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Abstract. The article is devoted to Markov reward chains, in particular,
attention is primarily focused on the reward variance arising by summation of
generated rewards. Explicit formulae for calculating the variances for transient
and average models are reported along with sketches of algorithmic procedures
for finding policies guaranteeing minimal variance in the class of policies with
a given transient or average reward. Application of the obtained results to
financial models is indicated.
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1 Introduction

The usual optimization criteria examined in the literature on stochastic dynamic programming, such as
a total discounted or mean (average) reward structures, may be quite insufficient to characterize the
problem from the point of a decision maker. To this end it may be preferable if not necessary to select
more sophisticated criteria that also reflect variability-risk features of the problem. Perhaps the best
known approaches stem from the classical work of Markowitz (cf. [2]) on mean variance selection rules,
i.e. we optimize the weighted sum of average or total reward and its variance. In the present paper we
restrict attention on transient and average models with finite state space.

2 Notation and Preliminaries

In this note, we consider at discrete time points Markov decision process X = {Xn, n = 0, 1, . . .} with
finite state space I = {1, 2, . . . , N}, and compact set Ai = [0,Ki] of possible decisions (actions) in state
i ∈ I. Supposing that in state i ∈ I action a ∈ Ai is chosen, then state j is reached in the next transition
with a given probability pij(a) and one-stage transition reward rij will be accrued to such transition.

A (Markovian) policy controlling the decision process, π = (f0, f1, . . .), is identified by a sequence of
decision vectors {fn, n = 0, 1, . . .} where fn ∈ F ≡ A1× . . .×AN for every n = 0, 1, 2, . . ., and fn

i ∈ Ai is
the decision (or action) taken at the nth transition if the chain X is in state i. Let πm = (fm, fm+1, . . .),
hence π = (f0, f1, . . . , fm−1, πm), in particular π = (f0, π1). The symbol E π

i denotes the expectation if
X0 = i and policy π = (fn) is followed, in particular, E π

i (Xm = j) =
∑

ij∈I pi,i1(f
0
i ) . . . pim−1,j(f

m−1
m−1 );

P(Xm = j) is the probability that X is in state j at time m.

Policy π which selects at all times the same decision rule, i.e. π ∼ (f), is called stationary, hence
following policy π ∼ (f) X is a homogeneous Markov chain with transition probability matrix P (f) whose

ij-th element is pij(fi). Then r
(1)
i (fi) :=

∑
j∈I pij(fi)rij is the expected one-stage reward obtained in

state i. Similarly, r(1)(f) is an N -column vector of one-stage rewards whose i-the elements equals r
(1)
i (fi).

The symbol I denotes an identity matrix and e is reserved for a unit column vector.

Considering the standard probability matrix P (f) the spectral radius of P (f) is equal to one. Re-

call that (the Cesaro limit of P (f)) P ∗(f) := lim
n→∞

1
n

∑n−1
k= P k(f) (with elements p∗ij(f)) exists, and if
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P (f) is aperiodic then even P ∗(f) = lim
k→∞

P k(f) and the convergence is geometrical. Then g(1)(f) =

P ∗(f) r(1)(f) is the (column) vector of average rewards, its ithe entry g
(1)
i (f) denotes the average reward

if the process starts in state i. Moreover, if P (f) is unichain, i.e. P (f) contains a single class of recurrent
states, then p∗ij(f) = p∗j (f), i.e. limiting distribution is independent of the starting state and g(1)(f) is

a constant vector with elements ḡ(1)(f). It is well-known (cf. e.g. [3, 7]) that also Z(f) (fundamental
matrix of P (f)), and H(f) (the deviation matrix) exist, where Z(f) := [I − P (f) + P ∗(f)]−1, H(f) :=
Z(f) (I − P ∗(f)).

