies that f (x) ≤ f (y) for all 
x, y ∈ L1. The function f : L1 → L2 is a (lattice-)isomorphism if f is bijective and f as well as f −1 are increasing 
[17]. In this case, L1 and L2 are called (lattice-)isomorphic and one can identify L1 with L2. For example, FS(U) and 
[0, 1]n are isomorphic.

By abuse of notation, we denote by ∅ empty set (that is, the fuzzy set where the membership values of all the 
elements are equal to 0), and by U the fuzzy set with all its memberships equal to 1.

The support of a fuzzy set A ∈ FS(U) is given by:

supp(A) = {i ∈ U | A(i) �= 0}.
We say that A is a full fuzzy set if supp(A) = U . To distinguish fuzzy sets from the classical subsets of U , we will 

use the notation Ã in the case of the later class.
Let Ã ⊆ U and t ∈ [0, 1]. The symbol tÃ denotes the fuzzy set given by:

tÃ(i) =
{

t if i ∈ Ã ;
0 otherwise.

In particular, and by abuse of notation, we use the symbol 1Ã to denote 1Ã for every Ã ⊆ U , since 1Ã equals the 
characteristic function of the set Ã.

Besides, note that this definition corresponds to the basic function b(Ã, t) introduced by Benvenuti et al. in 2002 [3].
Given a fuzzy set A ∈ FS(U) and a mapping f : [0, 1] → [0, 1], the symbol f (A) denotes the following the fuzzy 

set:

f (A) = {(i, f (A(i)))|i ∈ U}.
Let A, B ∈ FS(U). Note that

A ∪ B = {(i,max(A(i),B(i))) | i ∈ U}
and

A ∩ B = {(i,min(A(i),B(i))) | i ∈ U}.
Given a function F : [0, 1]k → [0, 1] (with k ∈N) and k fuzzy sets Ak ∈ FS(U), the symbol F(A1, . . . , Ak) denotes 

the fuzzy set over U whose membership function is given by:

F(A1, . . . ,Ak)(i) = F(A1(i), . . . ,Ak(i)).

Definition 1. An aggregation function of dimension n [9,11,29,35,39] is a mapping M from the (complete) lattice 
[0, 1]n to the (complete) lattice [0, 1] such that (see also [2,16]):

(1) M(0, · · · , 0) = 0 and M(1, . . . , 1) = 1;
(2) M is increasing.

3. Overlap functions and overlap indexes

The concept of overlap function was extensively studied in [10]. Let us recall some definitions and results from 
this article.

Definition 2. An overlap function is a mapping GO : [0, 1]2 → [0, 1] such that:

(1) GO(x, y) = GO(y, x) for every x, y ∈ [0, 1];
(2) GO(x, y) = 0 if and only if xy = 0;
(3) GO(x, y) = 1 if and only if xy = 1;
(4) GO is increasing;
(5) GO is continuous.
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Example 1.

(1) The minimum and the product are examples of overlap functions which are also t-norms.
(2) If f : [0, 1] → [0, 1] is an increasing bijection, then

f (xy) and f (min(x, y))

are examples of overlap functions.

On the one hand, overlap functions generalize binary intersection operators such as the minimum, or, in general, 
t-norms. On the other hand, observe that an overlap function is a particular instance of an aggregation function without 
divisors of zero or divisors of one.

The class of all overlap functions is convex. It is closed under any continuous aggregation of its members, provided 
that the applied aggregation function has no divisors of zero and no divisors of one. In particular, it is closed under 
aggregation by means of any of its members.

Overlap functions can be used to build overlap indexes by aggregating them. We start by recalling some basic 
notions about the idea of an overlap index and we will formalize the construction method in Theorem 1.

Definition 3. An overlap index is a mapping O : FS(U) × FS(U) → [0, 1] such that

(O1) O(A, B) = 0 if and only if A and B have disjoint supports; that is, A(i)B(i) = 0 for every i ∈ U ;
(O3) O(A, B) = O(B, A);
(O4) If B � C, then O(A, B) ≤ O(A, C).

An overlap index such that

(O2′) O(A, B) = 1 if there exists i ∈ U such that A(i) = B(i) = 1

is called a normal overlap index.

Remark 1. In the original definition of overlap index [19], condition (O2) states that

O(A,B) = 1 if A(i) = 0 or B(i) = 1 or A(i)B(i) = 0

for all i ∈ U . For A = ∅ we obtain the following contradiction: (O1) implies that O(A, A) = 0 whereas (O2) implies 
O(A, A) = 1. Therefore we removed condition (O2) from the definition of an overlap index.

Example 2.

(1) The first example of overlap index in the literature is Zadeh’s consistency index [52]:

OZ(A,B) = n
max
i=1

(min(A(i),B(i))).

Note that OZ is normal.
(2) Let M : [0, 1]2 → [0, 1] be a symmetric aggregation function such that M(x, y) = 0 if and only if xy = 0. We 

have that

OM,Z(A,B) = n
max
i=1

(M(A(i),B(i)))

is a normal overlap index that generalizes Zadeh’s index.
(3) If in the previous example, we consider a symmetric, increasing function M : [0, 1]2 → [0, 1] such that 

M(1,1) < 1 and M(x, y) = 0 if and only if xy = 0, then we obtain an overlap index which is not normal. For 
instance, when taking M(x, y) = (xy)p

2 with p > 0, we arrive at the overlap index:

O(A,B) = n
max
i=1

(
(A(i)B(i))p

2

)
.
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(4) The following is also an example of overlap index:

Oπ(A,B) = 1

n

n∑
i=1

A(i)B(i).

Remark 2. For each overlap index O : FS(U) × FS(U) → [0, 1], the function MO : [0, 1]n → [0, 1] given by

MO(E) = O(E,U)

O(U,U)

with E ∈ [0, 1]n, is an aggregation function with no zero divisors.

Remark 3. Formally, overlap indexes can be seen as generalized measures of fuzzy intersections of considered fuzzy 
sets A and B . Consider, for example, a full probability measure P on U (i.e., P(Ã) > 0 whenever Ã is non-empty). 
Then OP (A, B) = P(suppA ∩ suppB) defines an overlap index. Following the Zadeh idea of fuzzy probability mea-

sures [52], also OP (A, B) =
n∑

i=1
P(i) min(A(i), B(i)) defines an overlap index. For the uniform probability measure 

(counting measure in Example 5) mc we obtain Omc = Oπ . Similarly, OZ can be seen as the Sugeno integral with 
respect to the top capacity m∗, see Example 6, applied to the fuzzy intersection A ∩ B .

3.1. Modularity of overlap indexes

The main goal of this work is to show how overlap indexes can be used to build capacities. To do so, we first 
introduce a set of properties of overlap indexes that are going to be linked to similar properties of capacities.

We first introduce the idea of symmetry for overlap indexes.

Definition 4. Let O : FS(U) × FS(U) → [0, 1] be an overlap index and let E ∈ FS(U). O is E-symmetric if for every 
A, B ∈ FS(U) such that card(supp(A)) = card(supp(B)) it holds that:

O(A,E) = O(B,E).

Example 3.

(1) Every overlap index O is E-symmetric if E = ∅ ∈ FS(U).
(2) Consider the strongest overlap index:

Os(A,B) =
{

0 if A,B are disjoint fuzzy sets;

1 otherwise.

We have that Os is E-symmetric for every full set E.

Note that an overlap index cannot be E-symmetric unless E is a full fuzzy set, as the next result shows.

Proposition 1. If O is an overlap index which is E-symmetric with respect to some fuzzy set E ∈ FS(U), E �= ∅, then 
E is a full fuzzy set.

Proof. Assume that E is not a full fuzzy set and that

k = min(card(supp(E)), n − card(supp(E))) > 0 .

Let Ã ⊆ supp(E) and B̃ ⊆ U\supp(E) with card(Ã) = card(B̃) = k. Consider the fuzzy sets

A = 1Ã and B = 1B̃ .

We have that O(E, A) > 0 (since E and A are not mutually disjoint) whereas O(E, B) = 0. Therefore, O cannot
be E-symmetric. �
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Evidently, the concept of E-symmetry of overlap indexes only applies to full fuzzy sets E and E = ∅.

