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ABSTRACT. Expectation is the fundamental concept in statistics and probability. As two generaliza-

tions of expectation, Choquet and Choquet-like expectations are commonly used tools in generalized

probability theory. This paper considers the Stolarsky inequality for two classes of Choquet-like inte-

grals. The first class generalizes the Choquet expectation and the second class is an extension of the

Sugeno integral. Moreover, a new Minkowski’s inequality without the comonotonicity condition for two

classes of Choquet-like integrals is introduced. Our results significantly generalize the previous results

in this field. Some examples are given to illustrate the results.

c©2016

Mathematical Institute
Slovak Academy of Sciences

1. Introduction

Choquet expectation [7] plays an important role in analyzing many problems in statistics and

probability, especially when dealing with non-additive data [26]. The classical integral inequalities

are used in numerous applications in information theory, engineering, economics and statistics.

Stolarsky’s inequality is one of the most fundamental inequalities in analysis and its applications.

The history and the development of this inequality are described in [12,21]. Stolarsky’s inequality

is a useful tool in several theoretical and applied fields. For instance, it plays a major role for the

gamma function [21]. A weighted version of Stolarsky’s inequality was presented in [1, 12]. The

mixing of Choquet expectation and integral inequalities can be applied to find solutions of many

uncertain problems. Recently, Agahi et al. [2] proved the following Stolarsky type inequality for

Choquet expectation.

������� 1.1� ([2: Theorem 4.1]) Let B([0,1]) be the Borel σ-algebra over [0,1] and ([0,1],B([0,1]),µ)

be a monotone probability space such that µ is a lower-semicontinuous monotone probability abso-

lutely continuous with respect to the Lebesgue measure λ, i.e., if λ(E) = 0 for some E ∈ B([0, 1])

then also µ(E) = 0. Then the Stolarsky inequality holds for the corresponding Choquet expectation,

i.e., for any nonincreasing function X : [0, 1] → [0, 1] it holds

Eµ
C

[
X(ω

1
a+b )

]
≥ Eµ

C [X(ω
1
a )]Eµ

C [X(ω
1
b )], (1.1)

where a, b ∈ (0,∞).
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Sugeno integral was firstly introduced by Sugeno [23] and then was exploited by many authors

[16, 17, 25]. The idea of mixing of Sugeno integral and integral inequalities was presented by

Román-Flores et al. [18] and then followed by the authors [3,9,14]. For example, in [9], Stolarsky’s

inequality for a Lebesgue measure-based Sugeno integral and a continuous and strictly monotone

function was obtained which has been extended by Agahi et al. [2].

������� 1.2� ([2: Theorem 3.5]) Let X : [0, 1] → [0, 1] be a nondecreasing function and

([0, 1],B[0, 1], µ) be a monotone probability space. Let β, γ be automorphisms on [0, 1] (i.e.,

β, γ : [0, 1] → [0, 1] are increasing bijections) and α = (β−1 � γ−1)−1. If � : [0, 1]2 → [0, 1] be

any continuous aggregation function which is jointly strictly increasing and bounded from above by

min, then

Suµ[X(α)] ≥ (Suµ[X(β)]) � (Suµ [X (γ)]) .

In 1995, Mesiar [13] introduced two classes of Choquet-like integrals as generalizations of Cho-

quet expectation and Sugeno integral. The first class is called “Choquet-like expectation” which

generalizes the Choquet expectation (see Definition 2.7) and the second class is an extension of

the Sugeno integral (see Definition 2.9). This motivates us to propose the following problem.

����	��� Under what conditions does the Stolarsky inequality hold for two classes of Choquet-

like integrals?

We will give the answer to the above problem in Section 3 which will imply a generalization of

[2, 9]. Our results expand the applicability of Stolarsky type inequality for Choquet expectation

by combining the properties of pseudo-analysis.

Recently, there were obtained some of the classical integral inequalities for integrals with re-

spect to non-additive measures based on the concept of comonotonicity [4,6,15,28]. For example,

Minkowski’s inequality for Sugeno integral has studied in [4]. In [4], the authors showed that

in general, the Minkowski inequality is not valid without the comonotonicity condition (See [4:

Example 3.6]). However, the major question that arises in mind is the following problem.

����	��� How can Minkowski’s inequality be explained without comonotonicity condition for

Sugeno integral?

In this paper, we also give a new Minkowski’s inequality without the comonotonicity condi-

tion for two classes of Choquet-like integrals. In special cases, our results give a new version of

Minkowski’s inequality for Sugeno integral without the comonotonicity condition.

The paper is organized as follows: Section 2 recalls the concepts of Choquet-like integrals while

Sections 3, 4 present our main results. Finally, some concluding remarks are added.

2. Preliminaries

To prove our results, we shall first recall some basic definitions and previous results. For details,

we refer to [13] (see also [19]).