Transition probability matrix P̃ (f) is called transient if the spectral radius of P̃ (f) is less than
unity, i.e. it at least some row sums of P̃ (f) are less than one. Then limn→∞[P̃ (f)]n = 0, P̃ ∗(f) = 0
g(1)(f) = P̃ ∗(f) r(1)(f) = 0 and Z̃(f) = H̃(f) = [I − P̃ (f)]−1. Observe that if P (f) is stochastic and
α ∈ (0, 1) then P̃ (f) := αP (f) is transient, however, if P̃ (f) is transient it may happen that some row
sums may be even greater than unity. Moreover, for the so-called first passage problem, i.e. if we consider
total reward up to the first reaching of a specific state (resp. the set of specific states), the resulting
transition matrix is transient if the specific state (resp. the set of specific states) can be reached from
any other state.

3 Reward Variance for Finite and Infinite Time Horizon

Let ξn(π) =
∑n−1

k=0 rXk,Xk+1
be the stream of rewards received in the n next transitions of the considered

Markov chain X if policy π = (fn) is followed. Supposing that X0 = i, on taking expectation we get for
the first and second moments of ξn(π)

v
(1)
i (π, n) := E π

i (ξn(π)) = E π
i

n−1∑
k=0

rXk,Xk+1
, v

(2)
i (π, n) := E π

i (ξn(π))
2 = E π

i (
n−1∑
k=0

rXk,Xk+1
)2. (1)

It is well known from the literature (cf. e.g. [1],[3],[7],[8]) that for the time horizon tending to infinity

policies maximizing or minimizing the values v
(1)
i (π, n) for transient models, as well as policies maximizing

or minimizing the value g(1)(π) = limn→∞ n−1v
(1)
i (π, n) can be found in the class of stationary policies,

i.e. there exist f∗, f̂ , f̄∗, f̄ ∈ F such that for all i ∈ I and any policy π = (fn)

v
(1)
i (f∗) := lim

n→∞
v
(1)
i (f∗, n) ≥ lim sup

n→∞
v
(1)
i (π, n), v

(1)
i (f̂) := lim

n→∞
v
(1)
i (f̂ , n) ≤ lim inf

n→∞
v
(1)
i (π, n), (2)

g(f̄∗) := lim
n→∞

1

n
v
(1)
i (f̄∗, n) ≥ lim sup

n→∞

1

n
v
(1)
i (π, n), g(f̄) := lim

n→∞

1

n
v
(1)
i (f̄ , n) ≤ lim inf

n→∞

1

n
v
(1)
i (π, n). (3)

3.1 Finite Time Horizon

If policy π ∼ (f) is stationary, the process X is time homogeneous and for m < n we write for the
generated random reward ξn = ξm+ξn−m (here we delete the symbol π and tacitly assume that P(Xm = j)
and ξn−m starts in state j). Hence [ξn]

2 = [ξm]2+[ξn−m]2+2 ·ξm ·ξn−m. Then for n > m we can conclude
that

E π
i [ξn] = E π

i [ξm] + E π
i

{∑
j∈I

P(Xm = j) · E π
j [ξn−m]

}
. (4)

E π
i [ξn]

2 = E π
i [ξm]2 + E π

i

{∑
j∈I

P(Xm = j) · E π
j [ξn−m]2

}
+ 2 · E π

i [ξm]
∑
j∈I

P(Xm = j) · E π
j [ξn−m]. (5)

In particular, from (2), (4) and (5) we conclude for m = 1

v
(1)
i (f, n+ 1) = r

(1)
i (fi) +

∑
j∈I

pij(fi) · v
(1)
j (f, n) (6)

v
(2)
i (f, n+ 1) = r

(2)
i (fi) + 2 ·

∑
j∈I

pij(fi) · rij · v(1)j (f, n) +
∑
j∈I

pij(fi) v
(2)
j (f, n) (7)

where r
(1)
i (fi) :=

∑
j∈I pij(fi) rij , r

(2)
i (fi) :=

∑
j∈I pij(fi)[rij ]

2.