Corollary 1. If O is an E-symmetric overlap index, then

O(E,E) = O(E,U).

Now we consider the notion of modularity.

Definition 5. Let O : FS(U) × FS(U) → [0, 1] be an overlap index and let E ∈ FS(U).

(1) O is called E-supermodular if O(E, A ∩ B) + O(E, A ∪ B) ≥ O(E, A) + O(E, B) holds for all A, B ∈ FS(U). 
Similarly, O is called E-submodular if O(E, A ∩B) +O(E, A ∪B) ≤ O(E, A) +O(E, B) for all A, B ∈ FS(U).

(2) If O is E-submodular and E-supermodular, then O is simply called E-modular.

Example 4.

(1) Every overlap index O is E-modular for E = ∅ ∈ FS(U).
(2) The overlap index Oπ is E-modular for every fuzzy set E.

Remark 4. Observe that OZ is E-submodular but not E-modular. Moreover, OZ is E-symmetric if and only if E = ∅.

As mentioned before, overlap indexes can be built by means of overlap functions. In particular, the following 
construction method by means of aggregation functions can be found in [25].

Theorem 1. Let M : [0, 1]n → [0, 1] be an aggregation function such that M(x1, . . . , xn) = 0 if and only if x1 = · · · =
xn = 0 and let GO : [0, 1]2 → [0, 1] be an overlap function. The mapping O : FS(U) × FS(U) → [0, 1] given by

O(A,B) = M(GO(A(1),B(1)), . . . ,GO(A(n),B(n))) (1)

is a normal overlap index in the sense of Definition 3.
Conversely, if GO is an overlap function and M : [0, 1]n → [0, 1] is an aggregation function such that O defined 

by Equation 1 is an overlap index, then M(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0.

4. Capacities and overlap indexes

In recent years, capacities have attracted a growing interest due to their applicability in many different areas, 
ranging from decision making to image processing. In the following, we recall some basic notions concerning capac-
ities [49].

Definition 6. Let U = {1, 2, . . . , n}. A capacity (or non-additive measure) over U is a mapping m : 2U → [0, 1] such 
that

(1) m(∅) = 0 and m(U) = 1;
(2) If Ã ⊂ B̃ then m(Ã) ≤ m(B̃).

Example 5.

(1) Any probability measure yields an example of a capacity.
(2) The bottom capacity is defined by

m∗(Ã) =
{

1 if Ã = U ;
0 otherwise.

It is called the bottom capacity because, for any other capacity m over U , it holds that m∗(Ã) ≤ m(Ã) for every 
Ã ⊆ U .
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(3) The top capacity is defined by

m∗(Ã) =
{

0 if Ã = ∅;
1 otherwise.

It is called the top capacity because, for any other capacity m over U , it holds that m∗(Ã) ≥ m(Ã) for every 
Ã ⊆ U .

Next we recall some additional properties that capacities may fulfil.

Definition 7. If m is a capacity over U = {1, . . . , n}, then:

(1) m is called additive if m(Ã ∪ B̃) = m(Ã) + m(B̃) whenever Ã ∩ B̃ = ∅.
(2) m is called symmetric if m(Ã) = m(B̃) whenever card(Ã) = card(B̃).
(3) m is called supermodular (submodular) if m(Ã ∪ B̃) + m(Ã ∩ B̃) ≥ m(Ã) + m(B̃) (m(Ã ∪ B̃) + m(Ã ∩ B̃) ≤

m(Ã) + m(B̃)) for every Ã, ̃B ∈ 2U .
(4) m is called modular if it is supermodular and submodular.

Remark 5. Since we have m(∅) = 0 for every capacity m, additivity and modularity are equivalent properties of 
capacities.

Example 6.

(1) The bottom capacity m∗ is symmetric but not additive if n > 1. Moreover, this measure is also supermodular.
(2) The top capacity m∗ is submodular as well as symmetric, non-additive, and non-supermodular for n > 1.
(3) The counting capacity (uniform probability measure) mc is the capacity defined as:

mc(Ã) = 1

n
card(Ã).

This capacity is additive and symmetric. Moreover, the identity card(Ã∪ B̃) +card(Ã∩ B̃) = card(Ã) +card(B̃)

implies that mc is modular.
However, if we consider p > 0 and define

mc,p(Ã) = (mc(Ã))p

then mc,p is a capacity which is submodular if p ∈ ]0, 1[ and supermodular if p > 1.

Example 7. The Dirac delta

md,j (Ã) =
{

1 if j ∈ Ã ;
0 otherwise

= 1Ã(j)

for every Ã ⊆ U , is an additive measure which is not symmetric.

Note that a capacity can always be defined by means of the following result.

Proposition 2. (See [4,49].) Let m : 2U → [0, 1] be a set function. The following items are equivalent.

(1) m is a capacity.
(2) There exists an aggregation function M : [0, 1]n → [0, 1] such that, for every Ã ∈ 2U

m(Ã) = M(1Ã) .
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5. Some relationships between capacities, overlap indexes, and overlap functions

One of the most powerful tools in the probabilistic framework is the Bayesian approach based on conditional 
probabilities PB̃ , i.e., on new probability measures derived from a given probability measure P such that P(B̃) > 0. 

In this case, PB̃ : 2U → [0, 1] is given by PB̃(Ã) = P(Ã∩B̃)

P (B̃)
= P(Ã∩B̃)

P (B̃∩B̃)
.

In this section, we generalize the construction of Bayesian conditional probabilities by showing how to build a 
capacity from an overlap function.

Let E ∈ FS(U) be a fixed non-empty fuzzy set (that is, with at least one membership different from zero). Given 
Ã ∈ 2U , let us define a fuzzy set EÃ induced by E as follows:

EÃ(i) =
{

E(i) if i ∈ Ã;
0 otherwise.

Observe that EÃ is the fuzzy intersection of the fuzzy set E and the crisp set Ã, since

EÃ(i) = min(1Ã(i),E(i)) .

Therefore, any aggregation function with no zero divisors could also be used instead of the minimum in this definition 
for the subsequent developments.

Example 8.

(1) If Ã = U , then EÃ = E for every E ∈ FS(U).
(2) If Ã = ∅, then EÃ = ∅ for every E ∈ FS(U).

We have the following straightforward results.

Proposition 3. Let E be a fixed fuzzy set over U and Ã ∈ 2U . Then:

(1) EÃ ⊆ E;
(2) EÃ = E if and only if supp(E) ⊆ Ã.

(3) If B̃ ∈ 2U and Ã ⊆ B̃ then EÃ ⊆ EB̃ .
(4) supp(EÃ) = Ã ∩ supp(E).

Remark 6. Note that from (4) in the previous proposition, we have that EÃ = ∅ if and only if E(i) = 0 for every 
i ∈ Ã; that is, if and only if Ã ∩ supp(E) = ∅.

Now we are ready to introduce the definition of a measure in terms of a fixed fuzzy set and an overlap index.

Theorem 2. If E ∈ FS(U) is a fixed, non-empty fuzzy set, then the mapping mO,E : 2U → [0, 1] given by

mO,E(Ã) = 1

O(E,E)
O(E,EÃ)

is a capacity for every overlap index O .

Proof. First of all observe that mO,E is well defined since O(E, E) �= 0 and O(E, EÃ) ≤ O(E, E).

If Ã = U , then it follows that EÃ = E, so we have that mO,E(Ã) = 1. Moreover, if Ã = ∅, then EÃ(i) = 0 for 
every i ∈ U . So, in particular, O(EÃ, E) = 0.

Finally, if Ã ⊂ B̃ , then it follows that EÃ ⊆ EB̃ , so, in particular, O(E, EÃ) ≤ O(E, EB̃) and hence mO,E(Ã) ≤
mO,E(B̃). �

Recall that Benvenuti et al. [4] defined for each aggregation function M : [0, 1]n → [0, 1] and e ∈ ]0, 1] such that 
M(E) > 0, where E = (e, . . . , e), a capacity mM,e : 2U → [0, 1] given by
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mM,e(Ã) = M(eÃ)

M(E)

(for e = 1 see also Proposition 2). Obviously, in the terms of Theorem 2, mO,E = mMO,e. Here MO was defined in 
Remark 2.