���
����
 2.1� ([24]) An operation ⊕ : [0,∞]2 → [0,∞] is called a pseudo-addition if the follow-

ing properties are satisfied:
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(P1) a⊕ 0 = 0 ⊕ a = a (neutral element);

(P2) (a⊕ b) ⊕ c = a⊕ (b ⊕ c) (associativity);

(P3) a ≤ c and b ≤ d imply that a⊕ b ≤ c⊕ d (monotonicity);

(P4) an → a and bn → b imply that an ⊕ bn → a⊕ b (continuity).


���
����
 2.2� ([13,24]) Let ⊕ be a given pseudo-addition on [0,∞]. Another binary operation

⊗ on [0,∞] is said to be a pseudo-multiplication corresponding to ⊕ if the following properties are

satisfied:

(M1) a⊗ (x⊕ y) = (a⊗ x) ⊕ (a⊗ y) (left distributivity);

(M2) a ≤ b implies (a⊗ x) ≤ (b ⊗ x) and (x ⊗ a) ≤ (x ⊗ b) (monotonicity);

(M3) a⊗ x = 0 ⇔ a = 0 or x = 0 (absorbing element and no zero divizors);

(M4) exists e ∈ (0,∞] (i.e., there exist the neutral element e) such that e⊗ x = x⊗ e = x for any

x ∈ [0,∞] (neutral element);

(M5) an → a ∈ (0,∞) and xn → x imply(an⊗xn) → (a⊗x) and ∞⊗x = lim
a→∞(a⊗x) (continuity);

(M6) a⊗ x = x⊗ a (commutativity);

(M7) (a⊗ b) ⊗ c = a⊗ (b ⊗ c) (associativity).

������� 2.3� ([13]) Let ⊗ be a pseudo-multiplication corresponding to a given pseudo-addition

⊕ fulfilling axioms (M1)–(M7).

(I) If its identity element e is not an idempotent of ⊕, then there is a unique continuous strictly

increasing function g : [0,∞] → [0,∞] with g(0) = 0 and g(∞) = ∞, such that g(e) = 1 and

a⊕ b = g−1(g(a) + g(b)) ⊕ is called a g-addition,

a⊗ b = g−1(g(a) · g(b)) ⊗ is called a g-multiplication.

(II) If the identity element e of the pseudo-multiplication is also an idempotent of ⊕ (i.e., e ⊕ e

= e), then ⊕ = ∨ (= sup, i.e., the logical addition).

For x ∈ [0,∞] and p ∈ (0,∞), we will introduce the pseudo-power x
(p)
⊗ as follows: If p = n is a

natural number, then x
(n)
⊗ = x⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸

n−times

. If p is not a natural number, then the corresponding

power is defined by x
(p)
⊗ =sup

{
y
(m)
⊗ | y(n)⊗ �x, where m,n are natural numbers such that m

n �p
}

.

Evidently, if x⊗ y = g−1(g(x) · g(y)), then x
(p)
⊗ = g−1 (gp (x)).


���
����
 2.4 ([11])� A monotone measure µ on a measurable space (Ω,F) is a set function

µ : F → [0,∞) satisfying

(i) µ (∅) = 0;

(ii) µ(Ω) > 0;

(iii) µ(A) ≤ µ(B) whenever A ⊆ B;

moreover, µ is called finite if ‖µ‖ = µ(Ω) < ∞. The triple (Ω,F , µ) is also called a monotone

measure space if µ is a monotone measure on F .

We call µ a monotone probability, if ‖µ‖ = 1. When µ is a monotone probability, the triple

(Ω,F , µ) is called a monotone probability space.
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���
����
 2.5� Let (Ω,F) be a measurable space. For each number a ∈ (0,∞], M(Ω,F)
a denotes

the set of all monotone measures (in the sense of Definition 2.4) satisfying ‖µ‖ = a.


���
����
 2.6� Let (Ω,F , µ) be a monotone measure space and X : Ω → [0,∞) be an F -measur-

able function. The Choquet expectation of X over A ∈ F w.r.t. the monotone measure µ is defined

as

Eµ
C [XIA] =

∞∫
0

µ(A ∩ {X ≥ t}) dt. (2.1)

where the integral on the right-hand side is the (improper) Riemann integral. In particular, if

A = Ω, then

Eµ
C [Xt] =

∞∫
0

µ({X ≥ t}) dt.

Mesiar [13] has shown that there are two classes of Choquet-like integral: the Choquet-like

integral (denoted by Eµ
Cl,g) based on a g-addition and a g-multiplication and the Choquet-like

integral based on ∨ and a corresponding pseudo-multiplication ⊗.


���
����
 2.7� ([13]) Let (Ω,F) be a measurable space and µ : F → [0,∞] be a monotone

measure. Let ⊕ and ⊗ be generated by a generator g. The Choquet-like expectation of a non-

negative measurable function X over A ∈ F w.r.t. the monotone measure µ can be represented

as

Eµ
Cl,g[XIA] = g−1(Eg(µ)

C [g(X)IA]) = g−1

( ∞∫
0

gµ(A ∩ {g(X) ≥ t}) dt

)
.