Since the variance σi(f, n) = v
(2)
i (f, n)− [v

(1)
i (f, n)]2 from (6),(7) we get

σi(f, n+ 1) = r
(2)
i (fi) +

∑
j∈I

pij(fi) · σj(f, n) + 2
∑
j∈I

pij(fi) · rij · v(1)j (f, n)

−[v
(1)
i (f, n+ 1)]2 +

∑
j∈I

pij(fi)[v
(1)
j (f, n)]2 (8)

=
∑
j∈I

pij(fi)[rij + v
(1)
j (f, n)]2 − [v

(1)
i (f, n+ 1)]2 +

∑
j∈I

pij(fi) · σj(f, n). (9)

Using matrix notations (cf. [5]) equations (6),(7),(8) can be written as:

v(1)(f, n+ 1) = r(1)(f) + P (f) · v(1)(f, n) (10)

v(2)(f, n+ 1) = r(2)(f) + 2 · P (f) ◦R · v(1)(f, n) + P (f) · v(2)(f, n) (11)

σ(f, n+ 1) = r(2)(f) + P (f)σ(f, n) + 2 · P (f) ◦R · v(1)(f, n)
−[v(1)(f, n+ 1)]2 + P (f) · [v(1)(f, n)]2 (12)

where R = [rij ]i,j is an N ×N -matrix, and r(2)(f) = [ r
(2)
i (fi)], v(2)(f, n) = [v

(2)
i (f, n)],

v(1)(f, n) = [(v
(1)
i (f, n)], σ(f, n) = [σi(f, n)] are column vectors.

The symbol ◦ is used for Hadamard (entrywise) product of matrices. Observe that
r(1)(f) = (P (f) ◦R) · e, r(2)(f) = [P (f) ◦ (R ◦R)] · e.

3.2 Infinite-Time Horizon: Transient Case

In this subsection we focus attention on transient models, i.e. we assume that the transition probability
matrix P̃ (f) with elements pij(fi) is substochastic and ρ(f), the spectral radius of P̃ (f), is less than
unity.

Then on iterating (10) we easily conclude that there exists v(1)(f) := lim
n→∞

v(1)(f, n) such that

v(1)(f) = r(1)(f) + P̃ (f) · v(1)(f) ⇐⇒ v(1)(f) = [I − P̃ (f)]−1r(1)(f). (13)

Similarly, from (11) (since the term 2 · P (f) ◦ R · v(1)(f, n) must be bounded) on letting n → ∞ we can
also verify existence v(2)(f) = lim

n→∞
v(2)(f, n) such that

v(2)(f) = r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f) + P̃ (f) v(2)(f) (14)

hence
v(2)(f) = [I − P̃ (f)]−1

{
r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f)

}
. (15)

On letting n → ∞ from (8), (9) we get for σi(f) := lim
n→∞

σi(f, n)

σi(f) = r
(2)
i (fi) +

∑
j∈I

pij(fi) · σj(f) + 2
∑
j∈I

pij(fi) · rij · v(1)j (f)

−[v
(1)
i (f)]2 +

∑
j∈I

pij(fi)[v
(1)
j (f)]2 (16)

=
∑
j∈I

pij(fi)[rij + v
(1)
j (f)]2 − [v

(1)
i (f)]2 +

∑
j∈I

pij(fi) · σj(f). (17)

Hence in matrix notation

σ(f) = r(2)(f) + P̃ (f) · σ(f) + 2 · P̃ (f) ◦R · v(1)(f)− [v(1)(f)]2 + P̃ (f) · [v(1)(f)]2. (18)

After some algebra (18) can be also written as

σ(f) = [I − P̃ (f)]−1 · { r(2)(f) + 2 · P̃ (f) ◦R · v(1)(f)− [v(1)(f)]2}. (19)

In particular, for the discounted case, i.e. if for some discount factor α ∈ (0, 1) the transient matrix
P̃ (f) := αP (f) then (19) reads

σ(f) = [I − αP (f)]−1 · { r(2)(f) + 2 · αP (f) ◦R · v(1)(f)− [v(1)(f)]2}. (20)

(20) is similar to the formula for the variance of discounted rewards obtained by Sobel [6] using different
methods.



3.3 Infinite-Time Horizon: Average Case

We make the following

Assumption 1. There exists state i0 ∈ I that is accessible from any state i ∈ I for every f ∈ F .

Obviously, if Assumption 1 holds then for every f ∈ F the transition probability matrix P (f) is
unichain (i.e. P (f) have no two disjoint closed sets).