Remark 7. Observe that, for a fixed full probability measure P on U , if we consider the overlap index OP introduced 
in Remark 3, we recover the definition of Bayesian conditional probabilities, i.e., mOP ,E = PsuppE .

Example 9. Let U = {1, 2, 3} and E = {(1, 0.2), (2, 0), (3, 0)}. Consider the overlap index OZ(A, B) =
max1≤i≤3(min(A(i), B(i)). We have that OZ(E, E) = 0.2 and mOZ,E({1}) = 1

0.2 0.2 = 1, whereas mOZ,E({2}) =
mOZ,E({3}) = 0 and therefore mOZ,E is not symmetric. Observe that in this example mOZ,E corresponds to the Dirac 
measure concentrated at {1}.

Let us continue with some comments regarding mO,E .

Proposition 4. Let E be a non-empty fuzzy set and Ã ∈ 2U . For any overlap index O we have:

(1) mO,E(Ã) = 0 if and only if supp(E) ∩ Ã = ∅;
(2) If O(D, E) < O(E, E) for every D ⊂ E, then mO,E(Ã) = 1 if and only if supp(E) ⊆ Ã.

Proof.

(1) mO,E(Ã) = 0 if and only if O(E, EÃ) = 0. From (O1) in the definition of overlap index, this may happen if and 
only if supp(E) ∩ supp(EÃ) = ∅. From (4) in Proposition 3, the result follows.

(2) This claim follows immediately from (2) in Proposition 3. �
With respect to the comparison of the measures, that we obtain for different choices of the full fuzzy set E, we can 

state the following.

Proposition 5. Let O be an overlap index. For all full fuzzy sets E1, E2 ∈ FS(U), the following statements are equiv-
alent:

(1) mO,E1(Ã) ≤ mO,E2(Ã) for every Ã ∈ 2U .

(2) minÃ∈2U

O(E2,ÃE2 )

O(E1,ÃE1 )
= O(E2,E2)

O(E1,E1)

Proof. The inequality mO,E1(Ã) ≤ mO,E2(Ã) implies that

O(E2,E2)

O(E1,E1)
≤ O(E2, ÃE2)

O(E1, ÃE1)
(2)

for every Ã ∈ 2U , so (2) holds. Conversely, if (2) holds, then Equation 2 is satisfied as well and we obtain (1). �
Corollary 2. Let E1, E2 ∈ FS(U) such that O(E1, E1) = 1. If E1 ⊆ E2, then mO,E1(Ã) ≤ mO,E2(Ã) for every 
Ã ∈ 2U .

Proof. If E1 ⊆ E2, then we have that 1 ≥ O(E2, E2) ≥ O(E1, E1) = 1. Consequently,

1 = O(E2,E2)

O(E1,E1)
≤ O(E2, ÃE2)

O(E1, ÃE1)

for every Ã ∈ 2U , which implies that mO,E1(Ã) ≤ mO,E2(Ã) for every Ã ∈ 2U . �
Now, let us show how to build overlaps from capacities. To this end, let us first introduce the concept of contraction.
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Definition 8. Let E ∈ FS(U). The contraction to E (or E-contraction) is the mapping CE : FS(U) → FS(U) defined 
by:

CE(A) = {(i,E(i)A(i)) | i ∈ U}.

The following result is now straightforward.

Proposition 6. For every E ∈ FS(U) and for all A, B ∈ FS(U):

(1) CE(A) ⊆ A;
(2) If A ⊆ B then CE(A) ⊆ CE(B);
(3) CE(A) ⊆ E and, if E is a full fuzzy set, CE(A) = E if and only if A = U .
(4) If E is a full fuzzy set, then CE is a one-to-one mapping.
(5) If E is a full fuzzy set, then Im(CE) = {A ∈ FS(U) | A ⊆ E}, where Im(CE) denotes the image of the mapping CE .

Remark 8. The definition of contraction can be generalized by substituting the product with any other t-norm or even 
an overlap function. We postpone the analysis of the resulting operators to future works.

Let us continue by introducing some notations. For a fixed fuzzy set E ∈ FS(U) and for Ã ∈ 2U , we define

Cl(E, Ã) = {A ∈ FS(U) | A ⊆ EÃ and A �EB̃ for every B̃ ⊂ Ã}.
The proof of the following lemma is straightforward.

Lemma 1. Let E ∈ FS(U). Then Cl(E, Ã) = ∅ for every Ã ∈ 2U such that Ã ∩ supp(E) = ∅.

Then we can state the following.

Proposition 7. Let E be a full fuzzy set. The family (Cl(E, Ã))Ã∈2U is a partition of the set {A ∈ FS(U) | A ⊆ E}.

Proof. For any A ⊆ E let’s take Ã = supp(A). Then, and only then A ⊆ EÃ and for any B̃ which is a proper subset of 
Ã, A � EB̃ , i.e., A ∈ Cl(E, Ã). The fact that Cl(E, Ã) ∩ Cl(E, ̃B) = ∅ for Ã �= B̃ is trivial. Hence {Cl(E, Ã)|Ã ∈ 2U }
is a partition of {A ∈ FS(U) | A ⊆ E}. �

Now we can show how to recover overlap indexes from capacities.

Theorem 3. Let m be a capacity such that m(Ã) = 0 if and only if Ã = ∅. If E is a full fuzzy set, then the function 
OE,m : FS(U) × FS(U) → [0, 1] defined by:

OE,m(A,B) =
{

m(Ã) if A ∩ B ∈ Cl(E, Ã);
1 otherwise

is a normal overlap index such that the capacity induced by OE,m is equal to m.

Proof. First of all, due to Proposition 7, OE,m is well defined. Let us prove that OE,m is an overlap index.

(O1) Assume that OE,m(A, B) = 0. Since m(Ã) �= 0 for every Ã �= ∅, this happens if and only if A ∩ B ∈ Cl(E, ∅), 
i.e., if and only if A and B have disjoint supports.

(O3) Symmetry is obvious from the definition.
(O4) Let A ∈ FS(U) be arbitrary, but fixed and let B ⊆ C. If A ∩C � E, then OE,m(A, C) = 1 ≥ OE,m(A, B). Now 

let us assume that A ∩ C ⊆ E. From Proposition 7 and the fact that A ∩ B ⊆ A ∩ C, it follows that there exist 
Ã, ̃B ∈ 2U with B̃ ⊆ Ã such that A ∩ C ∈ Cl(E, Ã) and A ∩ B ∈ Cl(E, ̃B). Since m is a capacity, we have that 
m(Ã) ≤ m(B̃) and therefore OE,m(A, B) ≤ OE,m(A, C).
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(O2′) Note that U = U ∩ U . So if E �= U it follows that OE,m(U, U) = 1, whereas if E = U , we have that U ∈
Cl(U, U) and OE,m(U, U) = m(U) = 1.

Finally, note that EÃ = EÃ ∩ E ∈ Cl(E, Ã) for every Ã ∈ 2U , which concludes the proof of the theorem since

mOE,m,E(Ã) = 1

OE,m(E,E)
OE,m(E,EÃ) = m(Ã) .

This completes the proof. �
Remark 9. Note that the construction of the previous overlap function relies on considering the quotient space for the 
following equivalence relation:

A is related to B if and only if there exists Ã ∈ 2U such that A, B ∈ Cl(E, Ã) or A, B /∈ Cl(E, Ã) for every Ã ∈ 2U .
In this way, all the sets that are greater than or not comparable to E, which are irrelevant for the construction of the 

capacity, are compressed into a single equivalence class to which the value 1 is assigned.

Remark 10. As previously remarked, the use of the minimum in the construction of the capacity in Theorem 3 can be 
generalized by any other symmetric aggregation function M such that M(x, 0) = 0 for every x ∈ [0, 1]. In particular, 
the definition could be rewritten in terms of overlap functions.

Example 10. Consider the bottom capacity m∗. Let E ∈ FS(U) be a full fuzzy set. An application of Theorem 3 yields 
the following function:

OE,m∗(A,B) =
{

0 if A ∩ B ∈ Cl(E, Ã) with Ã �= U ;
1 otherwise.

In particular, if E = U , then we obtain

O(A,B) =
{

0 if min(A(i),B(i)) = 0 for some i ∈ U ;
1 otherwise,

which is not an overlap index, since condition (O1) is violated. This shows that the condition of strictness for the 
capacity m, that is, m(Ã) > 0 for all Ã �= ∅ is crucial in Theorem 3.