In particular, if A = Ω, then

Eµ
Cl,g[X ] = g−1

(
Eg(µ)
C [g(X)]

)
. (2.2)

Remark 2.8� Notice that we sometimes call this kind of Choquet-like integral a g-Choquet in-

tegral (g-C-integral for short). It is plain that the g-C-integral is the original Choquet integral

(expectation) whenever g = i (the identity mapping).


���
����
 2.9� ([13]) Let ⊗ be a pseudo-multiplication corresponding to ∨ and fulfilling

(M1)–(M7). Then the Choquet-like integral (so-called S⊗µ integral) of a measurable function

X : Ω → [0,∞) w.r.t. a finite monotone measure µ can be represented as

S⊗µ [Xt] = sup
a∈[0,∞]

(a⊗ µ({X ≥ a}). (2.3)

It is plain that the S⊗µ integral is the Sugeno integral (denoted by Suµ[·]) whenever ⊗ = ∧ [25].

During this paper, we always consider the existence of all S⊗µ [·].

Remark 2.10� Notice that when working on [0, 1], we mostly deal with e = 1, then ⊗ = � is

a semicopula (t-seminorm), i.e., a binary operation � : [0, 1]2 → [0, 1] which is non-decreasing in

both components and has 1 as neutral element. Then ⊗ = � satisfies a ⊗ b ≤ min(a, b) for all

(a, b) ∈ [0, 1]2, see [8].
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���
����
 2.11� The S⊗µ integral on the [0, 1] scale related to the semicopula � is given by

S�µ [X ] = sup
a∈[0,1]

(a� µ({X ≥ a}).

This type of integral was called seminormed integral in [22].

Remark 2.12� For a fixed strict t-norm T , the corresponding STµ integral is the so-called Sugeno-

Weber integral [27]. If � is the standard product, then the Shilkret integral [20] (denoted by

Shµ[·]) can be recognized. Notice that the original Sugeno integral (denoted by Suµ[·]) which was

introduced by Sugeno [23] in 1974 is a special seminormed integral when � = min.

[5: Theorem 2.13] helps us to reach the main results.

������� 2.13� Let X,Y : Ω → [0,∞) be two nondecreasing functions and (Ω,F , µ) a monotone

measure space and � : [0,∞)2 → [0,∞) be continuous and nondecreasing in both arguments and

ϕi : [0,∞) → [0,∞), i = 0, 1, 2 be continuous and strictly increasing functions. If ⊗ is a pseudo-

multiplication (with neutral element e = ‖µ‖) corresponding to ∨ satisfying

ϕ−1
0 (ϕ0(p1 � p2) ⊗ c) ≥ [ϕ−1

1 [(ϕ1(p1)) ⊗ c] � p2] ∨ [p1 � ϕ
−1
2 [ϕ2(p2) ⊗ c]]

then for any monotone measure µ ∈ M(Ω,F)
e such that S⊗µ [·] < ∞, the inequality

ϕ−1
0 (S⊗µ [ϕ0(X � Y )]) ≥ ϕ−1

1 (S⊗µ [ϕ1(X)]) � ϕ−1
2 (S⊗µ [ϕ2(Y )])

holds.

3. Stolarsky’s inequality

The purpose of this section is to prove the Stolarsky inequality for two classes of Choquet-like

integrals. Theorem 3.1 gives us the Stolarsky’s inequality for the first class Choquet-like integrals,

i.e., for Choquet-like expectation. Afterwards, we will obtain the Stolarsky’s inequality for the

second class in Theorem 3.3.

������� 3.1� Let ([0, 1],B([0, 1]), µ) be a monotone probability space and let the pseudo-operations

be generated by a generator g : [0,∞] → [0,∞], g(1) = 1. Let a, b > 0. Then the Stolarsky inequality

holds for the corresponding Choquet-like expectation, i.e., for any nonincreasing real-valued function

X : [0, 1] → [0, 1] it holds

Eµ
Cl,g

[
X(ω

1
a+b )

] ≥ (
Eµ
Cl,g

[
X(ω

1
a )
])⊗ (

Eµ
Cl,g

[
X(ω

1
b )
])
, (3.1)

where g(µ) is a lower-semicontinuous monotone probability absolutely continuous with respect to

the Lebesgue measure λ, i.e., if λ(E) = 0 for some E ∈ B([0, 1]) then also g(µ(E)) = 0.

