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Abstract We consider a general di�erential inclusion which is parameterized by a parameter. We
perform time discretization and present conditions under which the discretized solution map is
locally Lipschitz. Further, if the Lipschitzian modulus is bounded in some sense, we show that it
is possible to obtain the local Lipschitzian property even for the original (not discretized) solution
map. We conclude the paper with an example concerning stability analysis of nonregular electrical
circuits with ideal diodes.
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1 Introduction

We consider a general di�erential inclusion with known initial value

fpt, u, xptq, 9xptqq P Ωpt, u, xptq, 9xptqq, t P r0, T s a.e.
xp0q � a.

(1)

This inclusion is parameterized by time independent control variable/parameter u and is to be
solved for state variable x. Function f is single�valued and continuously di�erentiable in all but
the time variable while multifunction Ω is only continuous in the time variable. The main goal is
to investigate the stability properties of the so�called solution mapping S : u ÞÑ x which assigns
an in�nite�dimensional solution x of (1) to a �nite�dimensional parameter u.

Even though it is simple to obtain local Lipschitzian continuity of S : U ÑW 1,8pr0, T s,Rnq in
case of an ordinary di�erential equation with su�ciently smooth data, which corresponds to Ω � 0
and f having a special form, to our best knowledge, there are not many results for di�erential
inclusions with parameters entering the inclusion. However, for models with parameterized initial
condition, numerous results exist, see [14,15,17,24,25].

Similar dependence was studied in a series of papers by N. S. Papageorgiou, see [10,18,19,20],
in which the following in�nite�dimensional problem was considered

� 9xptq P Bxfpt, u, xptqq �Ωpt, u, xptqq, t P r0, T s a.e.
xp0q � apuq (2)
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with fpt, u, �q being a convex lower semicontinuous function. In this series the continuity of S :
U Ñ Cpr0, T s, Hq was proved for a Hilbert space H. This result was obtained for both Vietoris
and Hausdor� topologies on the power set of Cpr0, T s, Hq.

In the context of rate�independent processes and hysteresis models, the following di�erential
inclusion was studied

� 9xptq � 9uptq P NZpxptqq, t P r0, T s a.e.
xp0q � a

(3)

by P. Krej£í, see [11,12,13]. In this case, the global Lipschitzian continuity of S : Cpr0, T s, Hq Ñ
Cpr0, T s, Hq and S : W 1,1pr0, T s, Hq ÑW 1,1pr0, T s, Hq was shown.

In the case of (2), a general model was considered but only the state variable and not its
derivative entered the estimates. On the other hand, model (3) provided opposite results, rather
speci�c model was considered but the estimates were sharper. We try to combine the strengths
of both papers. Thus, we consider both general models and are able to obtain local Lipschitzian
continuity of S : U ÑW 1,2pr0, T s,Rnq, which is a signi�cantly stronger result than the continuity
of S : U Ñ Cpr0, T s, Hq for H � Rn obtained for (2). However, this approach introduces some
de�ciencies as well. We cannot handle time dependent perturbation and are able to work only
with �nite dimensional values xptq.

Instead of considering a �xed model, we consider rather a general one, perform its discretization
and derive necessary conditions for the local Lipschitzian continuity of the discretized solution map.
If the corresponding Lipschitzian modulus exhibits uniform behaviour in some sense, we are able
to deduce the Lipschitzian behavior of the original solution map as well. The Lipschitzian modulus
must exhibit some boundedness feature both in a neighborhood of the investigated parameter and
upon the decrease of the time step. Even though the conditions for this boundedness may seem
to be di�cult to verify, we propose a class of models, for which these results are veri�able.

Similar stability results can be found in [7,8], in which a di�erential variational inequality,
which is a di�erential inclusion of special form coupled with algebraic equation, is considered.
Data in such models are approximated and if the approximated solutions converge in some sense,
then this limit is a solution to the original problem.

Concerning the possible applicability of the obtained results, di�erential inclusion are nowadays
an established �eld of research, see monographs [2,3,24]. We believe that our results can be used in
postoptimal analysis of time�dependent models where some parameters are not known exactly or in
Mathematical Programs with Evolutionary Equilibrium Constraints (MPEECs) where inclusion
(1) is part of the constraint system. We also derive an estimate for the Lipschitzian modulus,
providing not only a qualitative but also quantitative estimate. We have in mind one particular
application, namely nonregular electrical circuits with ideal diodes [1] where the parameter u plays
the role of parameters of various components in the circuit and the state variable x is the charge
in the circuit.