Theorem 3 can be extended to include non-strict measures as follows.

Corollary 3. Consider a capacity m. Let Ã0 = {i ∈ U | m({i}) = 0}. Suppose that E is a fuzzy set such that E(i) �= 0
for i /∈ Ã0. The function O : FS(U) × FS(U) → [0, 1] given by

OE,m,Ã0
(A,B) =

{
m(Ã) if A ∩ B ∈ Cl(E, Ã\Ã0);
1 otherwise

is an overlap index.

Proof. Symmetry and monotonicity are clear. We only need to check that (O1) holds. To see (O1), note that 
O(A, B) = 0 if and only if A ∩ B ∈ Cl(E, Ã\Ã0) for some Ã ∈ 2U such that m(Ã) = 0. But, m(Ã) = 0 if and 
only if Ã ⊆ Ã0, due to the monotonicity of capacities. So, min(A(i), B(i)) = 0 if i ∈ Ã0. �
Example 11. For the bottom capacity m∗, we obtain Ã0 = {i ∈ U | m∗({i}) = 0} = U . Thus, setting E = ∅ yields the 
following overlap function:

OE,m∗,U (A,B) =
{

0 if A ∩ B = ∅;
1 otherwise,

which is the strongest overlap index.
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Remark 11. Note that Corollary 3 yields Theorem 3 if Ã0 = ∅.

Corollary 4. For every capacity m there exists a fuzzy set E and a continuous overlap index OE,m such that the 
measure induced by OE,m is equal to m.

Proof. It is just a matter of using the overlap index defined by means of Theorem 3 and Corollary 3. �
6. Some properties of capacities constructed from overlap indexes

Note that we can characterize which of these capacities are also classical measures.
Recall that mO,E is a (probability) measure on U if and only if there exist constants k1, . . . , kn ∈ [0, 1] such that 

k1 + · · · + kn = 1 and

mO,E(Ã) =
∑
j∈Ã

kj .

This fact leads directly to the following two corollaries:

Corollary 5. The measure mO,E is additive if and only if

mO,E(Ã) =
∑
j∈Ã

O(E(j){j},E) .

Corollary 6. If E is a fuzzy set and O is an E-modular overlap index, then mO,E is additive and hence a classical 
measure.

Regarding symmetry, we can state the following.

Theorem 4. Let E be a fixed fuzzy set and O an overlap index. The capacity mO,E is symmetric if and only if 
O(EÃ, E) = O(EB̃, E) for every Ã, ̃B ∈ 2U such that card(Ã) = card(B̃).

Proof. This theorem follows from the definition of a symmetric measure. �
Corollary 7. The capacity mO,E is symmetric if and only if the overlap index O is E-symmetric.

Regarding possible applications, it is important to take the following expressions into account. Recall that, given a 
capacity m, the interaction index Iij between i, j ∈ U is defined as:

∑
Ã⊆U\{i,j}

(n − card(Ã) − 2)!card(Ã)!
(n − 1)!

(
m(Ã ∪ {i, j} − m(Ã ∪ {i}) − m(Ã ∪ {j}) + m(Ã)

)
.

We obtain the following straightforward result.

Proposition 8. Let E be a fuzzy set and O an overlap index. Then, the interaction index for the measure mO,E is 
given by:

Iij = 1

O(E,E)

∑
Ã⊆U\{i,j}

(n − card(Ã) − 2)!card(Ã)!
(n − 1)! F, where

F = (
O((Ã ∪ {i, j})E,E) − O((Ã ∪ {i})E,E) − O((Ã ∪ {j})E,E) + O(EÃ,E)

)
.
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7. Construction of capacities from overlap indexes based on overlap functions

Using Theorem 1, we can also derive measures from aggregation and overlap functions as follows.

Proposition 9. Let M : [0, 1]n → [0, 1] be an aggregation function such that M(x1, . . . , xn) = 0 if and only if x1 =
· · · = xn = 0, let GO : [0, 1]2 → [0, 1] be an overlap function and let E ∈ FS(U) be a non-empty fuzzy set. The 
mapping mE,M,GO

: 2U → [0, 1] given by

mE,M,GO
(Ã) = 1

M(GO(E))
M(GO(E(1),EÃ(1)), . . . ,GO(E(n),EÃ(n))),

where M(GO(E)) = M(GO(E(1), E(1)), . . . , GO(E(n), E(n)) is a capacity.

Note that if we take E = U , then we have mU,M,GO
(Ã) = M(1Ã).

Some properties of these types of capacities are the following.

Proposition 10. Let M be an aggregation function as in Proposition 9. For any non-empty fuzzy set E, we have:

(1) mE,M,GO
(Ã) = 0 if and only if E(i) = 0 for every i ∈ Ã;

(2) mE,M,GO
(Ã) = 1 whenever E(i) �= 0 for every i ∈ Ã.

Proof.

(1) If mE,M,GO
(Ã) = 0, then

1

M(GO(E))
M(GO(E(1),EÃ(1)), . . . ,GO(E(n),EÃ(n))) = 0 .

Since M is an aggregation function, this implies that GO(E(i), EÃ(i)) = 0 for every i = 1, . . . , n. From the 
definition of an overlap function, this happens only if E(i)EÃ(i) = 0 for every i = 1, . . . , n. If EÃ(i) �= 0 it 
follows that E(i) = 0, which is impossible due to the definition of EÃ. Therefore, we infer that EÃ(i) = 0 for 
every i ∈ Ã, that is, if i ∈ Ã then E(i) = 0.
The other direction follows from the fact that E(i) = 0 for every i ∈ Ã implies that EÃ(i) = 0 for every i ∈ U .

(2) If Ã is as in the statement of this property, then we obtain EÃ = E, and the result follows from the monotonicity 
of aggregation and overlap functions. �

The following corollary is a straightforward consequence of the previous result.

Corollary 8. Let M be an aggregation function as in Proposition 9. For any non-empty fuzzy set E, we have:

(1) mE,M,GO
satisfies the property

mE,M,GO
(Ã) = 0 if and only if Ã = ∅

if and only if E is a full fuzzy set.
(2) mE,M,GO

(supp(E)) = 1.

Theorem 5. For a fixed overlap function GO and an n-ary aggregation function M as in Proposition 9, the following 
claims are equivalent:

(1) For each non-empty fuzzy subset E ∈ FS(U), the measure mE,M,GO
is additive.

(2) M is modular, i.e., M(max(x, y)) + M(min(x, y)) = M(x) + M(y) for all x, y ∈ [0, 1]n.

Proof. Observe first that any modular aggregation function M such that M(x1, .., xn) = 0 only if x1 = · · · = xn = 0
has the form M(x1, . . . , xn) = ∑n

i=1 fi(xi), where each fi : [0, 1] → [0, 1] is increasing, fi(x) = 0 only if x = 0, and ∑
fi(1) = 1, see, e.g., [42].
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To see the necessity, observe that the additivity of mE,M,GO
implies that

M(GO(E(1),EÃ(1)), . . . ,GO(E(n),EÃ(n))) =
M(GO((E(1),EÃ(1)),0, . . . ,0)) + M(0, . . . ,0,GO(E(n),EÃ(n))).

In view of the mean value theorem for overlap functions, this equality is equivalent to

M(x1, . . . , xn) = M(x1,0, . . . ,0) + M(0, x2,0, . . . ,0) + · · · + M(0, . . . ,0, xn)

for every x1, . . . , xn ∈ [0, 1]. Defining fi(x) = M(0, 0, . . . , 0, x, 0, . . . , 0), where the x is in the i-th position, the 
result follows. To see the converse, observe that M(x1, . . . , xn) = ∑n

i=1 fi(xi) is an aggregation function such that 
M(x1, . . . , xn) = 0 if and only if x1 = · · · = xn = 0. �

Observe that if M satisfies the requirements of the previous theorem, then mE,M,GO
is additive for all GO and all 

E �= ∅.