P r o o f. Observe that

Eµ
Cl,g[X(ω

1
a+b )] = g−1

(
Eg(µ)
C

[
g
(
X(ω

1
a+b )

)])
. (3.2)

From (3.2) and using the Stolarsky inequality for Choquet expectation (1.1), we have
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Eµ
Cl,g[X(ω

1
a+b )] ≥ g−1

(
Eg(µ)
C

[
g
(
X(ω

1
a )
)] · Eg(µ)

C

[
g
(
X(ω

1
b )
)])

= g−1
[
g
(
g−1

(
E
g
(
µ
)

C

[
g
(
X(ω

1
a )
)])) · g(g−1

(
E
g
(
µ
)

C

[
g
(
X(ω

1
b )
)]))]

= g−1
(
g
(
Eµ
Cl,g

[
X(ω

1
a )
]) · g(Eµ

Cl,g

[
X(ω

1
b )
]))

=
(
Eµ
Cl,g

[
X(ω

1
a )
])⊗ (

Eµ
Cl,g

[
X(ω

1
b )
])
.

This completes the proof. �

Example 3.2�

(i) Let g(x) = xα, α > 0. The corresponding pseudo-operations are x ⊕ y = α
√
xα + yα and

x⊗ y = xy. Then (3.1) reduces on the following inequality

α

√(
Eµα

C

[
(X(ω

1
a+b ))α

])
� α

√(
Eµα

C

[
(X(ω

1
a ))α

]) · α

√(
Eµα

C

[
(X(ω

1
b ))α

])
.

(ii) Let g(x) = 2x − 1. The corresponding pseudo-operations are x ⊕ y = 1
ln 2 ln (2x + 2y − 1)

and x⊗ y = 1
ln 2 ln ((2x − 1) (2y − 1) + 1) . Then (3.1) reduces on the following inequality

E2µ−1
C

[
2X(ω

1
a+b ) − 1

]
� E2µ−1

C

[
2X(ω

1
a ) − 1

] · E2µ−1
C

[
2X(ω

1
b ) − 1

]
.

Now we consider the second class of the Choquet-like integral where is based on ∨ and a

corresponding pseudo-multiplication ⊗ with neutral element e = ‖µ‖.

������� 3.3� Let X : [0,∞) → [0,∞) be a nondecreasing function, ([0,∞),B[0,∞), µ) be a

monotone measure space, � : [0,∞)2 → [0,∞) be continuous and nondecreasing in both arguments

and bounded from above by min and ϕi : [0,∞) → [0,∞), i = 0, 1, 2 be continuous and strictly

increasing functions. Let α, β, γ : [0,∞) → [0,∞) be increasing bijections such that α � max {β, γ}.
If ⊗ is a pseudo-multiplication (with neutral element e = ‖µ‖) corresponding to ∨ satisfying

ϕ−1
0 (ϕ0(p1 � p2) ⊗ c) ≥ [

ϕ−1
1 [(ϕ1(p1)) ⊗ c] � p2

] ∨ [
p1 � ϕ

−1
2 [ϕ2(p2) ⊗ c]

]
,

then for any monotone measure µ ∈ M([0,∞),B[0,∞))
e such that S⊗µ [·] < ∞, the inequality

ϕ−1
0 (S⊗µ

[
ϕ0(X(α))

]
) ≥ ϕ−1

1

(
S⊗µ

[
ϕ1

(
X(β)

)])
� ϕ−1

2

(
S⊗µ

[
ϕ2(X(γ))

])
holds.

P r o o f. Since α ≥ β, α ≥ γ and X is nondecreasing, we have X(α) ≥ X(β) ∧ X(γ) ≥ X(β) �

X(γ). Note that all the three functions X(α), X(β) and X(γ) are nondecreasing. Now applying

Theorem 2.13, by the monotonicity of S⊗µ integral there holds

ϕ−1
0 (S⊗µ [ϕ0 (X (α))]) ≥ ϕ−1

0 (S⊗µ [ϕ0 (X(β) � X(γ))])

≥ ϕ−1
1

(
S⊗µ [ϕ1 (X (β))]

)
� ϕ−1

2

(
S⊗µ [ϕ2 (X (γ))]

)
.

�

Since we work on the [0, 1] scale in Theorem 3.3 then ⊗ = � is semicopula (t-seminorm) and

the following result holds.
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����		��� 3.4� Let X : [0, 1] → [0, 1] be a nondecreasing function, ([0, 1],B[0, 1], µ) be a mono-

tone probability space, ∗ : [0, 1]2 → [0, 1] be continuous and nondecreasing in both arguments and

bounded from above by min and ϕi : [0, 1] → [0, 1], i = 0, 1, 2 be continuous and strictly increas-

ing functions. Let α, β, γ : [0, 1] → [0, 1] be increasing bijections such that α � max {β, γ}. If

semicopula � satisfying

ϕ−1
0 (ϕ0 (p1 � p2) � c) ≥ [

ϕ−1
1 [(ϕ1 (p1)) � c] � p2

] ∨ [
p1 � ϕ

−1
2 [ϕ2 (p2) � c]

]
,

then the inequality

ϕ−1
0 (S�µ [ϕ0 (X(α))]) ≥ ϕ−1

1

(
S�µ [ϕ1 (X (β))]

)
� ϕ−1

2

(
S�µ [ϕ2 (X (γ))]

)
holds.