As well known from the literature (see e.g. [3]), if Assumption 1 holds, then the growth rate of
v(1)(f, n) is linear and independent of the starting state. In particular, there exists constant vector
g(1)(f) = P ∗(f)r(f) (with elements ḡ(1)(f)) along with vector w(1)(f) (unique up to an additive constant)
such that

w(1)(f) + g(1)(f) = r(f) + P (f)w(1)(f). (21)

In particular, it is possible to select w(1)(f) such that P ∗(f)w(1)(f) = 0. Then w(1)(f) = H(f)r(f) =
Z(f)r(f)− P ∗(f)r(f). On iterating (21) we can conclude that

v(1)(f, n) = g(1)(f) · n+ w(1)(f) + [P (f)]nw(1)(f) (22)

To simplify the limiting behavior we make also

Assumption 2. The matrix P (f) is aperiodic, i.e. limn→∞[P (f)]n = P ∗(f) exists for any P (f).

Then for n tending to infinity v(1)(f, n)−ng(1)(f)−w(1)(f) tends to the null vector and the convergence
is geometric. In particular, by (22) we can conclude that for ε(n) = P (f)nw(1)(f)

v(1)(f, n) = g(1)(f) · n+ w(1)(f) + ε(n) (23)

where ε(n) tends to the null vector and the convergence is geometrical. In what follows the symbol ε(n)
is reserved for any column vector of appropriate dimension whose elements converge geometrically to the
null vector.

Employing the above facts we can conclude that by (6),(21),(22)

v
(1)
i (f, n+ 1) + v

(1)
j (f, n) = ri(f) +

∑
k∈I

pik(f) · v(1)k (f, n) + v
(1)
j (f, n)

= ri(f) + 2nḡ(1)(f) +
∑
k∈I

pik(f)w
(1)
k (f) + w

(1)
j (f) + ε(n)

= (2n+ 1)ḡ(1)(f) + w
(1)
i (f) + w

(1)
j (f) + ε(n) (24)

v
(1)
i (f, n+ 1)− v

(1)
j (f, n) = ri(f) +

∑
k∈I

pik(f) · v(1)k (f, n)− v
(1)
j (f, n)

= ri(f) +
∑
k∈I

pik(f)w
(1)
k (f)− w

(1)
j (f) + ε(n)

= ḡ(1)(f) + w
(1)
i (f)− w

(1)
j (f) + ε(n) (25)

From (23),(24),(25) we get∑
j∈I

pij(f) [v
(1)
i (f, n+ 1) + v

(1)
j (f, n)][v

(1)
i (f, n+ 1)− v

(1)
j (f, n)]

=
∑
j∈I

pij(f)[2nḡ
(1)(f) + ḡ(1)(f) + w

(1)
i (f) + w

(1)
j (f)][ḡ(1)(f) + w

(1)
i (f)− w

(1)
j (f)] + ε(n)

= 2nḡ(1)(f)
∑
j∈I

pij(f)[ḡ
(1)(f) + w

(1)
i (f)− w

(1)
j (f)]

+
∑
j∈I

pij(f)
{
[ḡ(1)(f) + w

(1)
i (f)]2 − [w

(1)
j (f)]2

}
+ ε(n)

= 2nḡ(1)(f)ri(f) +
∑
j∈I

pij(f)
{
[ḡ(1)(f) + w

(1)
i (f)]2 − [w

(1)
j (f)]2

}
+ ε(n) (26)



Similarly by (23) for the third term on the RHS of (8) (and also for the third term on the RHS of
(12)), we have ∑

j∈I
pij(f) · rij · v(1)j (f, n) =

∑
j∈I

pij(f) · rij · [n · ḡ(1)(f) + w
(1)
j (f) + ε(n)]

= n · ḡ(1)(f) · ri(f) +
∑
j∈I

pij(f) · rij · w(1)
j (f) + ε(n) (27)

Substitution from (26), (27) into (8) yields after some algebra

σi(f, n+ 1) =
∑
j∈I

pij(f) · σj(f, n) + r
(2)
i (f) + 2 ·

∑
j∈I

pij(f) · rij · w(1)
j (f)