8. An approach towards classification using capacities based on overlap indexes

In this section, we provide an example of an application of capacities based on overlap indexes in classification. 
To this end, we first provide an appropriate background about Fuzzy Rule-Based Classification Systems (FRBCSs) 
[32,46], which is the technique used to tackle classification problems. Then we describe in detail the proposed Fuzzy 
Reasoning Method (FRM) using capacities (Section 8.2) and finally, we introduce the evolutionary approach used to 
learn the capacities (Section 8.3).

8.1. Fuzzy rule-based classification systems

A classification problem consists in learning a mapping function called classifier from a set of training examples, 
named training set, that allows one to classify previously unknown examples. Let xp = (xp1, . . . , xpn) be the p-th 
example of the training set which is composed of P examples, where xpi is the value of the i-th attribute (i =
1, 2, . . . , n) of the p-th training example. Each example belongs to a class yp ∈ C = {C1, C2, . . . , Cm}, where M is 
the number of classes of the problem.

FRBCSs [32] are widely used to solve classification problems since they allow the inclusion of all available in-
formation in system modelling, that is, the information coming from expert knowledge and the one coming from 
empirical measures or mathematical models. Furthermore, FRBCSs provide a good balance between accuracy and in-
terpretability through the use of linguistic labels [47]. Specifically, the fuzzy rules used in this paper have the following 
form:

Rule Rj : If x1 is Aj1 and . . . and xn is Ajn then Class = Cj with RWj (3)

where Rj is the label of the j th rule, x = (x1, . . . , xn) is an n-dimensional example vector, Aji is an antecedent fuzzy 
set representing a linguistic term, Cj is a class label, and RWj ∈ [0, 1] is the rule weight [31].

In this paper, we generated the initial knowledge base by means of the fuzzy rule learning method of Chi et al. [12]. 
This method is one of the most commonly used learning algorithms in the specialized literature due to the simplicity 
of the fuzzy rule generation method.

8.2. Fuzzy reasoning method based on capacities

The FRM [15] is the mechanism that using the information stored in the knowledge base assigns a class label to 
the new examples to be classified. In this paper, we propose a modification of the classical FRM using capacities. 
Specifically, we consider to perform the aggregation of the local information given by the fuzzy rules having the same 
class label in their consequent part using the Choquet integral [13]. To do so, we create a capacity for each class of 
the classification problem using the rule weights of those rules belonging to the same class for the sake of modelling 
their interaction.

Let xq = (xq1, . . . , xqn) be a new pattern to be classified, let L be the number of rules in the rule base, and let M be 
the number of classes of the problem. The steps of the proposed FRM, in which we have modified the first and third 
step of the classical FRM [15], used to classify the pattern xq are:
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Table 1
Names and equations of the overlap indexes used to construct the capacities.

Name Equation

O1 O1(A,B) = maxn
i=1 min (A(i),B(i))

O2 O2(A,B) = 1
n

∑n
i=1 min (A(i),B(i))

O3 O3(A,B) = 1
n

∑n
i=1 (A(i)B(i))p , with p = 1

O4 O4(A,B) = 1
n

∑n
i=1

√
(A(i)B(i))

O5 O5(A,B) = 1
n

∑n
i=1 min

(
A(i)pB(i),A(i)B(i)p

)
, with p = 0.5

O6 O6(A,B) = 1
n

∑n
i=1

√
(A(i)B(i))√

(A(i)B(i))+1−(A(i)B(i))

O7 O7(A,B) = maxn
i=1 (A(i)B(i))p , with p = 1

O8 O8(A,B) =
√

1
n

∑n
i=1 (A(i)B(i))2

(1) Matching degree, that is, the strength of activation of the if-part for all rules in the rule base with the example xq:
for each variable we compute the overlap index among each value of the example modelled using a singleton and 
the triangular membership functions used to model each linguistic term Ajn. Then, we apply a t-norm over these 
values.

Aj(xq) = T (O(Ant1(xq1),Aj1), . . . ,O(Antn(xqn,Ajn))), j = 1, . . . ,L (4)

where Anti = 1xpi
(1) with i = 1, . . . , n.

(2) Association degree, i.e., the association degree of the example xq with the class of each rule in the rule base:

bk
j (xq) = Aj(xq) × RWk

j k = Class(Rj ), j = 1, . . . ,L (5)

(3) Example classification soundness degree for all classes: we aggregate the positive association degrees calculated 
in the previous step using the Choquet integral whose capacity is obtained in terms of the rule weights as explained 
below.

Yk = Cm
O,Ek

(bk
j (xq) | j = 1, . . . ,L and bk

j (xq) > 0), k = 1, . . . ,M (6)

where mO,Ek is the capacity considered for the k-th class of the problem computed as:

mO,Ek (Ã) = 1

O(Ek,Ek)
O(Ek, ÃEk ) (7)

where

Ek = {(Rj ,RWk
j )|Rj such that Class(Rj ) = k and bk

j (xq) > 0}
(4) Classification: we apply a decision function F over the example classification soundness degree for all classes. 

This function determines the class corresponding to the maximum value.

F(Y1, . . . , YM) = arg max(Yk)
k=1,...,M

(8)

As we can observe, Equation (7) is applied to obtain the capacities associated with the different classes. Specifically, 
we propose to apply eight overlap indexes (introduced in Table 1) to compute them, that is, we obtain 8 different ways 
of constructing the capacities. Furthermore, we also consider the usage of the well-known power capacity shown in 
Equation (9), where we would like to point out that if we use p = 1, then we will obtain the classical cardinality 
capacity.

m(A) =
( |A|

n

)p

(9)
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8.3. Evolutionary approach to learning capacities

From the overlap indexes shown in Table 1 we can observe that three of them as well as the power capacity shown 
in Equation (9) are parametrized. If we use the same value for the parameter p we create the same capacity for all the 
classes of the problem. However, the interaction among the rules of the different classes can be different. Therefore, in 
order to model this situation we can consider a different value for the parameter p related to each class of the problem. 
Consequently, we have an optimization problem in which we have to search for the best set of values that lead to the 
best possible performance of the system.

To accomplish the optimization process, we propose to use an evolutionary algorithm. Specifically, we apply the 
CHC evolutionary algorithm [21] due to both its good properties and the good results shown in the specialized litera-
ture [23,24,45]. The specific features of the evolutionary algorithm are the following ones:

• Coding Scheme. We use real coded chromosomes composed of M genes whose structure is as follows:

Cr = {g1, . . . , gM},
where gi ∈ (0, 2) with i = {1, . . . , M} represents the value of the parameter p associated with the i-th class of the 
problem. In order to achieve a wider range for each value of the parameter pi , we translate the value of each gene 
gi from (0, 2) to (0, 100). To do so, we apply the following equation

pi =
{

gi, if gi ≤ 1,
1

2−gi
, if gi > 1

• Initial Gene Pool. To consider the initial situation, we include a chromosome having all genes with value one. 
The remaining chromosomes will be randomly initialized in the range (0, 2).

• Chromosome Evaluation. We use the most common metric for classification, i.e. the accuracy rate.
• Crossover Operator. We apply the Parent Centrix BLX operator [36] (which is based on the BLX-α).
• Restarting Approach. To try to avoid local optima, we consider a restarting approach. In each restart of the 

population we include the best global solution found so far, as in the elitist scheme, and we randomly create the 
remaining individuals.

9. Showing the behaviour of the fuzzy reasoning method based on capacities in classification

This section is aimed at showing the results achieved by our proposals as well as the corresponding analysis. In 
Section 9.1, we introduce the framework considered for the study. Section 9.2 provides some experimental results as 
well as a statistical analysis of these results.

9.1. Experimental framework

We have selected forty data-sets selected from the KEEL repository [1]. Table 2 summarizes the following charac-
teristics of each data-set: number of examples (#Ex.), number of attributes (#Atts.) and number of classes (#Class.). 
We would like to point out that the Magic, Page-blocks, Penbased, Shuttle and Twonorm data-sets are stratified-
sampled to 10% to improve the learning process efficiency. We removed the missing values of Breast, Cleveland, Crx, 
Housevotes, Mammographic and Wisconsin before partitioning them.

We have applied a 5-fold cross-validation model to test the performance of the approaches. To do so, we first split 
the data-set into 5 random partitions of data, each one with 20% of the examples maintaining the original distribution 
of the classes. Then, we join 4 of them to train (optimize) the system (80% of the examples) and the remaining one is 
used to test the learned (optimized) classifier. We repeat the process 5 times by changing the testing partition in each 
run. Therefore, after the 5 runs all the examples are treated as testing (unseen) examples and the reported final result is 
the average among the 5 testing results. As performance measure we have used the accuracy rate, which is computed 
dividing the number of correctly classified examples by the total number of examples.