Let ϕ0 (x) = xr, 0 < r < ∞, and ϕ1 (x) = ϕ2 (x) = xs, 0 < s < ∞, then for all 0 < s < ∞, then

we get the following result.

����		��� 3.5� Let X : [0, 1] → [0, 1] be a nondecreasing function, ([0, 1],B[0, 1], µ) be a mono-

tone probability space and � : [0, 1]2 → [0, 1] be continuous and nondecreasing in both arguments

and bounded from above by min. Let α, β, γ : [0, 1] → [0, 1] be increasing bijections such that

α � max {β, γ} . If semicopula � satisfying

((a � b)r � c))
1
r ≥ [

(as � c)
1
s � b

] ∨ [
a � (bs � c)

1
s

]
,

then the inequality

(S�µ [(X(α))r])
1
r ≥ (

S�µ [(X (β))s]
) 1

s �
(
S�µ [(X (γ))s]

) 1
s

holds for all 0 < s < ∞ and 0 < r < ∞.

Specially, when s = 1, we have the following result.

����		��� 3.6� Let X : [0, 1] → [0, 1] be a nondecreasing function, ([0, 1],B[0, 1], µ) be a mono-

tone probability space and � : [0, 1]2 → [0, 1] be continuous and nondecreasing in both arguments

and bounded from above by min. Let α, β, γ : [0, 1] → [0, 1] be increasing bijections such that

α � max {β, γ}. If semicopula � satisfying

((a � b)r � c)
1
r ≥ [(a� c) � b] ∨ [a � (b� c)] , (3.3)

then the inequality

(S�µ [(X(α))r ])
1
r ≥ (

S�µ [X(β)]
)
�
(
S�µ [X (γ)]

)
(3.4)

holds for all 0 < r < ∞.

Example 3.7� Let nondecreasing function X be defined as X(ω) =
√
ω. Let � and � be the

standard product. Then for r = 1, (3.3) holds readily. If µ is the Lebesgue measure, then

Shµ [X (ω)] =
2

9

√
3, Shµ

[
X

(
ω2

)]
=

1

4
and Shµ

[
X

(
ω4

)]
=

4

27
.

Therefore,

S�µ [X(ω)] = Shµ [X(ω)] =
2

9

√
3

� 1

27
= Shµ

[
X

(
ω2

)] · Shµ

[
X

(
ω4

)]
=

(
S�µ

[
X

(
ω2

)])
�
(
S�µ

[
X

(
ω4

)])
.
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Example 3.8� Let � (x, y) = (x + y − 1) ∨ 0 in Example 3.7. Then a straightforward calculus

shows that

S�µ [X(ω)] =
2

9

√
3 �

(1

4
+

4

27
− 1

)
∨ 0 =

(
Shµ

[
X

(
ω2

)]
+ Shµ

[
X

(
ω4

)]− 1
) ∨ 0

=
(
S�µ

[
X(ω2)

])
�
(
S�µ

[
X

(
ω4

)])
.

Let � = min in Corollary 3.6. Then we get the following result.

����		��� 3.9� ([2: Theorem 3.5]) Let X : [0, 1] → [0, 1] be a nondecreasing function and

([0, 1],B[0, 1], µ) a monotone probability space. Let β, γ be automorphisms on [0, 1] (i.e.,

β, γ : [0, 1] → [0, 1] are increasing bijections) and α = (β−1 � γ−1)−1. If � : [0, 1]2 → [0, 1] be

any continuous aggregation function which is jointly strictly increasing and bounded from above by

min, then

Suµ[X(α)] ≥ (Suµ[X(β)]) � (Suµ [X (γ)]) . (3.5)

P r o o f. As � is bounded from above by min, α−1 = β−1 � γ−1 ≤ β−1 ∧ γ−1 and thus α ≥ β,

α ≥ γ. Since X is nondecreasing, we have X(α) ≥ X(β) ∧X(γ) ≥ X(β) � X(γ). Notice that if �

is bounded from above by min, then for r = 1, (3.3) holds readily. Applying the Corollary 3.6, the

proof is completed. �

4. A new inequality

This section intends to present a new Minkowski’s inequality without the comonotonicity con-

dition for two classes of Choquet-like integrals. Theorems 4.1 and 4.3 are the main results of this

section. During this section, we always consider the existence of all Choquet expectation.