+
∑
j∈I

pij(f)[w
(1)
j (f ]2 − [ḡ(1)(f) + w

(1)
i (f)]2 + ε(n)

=
∑
j∈I

pij(f) · {σj(f, n) + [rij + w
(1)
j (f)]2} − [ḡ(1)(f) + w

(1)
i (f)]2 + ε(n) (28)

Hence, in matrix form we have:

σ(f, n+ 1) = σ(f) + s(f) + ε(n) (29)

where elements si(f) of the (column) vector s(f) are equal to

si(f) =
∑
j∈I

pij(f)[rij + w
(1)
j (f)]2 − [g(1)(f) + w

(1)
i (f)]2 (30)

=
∑
j∈I

pij(f)[rij + w
(1)
j (f)− g(1)(f)]2 − [w

(1)
i (f)]2 (31)

Observe that by (31) follows immediately from (30) since by (21)

−2
∑

j∈I pij(f)(rij + w
(1)
j (f))g(1)(f)− [g(1)(f)]2 = −2w

(1)
i (f)g(1)(f)− [g(1)(f)]2.

Employing (22) and the analogy between (9) and (29) we can conclude that

G(f) = lim
n→∞

1

n
σ(f) = P ∗(f)s(f) (32)

is the average variance corresponding to policy π ∼ (f).

4 Finding Optimal Policies

For finding second order optimal policies, at first it is necessary to construct the set of optimal transient
or optimal average policies (cf. e.g,[1, 3, 7]). Since optimal policies can be found in the class of stationary
policies, i.e. there exist f∗, f̄∗ ∈ F such that

v(1)(f∗) ≥ v(1)(π) resp. g(1)(f̄∗) ≥ g(1)(π) for every policy π = (fn). (33)

Let F∗ ⊂ F be the set of all transient optimal stationary policies, F̄∗ ⊂ F be the set of all average optimal
stationary policies. Stationary optimal policies minimizing total or average variance can be constructed
on applying standard policy or value iteration procedures in the class of policies from F∗ or F̂∗.

5 Specific Example: Credit Management

The state of the bank is determined by the bank liabilities, i.e. deposits and the capital and is also
influenced by the current state of the economy (cf. [7, 9]). It is a task for expert to evaluate each possible
state of the bank by some value, say i ∈ I, we assume that the set I is finite. A subset of the state space
I, say I∗ is called optimal, the decision maker tries to reach this set. To this end at each time point
the decision maker receives some money amount depending on the current state of the bank, say ci, to
improve the state of the bank. The decision maker has the following options:



1. advertise the activity of the bank,
2. assign small reward as a courtesy to the non-problematic credit holders,
3. warn and penalized the problematic credit holders.
Based on the experience of the bank, suitable advertising improves the state of the bank by reaching from
state i some more suitable state j ∈ I with probability pij(1). Similarly a courtesy reward in the total
amount ci can help to reach a more suitable state j ∈ I with probability pij(2). Finally, warning and
penalizing the problematic credit holders changes the state by reaching state j with probability pij(3).

Using the above mentioned approach the problem of optimal credit-granting policy is formulated as
a problem of finding optimal policy of a controlled Markov chain. Observe that the transient model can
also grasp models with discount factor depending on the current state. Moreover, if the discount factor
is very close to unity we try to optimize the long run average reward.

6 Conclusions

The article is devoted to Markov decision chains, in particular, attention is primarily focused on the op-
timal policies for transient and average Markov reward chains. In the class of optimal policies procedures
for finding policies with minimal total or average variance are discussed. Application of the obtained
results for finding an optimal credit-granting policy of a bank is discussed.

Acknowledgements

This research was supported by the Czech Science Foundation under Grant 15-10331S and by CONACyT
(Mexico) and AS CR (Czech Republic) under Project 171396.

References

[1] Mandl, P.: On the variance in controlled Markov chains. Kybernetika 7 (1971), 1–12.

[2] Markowitz, H.: Portfolio Selection - Efficient Diversification of Investiments. Wiley, New York 1959.

[3] Puterman, M.L.: Markov Decision Processes – Discrete Stochastic Dynamic Programming. Wiley,
New York 1994.
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