In order to give statistical support to the analysis of the results, we use some hypothesis validation techniques [26,
27,48]. We use non-parametric tests because the initial conditions that guarantee the reliability of the parametric tests 
cannot be fulfilled, which implies that the statistical analysis loses credibility with these parametric tests [18].
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Table 2
Summary description for the considered data-sets.

Id. Data-set #Ex. #Atts. #Class.

app Appendicitis 106 7 2
aus Australian 690 14 2
bal Balance 625 4 3
ban Banana 5300 2 2
bre Breast 277 9 2
bup Bupa 345 6 2
car Car 1728 6 4
cle Cleveland 297 13 5
crx Crx 653 15 2
eco Ecoli 336 7 8
fla Flare 1066 11 6
ger German 1000 20 2
gla Glass 214 9 7
hab Haberman 306 3 2
hay Hayes–Roth 160 4 3
hea Heart 270 13 2
hou Housevotes 232 16 2
ion Ionosphere 351 33 10
iri Iris 150 4 3
led Led7digit 500 7 10

Id. Data-set #Ex. #Atts. #Class.

mag Magic 1902 10 2
mam Mammographic 830 5 2
mon Monk-2 432 6 2
new New-Thyroid 215 5 3
pag Page-blocks 548 10 5
pen Penbased 1992 16 10
pho Phoneme 5404 5 2
pim Pima 768 8 2
rin Ring 7400 20 2
sat Satimage 6435 36 7
seg Segment 2310 19 7
shu Shuttle 5800 9 7
tae Tae 151 5 3
tic Tictactoe 958 9 2
tit Titanic 2201 3 2
two Twonorm 740 20 2
veh Vehicle 846 18 4
win Wine 178 13 3
wis Wisconsin 683 9 2
zoo Zoo 101 16 7

Specifically, we use the aligned Friedman ranks test [37] to detect statistical differences among a group of results 
and we graphically show the obtained ranks of each method in order to compare this method with the other methods. 
We also consider the usage of the Holm post-hoc test [38] to find the algorithms that reject the equality hypothesis 
with respect to the best method according to the aligned Friedman ranks test. Furthermore, we compute the adjusted 
p-value (APV) in order to take into account the fact that multiple tests are conducted. In this manner, we can directly 
compare the APV with respect to the level of significance α in order to be able to reject the null hypothesis. Finally, 
we use the Wilcoxon signed-ranks test [51] to perform pairwise comparisons.

The configuration for the algorithm of Chi et al. is as follows: we use 3 linguistic labels per variable, which are 
modelled using triangular shaped membership functions (using Ruspini’s fuzzy partitions). Discrete attributes are 
modelled using singleton fuzzy sets (one for each value of the attribute). We have to point out that this criterion 
implies that the study is conducted only for fuzzy partitions using a grid structure. We compute the rule weights 
using the penalized certainty factor [33]. Regarding the evolutionary process, we use populations composed of 50 
individuals, 20,000 evaluations and 30 bits per gene for the Gray codification.

Finally, we have selected 6 classifiers1 for the sake of comparing our results. We have used two FRBCSs that 
include a genetic algorithm in their learning (SLAVE [28] and SGERD [41]), two decision trees (C4.5 [44] and 
CART [5]) and RIPPER [14] besides its fuzzy extension, that is, FURIA [30] as a representative of a state-of-the-art 
fuzzy classifier. Recall that FURIA is not restricted to a fixed grid structure. In our opinion, this feature implies that it 
is more flexible and, consequently, it is less interpretable than our FRM approach based on capacities. The set-up of 
all these methods is included in Table 3.

9.2. Experimental results and analysis

Table 4 contains the results in testing that were produced using:

• Classical aggregation functions such as maximum (Max.) and mean, instead of the Choquet integral in the third 
step of the FRM.

• The proposed FRM when using the capacities generated with the eight different overlap indexes (O1–O8) con-
sidered in this work.

1 We have executed the KEEL software over the datasets used in this paper.
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Table 3
Set-up of the parameters of the classifiers used in the comparison.

Algorithm Parameters

SLAVE Number of linguistic labels per variable: 5
Number of individuals: 100, Mutation probability: 0.01
Number of allowed iterations without change: 500

SGERD Enhanced compatibility degree
Heuristic computation of the number of Q rules

C4.5 Pruning: true, Confidence level: 0.25
Minimum number of examples per leaf: 2

CART Maximum depth: 90

RIPPER k: 2, Growing set: 2
3 of the examples

FURIA Number of optimizations: 2, Number of linguistic labels per variable: 3

• The classical capacity using the cardinality of the set (Card.).
• The proposed FRMs in which we learn a different capacity for each class using an evolutionary method. GA_Card 

is the proposal in which we have learnt the parameter p of the power capacity whereas GA_Ov is the approach 
where we have optimized the parameter p of the O7 overlap index.2

The last column (#FiredRules) shows the average number of fired rules in each data-set, that is, we compute the 
average number of fired rules per class within the five folders and then we average those classes which have fired 
some rule. The data-sets in this table are sorted according to the average number of fired rules so as to analyse the 
importance of the new proposal depending on the number of elements to be aggregated. The four last rows are the 
mean (Mean) ans averaged standard deviations (Mean Std.) for all the datasets considered in the study and the average 
result for those dataset having an averaged number of fired rules larger than 3. For each data-set the best results is 
highlighted in bold-face.

From the results presented in Table 4 it can be observed three main facts:

• All the proposals based on capacities that do not use an evolutionary method to learn a different capacity for each 
class exhibit a similar behaviour.

• The proposals based on capacities as well as the FRMs using the classical aggregation operators (Max and Mean) 
achieve similar results.

• When the number of elements to be aggregated (#FiredRules) is less than 3, the result obtained by all the ap-
proaches are quite similar. Moreover, the construction method of capacities becomes more appropriate when the 
number of elements to be aggregated is larger, since the number of elements to construct the capacity is also 
larger.

Due to the latter fact, we focus on the analysis of the results of those datasets in which the averaged number of rules 
is greater than 3. First, we investigate whether there are statistical differences among the eleven approaches that do 
not use an optimization process. To do so, we have applied the aligned Friedman ranks test, whose obtained p-value is 
0.034 and its ranks are shown in Fig. 1. Note that there are five methods (O1, O4, O7, O8 and Max.) yielding ranks of 
approximately one hundred or less, whereas the remaining six approaches lead to worse rankings. Finally, we applied 
Holm’s post-hoc test [38] to verify if the best ranking method, which is the classical FRM of the winning rule (Max.), 
statistically outperforms the other ones. The obtained statistical results are presented in Table 5 which is in agreement 
with the graphical representation of the rankings.

Regarding these 11 approaches, the observations above indicate that the best way to aggregate the information is 
using the Choquet integral whose capacities are computed in terms of the overlap indexes O1, O4, O7 and O8 as well 
as the maximum as an aggregation function.

2 O7 was selected because among the three parametrized overlap indexes is the one providing the best mean result according to Table 4.
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Table 4
Results achieved in testing by the different approaches.