������� 4.1� Let X,Y be two non-negative measurable functions and let the pseudo-operations

be generated by a generator g. If

mg (Y (ω)) � g(X(ω)) � Mg (Y (ω)) for all ω ∈ Ω, (4.1)

where 0 < m � M , then for the Choquet-like expectation given by (2.2), the following inequalities

(
Eµ
Cl,g

[(
X ⊕ Y

)(s)])( 1
s )

⊗
� K1 ⊗

[ (
Eµ
Cl,g

[
X

(s)
⊗

])( 1
s )

⊗
⊕
(
Eµ
Cl,g

[
Y

(s)
⊗

])( 1
s )

⊗

]
, (4.2)

(
Eµ
Cl,g

[
(X ⊕ Y )

(s)
])( 1

s )

⊗
� K2 ⊗

[(
Eµ
Cl,g

[
X

(s)
⊗

])( 1
s )

⊗
⊕
(
Eµ
Cl,g

[
Y

(s)
⊗

])( 1
s )

⊗

]
, (4.3)

hold where s �1 and the constantsK1=g−1

[(
M(m+1)+(M+1)

(M+1)(m+1)

)−1
]
, K2=g−1

[(
m(M+1)+(m+1)
(m+1)(M+1)

)−1
]

are independent of µ.

P r o o f. We will prove inequality (4.2) and the other case is similar. By (4.1), we have

g (X(ω)) � M (g (X(ω)) + g (Y (ω))) −Mg (X(ω)) .

So

(M + 1)
s

(g(X(ω)))
s � M s (g(X(ω)) + g(Y (ω)))

s
,
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and then (
Eg(µ)
C [g (Xs)]

) 1
s � M

M + 1

(
Eg(µ)
C [(g(X) + g(Y ))s]

) 1
s

. (4.4)

Also, since mg (Y (ω)) � g (X(ω)), we have g (Y (ω)) � 1
m (g(X(ω)) + g (Y (ω))) − 1

mg (Y (ω)).

So ( 1

m
+ 1

)s

(g (Y (ω)))
s �

( 1

m

)s

(g (X(ω)) + g (Y (ω)))
s
,

and then, (
Eg(µ)
C [g(Y s)]

) 1
s � 1

m + 1

(
Eg(µ)
C [(g(X) + g(Y ))

s
]
) 1

s

. (4.5)

Therefore, (4.4) and (4.5) give us the following result:

g(K1)

[(
Eg(µ)
C [g(Xs)]

) 1
s

+
(
Eg(µ)
C [g(Y s)]

) 1
s

]
�

(
Eg(µ)
C [(g(X) + g(Y ))

s
]
) 1

s

. (4.6)

Now, observe that

(
Eµ
Cl,g

[
(X ⊕ Y )(s)

])( 1
s )

⊗
= g−1

((
Eg(µ)
C

[
g
(

(X ⊕ Y )(s)⊗
)]) 1

s
)

= g−1
((

Eg(µ)
C g

(
g−1 ((g(X ⊕ Y ))

s
)
)) 1

s
)

= g−1
((

Eg(µ)
C [((g ◦X) + (g ◦ Y ))s]

) 1
s
)
.

By using (4.6), we have

g−1
((

Eg(µ)
C [((g ◦X) + (g ◦ Y ))

s
]
) 1

s
)

� g−1
(
g(K1)

[(
Eg(µ)
C [(g ◦X)s]

) 1
s +

(
Eg(µ)
C [(g ◦ Y )s]

) 1
s

])

= g−1
(
g(K1)

[
g
(
g−1

((
Eg(µ)
C [(g ◦X)s]

) 1
s
))

+ g
(
g−1

((
Eg(µ)
C [(g ◦ Y )s]

) 1
s
)) ])

= g−1
(
g(K1)

[
g
(
g−1

((
Eg(µ)
C [(g ◦X)s]

) 1
s

))
+ g

(
g−1

((
Eg(µ)
C [(g ◦ Y )s]

) 1
s

))])

= K1 ⊗ g−1
([

g
(
g−1

((
Eg(µ)
C [(g ◦X)s ]

) 1
s
))

+ g
(
g−1

((
Eg(µ)
C [(g ◦ Y )s]

) 1
s
))])

= K1 ⊗
[
g−1

((
Eg(µ)
C

[
g
(
g−1 ((g ◦X)s)

)] ) 1
s

)
⊕ g−1

((
Eg(µ)
C

[
g
(
g−1 ((g ◦ Y )s)

)] ) 1
s

)]

= K1 ⊗
[
g−1

((
Eg(µ)
C

[
g
(
X

(s)
⊗

)]) 1
s

)
⊕ g−1

((
Eg(µ)
C

[
g
(
Y

(s)
⊗

)]
)

1
s

)]

= K1 ⊗
[
g−1

((
g
(
g−1

(
Eg(µ)
C

[
g
(
X

(s)
⊗

)
]
))) 1

s
)
⊕ g−1

((
g
(
g−1

(
Eg(µ)
C

[
g
(
Y

(s)
⊗

)]))) 1
s
)]

= K1 ⊗
[
g−1

((
g
(
Eµ
Cl,g

[
X

(s)
⊗

])) 1
s

)
⊕ g−1

((
g
(
Eµ
Cl,g

[
Y

(s)
⊗

])) 1
s

)]

= K1 ⊗
[(
Eµ
Cl,g

[
X

(s)
⊗

])( 1
s )

⊗ ⊕ (
Eµ
Cl,g

[
Y

(s)
⊗

])( 1
s )

⊗

]
.