Dataset Max Mean O1 O2 O3 O4 O5 O6 O7 O8 Card GA_Ov GA_Card #FiredRules

bre 71.43 71.43 71.43 71.43 71.43 71.43 71.43 71.43 71.43 71.43 71.43 71.43 71.43 1.00
car 70.06 70.06 70.06 70.06 70.06 70.06 70.06 70.06 70.06 70.06 70.06 70.06 70.06 1.00
fla 63.08 63.08 63.08 63.08 63.08 63.08 63.08 63.08 63.08 63.08 63.08 63.08 63.08 1.00
hou 64.26 64.26 64.26 64.26 64.26 64.26 64.26 64.26 64.26 64.26 64.26 64.26 64.26 1.00
led 64.20 64.20 64.20 64.20 64.20 64.20 64.20 64.20 64.20 64.20 64.20 64.20 64.20 1.00
tic 65.42 65.42 65.42 65.42 65.42 65.42 65.42 65.42 65.42 65.42 65.42 65.42 65.42 1.00
zoo 72.38 72.38 72.38 72.38 72.38 72.38 72.38 72.38 72.38 72.38 72.38 72.38 72.38 1.00
ger 70.40 70.40 70.40 70.40 70.40 70.40 70.40 70.40 70.40 70.40 70.40 70.40 70.40 1.05
hay 65.93 67.41 65.93 65.93 65.93 65.93 65.93 65.19 65.93 65.93 67.41 68.15 65.93 1.26
mon 75.40 75.40 75.40 75.40 75.40 75.40 75.40 75.40 75.40 75.40 75.40 75.40 75.40 1.29
crx 69.31 69.16 69.16 69.16 69.16 69.16 69.16 69.16 69.16 69.16 69.16 69.01 69.16 1.42
tit 78.32 78.32 78.32 78.32 78.32 78.32 78.32 78.32 78.32 78.32 78.32 78.32 78.57 1.46
gla 57.67 58.60 58.14 58.60 57.67 58.14 58.14 54.42 58.14 58.14 58.60 59.53 58.14 1.74
cle 55.00 53.67 54.33 53.67 54.00 54.33 54.00 54.00 54.33 54.33 53.67 54.00 54.33 1.78
tae 55.48 56.13 56.13 56.13 56.13 56.13 56.13 55.48 56.13 56.13 56.13 57.42 58.06 1.84
ban 60.32 60.47 60.30 61.04 61.36 60.83 61.25 63.23 60.83 60.42 60.47 69.60 62.62 1.94
bal 90.56 86.72 90.56 88.32 89.12 90.56 88.80 88.32 90.56 89.60 86.72 90.40 90.56 2.52
pag 91.45 91.82 91.45 91.82 92.00 91.45 91.82 92.00 91.45 91.82 91.82 92.00 91.59 2.76
shu 80.23 80.23 80.23 80.23 80.23 80.23 80.23 80.23 80.23 80.23 80.23 83.59 80.40 2.76
hab 72.26 72.26 72.26 72.58 72.58 71.94 72.58 72.26 71.94 71.94 72.26 72.26 71.94 3.03
hea 71.48 71.48 71.11 71.11 71.48 71.11 71.48 71.11 71.11 71.48 71.48 71.48 71.11 3.07
iri 92.67 87.33 93.33 90.00 91.33 93.33 91.33 92.00 93.33 92.67 87.33 93.33 93.33 3.32
new 85.12 86.05 86.05 86.05 86.05 86.05 86.05 87.44 86.05 85.58 86.05 91.16 88.37 3.44
eco 71.76 69.71 71.18 70.00 70.29 71.47 70.88 70.00 71.47 70.59 69.71 77.94 72.06 3.62
aus 83.33 82.17 82.75 81.88 81.74 82.75 81.59 81.74 82.75 82.46 82.17 82.46 82.61 4.10
mam 80.99 80.41 80.41 79.94 79.82 79.58 79.94 80.40 79.58 80.64 80.41 80.64 80.88 5.32
wis 95.62 96.06 95.77 96.06 95.91 95.62 95.91 95.91 95.62 95.91 96.06 95.04 94.89 5.42
app 87.27 85.45 87.27 84.55 85.45 87.27 85.45 83.64 87.27 87.27 85.45 86.36 87.27 6.54
ion 92.11 91.55 92.11 91.55 91.55 92.11 91.55 91.27 92.11 91.83 91.55 92.11 92.11 7.26
sat 47.29 50.39 47.29 50.39 50.39 46.98 50.39 50.23 46.98 48.37 50.39 79.22 56.20 7.42
rin 52.70 51.08 51.76 51.08 51.08 51.49 51.08 51.08 51.49 51.49 51.08 89.46 56.25 7.81
pho 71.91 71.23 71.60 70.92 71.17 71.64 71.12 72.45 71.64 71.30 71.23 78.04 71.58 8.67
seg 85.02 83.51 85.28 83.68 83.64 84.98 83.81 84.29 84.98 84.46 83.51 84.72 85.06 8.84
pen 94.36 93.09 94.18 93.09 93.00 94.36 92.91 93.00 94.36 94.00 93.09 94.09 94.20 10.64
bup 57.97 59.42 58.84 59.71 59.42 59.13 60.00 57.68 59.13 58.26 59.42 61.16 62.61 11.37
win 92.78 91.11 92.78 91.67 91.67 92.78 91.67 91.11 92.78 91.67 91.11 92.78 94.44 11.68
veh 61.41 60.94 60.71 60.59 60.35 61.06 60.24 58.82 61.06 60.94 60.94 61.29 61.76 12.01
pim 72.99 73.77 72.99 74.29 74.16 73.25 74.29 73.90 73.25 73.51 73.77 74.68 75.00 16.70
mag 74.75 72.65 74.38 72.49 72.55 74.17 72.60 73.23 74.17 73.07 72.65 77.90 77.11 21.39
two 83.78 70.41 84.86 70.41 71.08 84.05 70.54 69.59 84.05 78.24 70.41 91.62 87.50 26.68

Mean 73.71 72.98 73.70 73.05 73.13 73.67 73.14 72.95 73.67 73.41 72.98 76.66 74.56
Mean Std. 2.49 2.73 2.68 2.84 2.89 2.74 2.90 2.87 2.74 2.72 2.73 2.95 3.07

Mean 
(FR > 3)

77.50 76.19 77.47 76.29 76.41 77.39 76.45 76.25 77.39 76.94 76.19 82.27 78.87

Mean Std. 
(FR > 3)

2.72 2.96 3.00 3.21 3.25 3.03 3.27 3.27 3.03 3.05 2.96 3.41 3.75

However, according to the results shown in Table 4, when learning a different capacity for each class of the problem 
a notable enhancement of the obtained results is found, which is especially remarkable when applying the GA_Ov ap-
proach. It is remarkable that both approaches using genetic algorithms (especially GA_Ov) outperform the remaining 
ones when dealing with data-sets having a number of elements to be aggregated greater than 3 (number of fired rules).

In order to check if one of these optimization proposals leads to improvements in the results given by the classical 
aggregation functions (Max. and Mean), we apply the same statistical study that has been previously explained. The 
p-value computed with the aligned Friedman ranks test is 7.20E-4, which means that there are statistical differences 
among these four approaches. The results of the Holm’s post-hoc process are shown in Table 6. The GA_Ov, which 
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Fig. 1. Rankings of the approaches that do not learn capacities.

Table 5
Holm test to compare the approaches that do not learn a capacity. 
Max is used as a reference.

i Algorithm APV

1 O2 0.014
4 Mean 0.022
5 Card. 0.022
2 O3 0.026
3 O6 0.028
6 O5 0.039
7 O8 0.666
8 O4 1.00
9 O7 1.00

10 O1 1.00

Table 6
Holm test to compare the approaches that learn capacities and classi-
cal ones. GA_Ov is used as a reference.

i Algorithm APV

1 Mean 8.38E-7
2 Max. 0.007
3 GA_Card 0.139

achieved the best ranking according to Fig. 2, statistically outperforms the approaches using classical aggregation 
operators with a high level of confidence. Regarding GA_Card, there are not statistical differences in favour to GA_Ov. 
However, a closer look at the results provided by these two methods, we can observe that GA_Ov provides the best 
results in 18 out of the 21 datasets, there is 1 draw and GA_Card achieves the best result in the remainder 2 datasets. 
In light of all these facts, we can confirm that the best FRM among the ones considered in this paper is the one based 
on capacities constructed from overlap indexes using an evolutionary method to learn a different capacity for each 
class of the problem, that is, GA_Ov.

Finally, we want to compare the best approach among the ones based on capacities constructed from overlap 
indexes (GA_Ov) versus several classifiers that are published in the specialized literature, namely, SGERD, SLAVE,3

C4.5, CART, RIPPER and FURIA. The results of these 6 classifiers and the ones provided by GA_Ov are reported 

3 Let us remark that the SLAVE algorithm does not learn any rule when all the attributes of the datasets are nominal and the number of classes is 
greater than 2. However, this fact does not affect our analysis since the average number of fired rules in all these datasets is one.
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Fig. 2. Rankings of the approaches that learn capacities and the classical ones.

in Table 7, which is also sorted according to the number of fired rules (elements to be aggregated using the GA_Ov 
approach). The best result for each dataset is highlighted in bold-face.

The results shown in Table 7 reveal that when considering all the datasets in the study the results of GA_Ov are 
worse than those of four classifiers. However, GA_Ov works well providing the third best mean result (just worse than 
FURIA and the C4.5 decision tree) with respect to the datasets whose averaged number of fired rules is larger than 3 
(where our proposal becomes more important). Furthermore, we can observe that the difference in average is reduced 
from 7.16%, using all datasets, to 2.88%, in the latter scenario, with FURIA and from 5.62% to 1.05% versus C4.5. 
This reduction shows the benefits of our new FRM in this setting.

Following the previously explained scheme, we carry out a statistical test to check whether there are statistical 
differences among these seven approaches. The p-value computed with the aligned Friedman test is 0.001 and the 
obtained ranks are graphically depicted in Fig. 3, where it is shown that the best ranking method is FURIA. Finally, 
the results of Holm’s post-hoc test are reported in Table 8, where it can be observed that FURIA outperforms all the 
classifiers as it was expected according to the results shown in Table 7

Finally, we analyse the performance of GA_Ov by carrying out a set of pairwise comparisons of our approach 
with the other four classifiers from the literature using the Wilcoxon test, whose results are shown in Table 9. These 
results indicate that GA_Ov yields competitive results with respect all the classifiers in this study (since there are not 
statistical differences) except FURIA and even it outperforms SGERD as FURIA does. The greater flexibility of the 
fuzzy partition used by FURIA implies obtaining a leap in the obtained performance and thus the improvement of all 
the methods including GA_Ov. Anyway, we would like to emphasize the large improvement provided by our novel 
FRM when the number of elements to be aggregated is large enough, which makes it an alternative for combining 
fuzzy rules in FRBCSs.

10. Conclusions

In this paper, we presented a method for constructing capacities from the data of a given problem. This method has 
the following steps:

1. Build fuzzy sets from the inputs;
2. Build as many subsets of the considered fuzzy set as the cardinal of the parts of the considered referential set;
3. Compute the overlaps of the fuzzy set and each of its subsets.
4. Build the capacity as a quotient of overlap indexes.

The advantage of this method is that it makes use of the data of the considered problem for constructing the mea-
sures. In this way, aggregation by means of the Choquet integral based on these measures is much more conditioned 
by the data than in the case where interactions between data are not taken into account.
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Table 7
Results achieved in testing by the different approaches.

Dataset GA_Ov SGERD SLAVE RIPPER C4.5 CART FURIA #FiredRules

bre 71.43 70.79 70.76 63.56 74.37 70.76 76.54 1.00
car 70.06 67.19 70.02 89.01 90.80 80.85 91.26 1.00
fla 63.08 66.89 0.00 68.38 74.48 75.23 73.73 1.00
hou 64.26 87.95 53.45 96.98 96.56 93.52 96.56 1.00
led 64.20 38.00 0.00 47.80 70.60 40.20 71.80 1.00
tic 65.42 68.89 65.34 97.49 85.80 72.65 98.22 1.00
zoo 72.38 83.19 0.00 89.14 94.10 86.14 95.05 1.00
ger 70.40 67.50 70.30 67.80 71.80 70.10 73.30 1.05
hay 68.15 49.26 80.28 81.74 83.30 76.50 81.00 1.26
mon 75.40 80.55 97.45 100.00 100.00 100.00 100.00 1.29
crx 69.01 86.22 68.45 82.54 85.30 84.38 86.37 1.42
tit 78.32 77.60 78.87 70.47 77.78 77.10 78.51 1.46
gla 59.53 61.23 57.04 64.01 68.73 68.70 72.91 1.74
cle 54.00 48.13 57.23 42.44 51.82 49.17 56.57 1.78
tae 57.42 49.68 53.61 45.01 54.99 47.76 45.61 1.84
ban 69.60 66.89 68.85 61.17 89.00 75.66 88.57 1.94
bal 90.40 72.96 77.76 48.96 77.28 62.24 83.68 2.52
pag 92.00 90.33 93.61 94.70 95.07 94.34 95.25 2.76
shu 83.59 78.48 85.70 99.49 99.54 99.72 99.68 2.76
hab 72.26 73.86 72.88 52.61 72.22 69.61 72.55 3.03
hea 71.48 75.19 76.67 76.67 79.26 72.59 80.37 3.07
iri 93.33 93.33 96.00 94.00 93.33 95.33 94.00 3.32
new 91.16 88.84 89.30 93.02 91.16 94.42 94.88 3.44
eco 77.94 73.82 84.52 70.56 78.28 73.82 80.06 3.62
aus 82.46 85.51 70.29 82.03 84.20 84.06 86.09 4.10
mam 80.64 78.68 78.90 76.82 83.61 83.24 83.57 5.32
wis 95.04 93.85 95.75 95.61 95.03 93.27 96.63 5.42
app 86.36 87.75 85.93 80.04 84.98 82.08 87.71 6.54
ion 92.11 74.65 87.75 88.89 88.03 85.77 89.75 7.26
sat 79.22 63.47 66.72 78.54 80.09 79.62 82.27 7.42
rin 89.46 73.51 86.22 82.43 82.70 83.38 85.54 7.81
pho 78.04 74.67 76.17 82.22 85.57 80.03 85.90 8.67
seg 84.72 78.01 87.66 94.20 96.32 95.93 97.32 8.84
pen 94.09 66.55 89.91 85.27 89.36 62.00 92.45 10.64
bup 61.16 56.81 60.00 63.48 66.09 68.99 70.14 11.37
win 92.78 92.14 93.79 89.86 94.90 92.11 93.78 11.68
veh 61.29 52.60 64.66 69.39 71.87 65.36 70.21 12.01
pim 74.68 73.30 73.04 69.92 74.09 71.87 76.17 16.70
mag 77.90 71.50 78.55 77.60 79.81 74.76 80.65 21.39
two 91.62 71.76 82.16 84.19 78.78 80.41 88.11 26.68

Mean 76.66 72.79 71.14 77.45 82.28 77.84 83.82
Mean (FR > 3) 82.27 76.18 80.80 80.35 83.32 80.41 85.15

Finally, we performed experiments in classification by using our measures in FRBCSs. The experimental results 
produced by our approach were better than those obtained with classical aggregation functions such as the maximum 
(FRM of the wining rule) or the mean. Our proposal is suitable for situations where the number of elements to be 
aggregated is larger than 3, since the construction method of the capacities makes sense in this scenario. Among all 
the FRMs using capacities, the best one is the FRM based on capacities whose fuzzy measure has been genetically 
learnt to model the interaction among the rules belonging to the different classes.

In future research, we intend to analyse aggregations that make use of our measures, such as Sugeno, Shilkret, 
Choquet or copula-based integrals, and compare the results obtained using other aggregations in different problems, 
such as, for instance, digital fingerprint recognition, decision making, etc. Moreover, we intend to generalize the 
proposed algorithm to fuzzy rule-based classification systems using different aggregation functions in each of their 
steps as well as with different structures for the fuzzy partitions.
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Fig. 3. Rankings of GA_Ov and the classifiers published in the specialized literature.

Table 8
Holm test to compare GA_Ov and the six classifiers selected in this 
paper. FURIA is used as the control method.

i Algorithm APV

1 SGERD 1.06E-8
2 CART 3.85E-4
3 RIPPER 3.89E-4
4 SLAVE 6.15E-4
5 GA_Ov 0.005
6 C4.5 0.071

Table 9
Wilcoxon test to compare GA_Ov (R+) with the classifiers selected in this study (R−).

Comparative R+ R− p-value Hypothesis

GA_Ov vs. SGERD 199.5 31.5 0.004 Rej. GA_Ov 95%
GA_Ov vs. SLAVE 145.0 86.0 0.305 Accepted
GA_Ov vs. C4.5 86.5 144.5 0.295 Accepted
GA_Ov vs. CART 169.5 91.5 0.404 Accepted
GA_Ov vs. RIPPER 149.0 82.0 0.244 Accepted
GA_Ov vs. FURIA 45.0 186.0 0.014 Rej. FURIA 95%
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