This completes the proof. �
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Example 4.2�

(i) Let g(x) = ex. The corresponding pseudo-operations are x⊕y = ln(ex+ey) and x⊗y = x+y.

Then (4.2) and (4.3) reduce on the following inequalities

ln
(
Eeµ

C

[(
eX + eY

)s]) 1
s � K1 + ln

((
Eeµ

C

[
esX

]) 1
s +

(
Eeµ

C

[
esY

]) 1
s

)
,

ln
(
Eeµ

C

[(
eX + eY

)s]) 1
s � K2 + ln

((
Eeµ

C

[
esX

]) 1
s +

(
Eeµ

C

[
esY

] ) 1
s

)
,

where K1 = − ln
(

M(m+1)+(M+1)
(M+1)(m+1)

)
, K2 = − ln

(
m(M+1)+(m+1)
(m+1)(M+1)

)
, s � 1.

(ii) Let g(x) = xα, α > 0. The corresponding pseudo-operations are x ⊕ y = α
√
xα + yα and

x⊗ y = xy. Then (4.2) and (4.3) reduce on the following inequalities

αs

√
Eµα

C [(Xα + Y α)
s
] � K1

α

√[(
Eµα

C [Xαs]
) 1

s +
(
Eµα

C [Y αs]
) 1

s

]
,

αs

√
Eµα

C [(Xα + Y α)
s
] � K2

α

√[(
Eµα

C [Xαs]
) 1

s +
(
Eµα

C [Y αs]
) 1

s

]
,

where K1 =
(

M(m+1)+(M+1)
(M+1)(m+1)

)− 1
α

, K2 =
(

m(M+1)+(m+1)
(m+1)(M+1)

)− 1
α

, s � 1.

Now, we focus on the second class of Choquet-like integrals.

������� 4.3� Let X,Y be two non-negative measurable functions such that

0 < m � X(ω)

Y (ω)
� M for all ω ∈ Ω.

Let s > 0. If ⊗ is a pseudo-multiplication satisfying

(a⊗ b) � min

{
(m + 1)s

ms

( msa

(m + 1)s
⊗ b

)
, (M + 1)s

( a

(M + 1)
s ⊗ b

)}
(4.7)

then, for any monotone measure µ, the S⊗µ integral (2.3) satisfies the inequality

(
S⊗µ [Xs]

) 1
s +

(
S⊗µ [Y s]

) 1
s � K

(
S⊗µ [(X + Y )

s
]
) 1

s

where K = m(M+1)+(m+1)
(m+1)(M+1) .

P r o o f. Since X(ω) � m (X(ω) + Y (ω)) −mX (ω), we have

(m + 1)
s

(X(ω))s � ms (X(ω) + Y (ω))
s
.

The monotonicity of S⊗µ integral and (4.7) imply that

(
S⊗µ [Xs]

) 1
s �

(
S⊗µ

[( m

m + 1

)s

(X + Y )
s
]) 1

s � m

m + 1

(
S⊗µ [(X + Y )

s
]
) 1

s . (4.8)

Also, since M � X(ω)
Y (ω) we have Y (ω) � 1

M (X(ω) + Y (ω)) − 1
M Y (ω). So( 1

M
+ 1

)s

(Y (ω))s �
( 1

M

)s

(X(ω) + Y (ω))s ,

and then,

(
S⊗µ [Y s]

) 1
s �

(
S⊗µ

[ 1

(M + 1)s
(X + Y )

s
]) 1

s � 1

M + 1

(
S⊗µ [(X + Y )

s
]
) 1

s . (4.9)
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By (4.8) and (4.9), the following result holds

(
S⊗µ [Xs]

) 1
s +

(
S⊗µ [Y s]

) 1
s � K

(
S⊗µ [(X + Y )

s
]
) 1

s .

This completes the Proof. �

Notice that if ⊗ is minimum (i.e., for Sugeno integral) in Theorem 4.3, then the following result

holds.

����		��� 4.4� Let X,Y be two non-negative measurable functions such that

0 < m � X(ω)

Y (ω)
� M for all ω ∈ Ω.

Then for the Sugeno integral, the inequality

(Suµ [Xs])
1
s + (Suµ [Y s])

1
s � K (Suµ [(X + Y )s])

1
s (4.10)

holds where K = m(M+1)+(m+1)
(m+1)(M+1) , s > 0.

Remark 4.5� If X(ω) = αY (ω), α > 0 in Corollary 4.4, then m = M = α, K = 1 and (4.10)

reduces on the following inequality

(Suµ [Xs])
1
s + (Suµ [Y s])

1
s � (Suµ [(X + Y )s])

1
s .

The following example proves that the inequality of Corollary 4.4 is sharp.

Example 4.6� Let Ω = [0, 2], X(ω) = Y (ω) ≡ 1. Let µ(A) = λ(A) where λ is the Lebesgue

measure on R. Clearly X(ω)
Y (ω) = 1. Then m = M = 1. So, by Corollary 4.4, K = 1 and

Suµ [X + Y ] = 2, Suµ [X ] = Suµ [Y ] = 1.

Therefore,

K Suµ [X + Y ] = 2 = Suµ [X ] + Suµ [Y ] .

Notice that when working on [0, 1] in Theorem 4.3, then ⊗ = � is semicopula (t-seminorm) and

the following result holds.

����		��� 4.7� Let X,Y : Ω → [0, 1] be two non-negative measurable functions such that

0 < m � X(ω)

Y (ω)
� M for all ω ∈ Ω.

Let s > 0. If semicopula � satisfying

(a� b) � min

{
(m + 1)s

ms

( msa

(m + 1)s
� b

)
, (M + 1)s

( a

(M + 1)
s � b

)}
(4.11)

then for the S�µ integral (2.3), the inequality

(
S�µ [Xs]

) 1
s +

(
S�µ [Y s]

) 1
s � K

(
S�µ [(X + Y )

s
]
) 1

s

holds where K = m(M+1)+(m+1)
(m+1)(M+1) .

The following example shows that the condition (4.11) in Corollary 4.7 cannot be omitted.
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Example 4.8� Let Ω = [0, 1], X(ω) = Y (ω) = ω+1
2 . Let semicopula � be the �Lukasiewicz t-norm

TL (i.e., TL (x, y) = max {(x + y − 1) , 0}) and µ(A) = λ(A)
1+λ(A) where λ is the Lebesgue measure

on R. Clearly X(ω)
Y (ω) = 1. Then m = M = 1. So, by Corollary 4.7, K = 1 and

STL
µ [X + Y ] =

∨
α∈[0,1]

TL (α, µ({X + Y ≥ α})) =
1

2
,

STL
µ [X ] = STL

µ [Y ] =
∨

α∈[0,1]

TL (α, µ({X ≥ α}))

=
∨

α∈[ 1
2 ,1]

TL

(
α,

2α− 2

2α− 3

)
=

3

2
−
√

2.

Therefore,

S�µ [X ] + S�µ [Y ] = 3 − 2
√

2 �
1

2
= K

(
S�µ [X + Y ]

)
.

Note that if � is the usual product (i.e., for Shilkret integral) in Corollary 4.7, then we have

the following result.

����		��� 4.9� Let X,Y : Ω → [0, 1] be two non-negative measurable functions such that

0 < m � X(ω)

Y (ω)
� M for all ω ∈ Ω.

Then the inequality

(Shµ[Xs])
1
s + (Shµ [Y s])

1
s � K (Shµ [(X + Y )

s
])

1
s

holds where K = m(M+1)+(m+1)
(m+1)(M+1) , s > 0.

Finally, if � is minimum (i.e., for original Sugeno integral) in Corollary 4.7, then the following

result holds.

����		��� 4.10� Let X,Y : Ω → [0, 1] be two non-negative measurable functions such that

0 < m � X(ω)

Y (ω)
� M for all ω ∈ Ω.

Then the inequality

(Suµ [Xs])
1
s + (Suµ [Y s])

1
s � K (Suµ [(X + Y )s])

1
s

holds where K = m(M+1)+(m+1)
(m+1)(M+1) , s > 0.

Example 4.11� Let Ω = [0, 1], X(ω) = ω + 1
100 and Y (ω) = 1 − ω

2 . Let µ(A) = λ2(A) where λ

is the Lebesgue measure on R. Clearly 1
100 � X(ω)

Y (ω) � 101
50 . Then m = 1

100 and M = 101
50 . So, by

Corollary 4.10, K = 0.341,

Suµ [X + Y ] = 1, Suµ [X ] = 0.3875 and Suµ [Y ] = 0.6096.

Therefore,

K Suµ [X + Y ] = 0.341 � 0.9971 = Suµ [X ] + Suµ [Y ] .
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5. Conclusions

This paper has successfully proved the Stolarsky inequality for Choquet-like expectation, which

generalizes the pervious result of this inequality on Choquet expectation. Moreover, a new

Minkowski’s inequality without the comonotonicity condition for Choquet-like integrals is intro-

duced. At first, we thoroughly described two classes of Choquet-like integrals. Then, we prepared

extensions of these inequalities from the Choquet expectation and the Sugeno integral to the two

classes of Choquet-like integrals. Observe that similarly some Chebyshev-type inequalities shown

for the Choquet and Sugeno integrals in [3, 14] were generalized for the Choquet-like integrals in

[5, 19].

Acknowledgement� The authors are very grateful to the anonymous reviewers for their insightful

and constructive comments and suggestions that have led to an improved version of this paper.
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