The paper is organized as follows. It Section 2 a discretization of (1) is considered. First
an upper estimate of a generalized derivative of the discretized solution map SK is found. This
estimate is stated via adjoint equations. Then we show that having some bound on the adjoint
variables results immediately in the local Lipschitzian continuity of SK and if this bound is uniform
in a certain sense, then we can deduce the local Lipschitzian continuity for the original solution
map S as well. Since this version uses some notions of modern variational analysis, selected basic
facts from this �eld are summarized in the Appendix.

Since it may not be immediately clear how to use these results, in Section 3 we present two
examples of their possible applications. In the �rst one, we apply these results to an ordinary
di�erential equation and in the second one to a model arising in modeling of electrical circuits
with ideal diodes [1]. We are fully aware that it is possible to obtain stronger results by simpler
means for the �rst case, however, we decided to present this example because the remaining
example uses very similar ideas as the �rst one, only its implementation is much more technically
di�cult.

We will make use of the following notation and simpli�cations. We will often omit the arguments
of f . Partial derivatives ∇uf , ∇xf and ∇vf are taken with respect to u, x and 9x. Upper index K
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denoting the discretization level will be often omitted, especially in cases when K is �xed and no
convergence analysis comes into play. For discretized problem (6) by x we understand px1, . . . , xKq.
Further, we de�ne | � | :� } � }2. However, sometimes it will almost obligatory to emphasize which
norm has been used, especially when both �nite� and in�nite�dimensional ones are present. In this
case, we use | � |l2 and | � |L2 , respectively. On product spaces we consider the standard Euclidean
norm. Finally, by W 1,2pr0, T s,Rnq we understand Sobolev space on a time interval with values in
Rn.

2 Main result

In this section we will consider problem (1) and derive conditions under which the solution map
S : u ÞÑ x is locally Lipschitz. To ease the notational burden, instead of problem (1) we will also
consider the following problem

gpt, u, xptq, 9xptqq P Λptq, t P r0, T s a.e.
xp0q � a,

(4)

in which u P Rd plays the role of a parameter or a control variable and the systems are to be solved
for almost any time instant for xptq P Rn for which the initial value is given. Concerning the data,
g : r0, T s �Rd �Rn �Rn Ñ Rm is a single�valued function which is continuously di�erentiable in
all but the time variable and Λptq � Rm is a closed set.

Even though it seems that (1) is more general than (4), it is not entirely true. Having problem
(1), we may state it in the form (4) by setting

gpt, u, xptq, 9xptqq :�

�
���

u
xptq
9xptq

fpt, u, xptq, 9xptqq

�
��


Λptq :� gphΩpt, �, �, �q.

(5)

By doing so, we add arti�cial functions, which means that the used constraint quali�cations will
become more di�cult to verify. As an example, consider the implicit function theorem or its
numerous generalizations from [5], in which one of the constraint quali�cations states that ∇g has
to have full row rank. This reformulation will be considered in examples in Section 3.

Consider now time discretization 0 � tK0   � � �   tKK � T and together with the in�nite�
dimensional problem (4) also its �nite�dimensional discretized counterpart

gKk�1puK , xKk , xKk�1q P ΛKk�1, k � 0, . . . ,K � 1

xK0 � a
(6)

in which gk : Rd � Rn � Rn Ñ Rm is a continuously di�erentiable function and Λk is a closed
set. For simplicity, the upper index K denoting discretization level will be often omitted. The
exact discretization scheme is not speci�ed but we require that for computation of xk�1 only the
previous value xk may be used.

As all the problems depend on a parameter u, we are interested in analysis of the so�called
solution map, also known as the control�to�state mapping, which assigns a solution x of a system
to a parameter u. This mapping will be denoted by S for continuous case (4) and SK for dis-
cretized case (6). In this section we �rst derive an upper estimate for coderivative D�SK which
is used to present conditions for veri�cation of the Aubin property of SK , a property which coin-
cides with local Lipschitzian property under single�valuedness of SK . Finally, we show that under
single�valuedness of SK and S and some boundedness of the Lipschitzian moduli, the Lipschitzian
property can be transferred from SK to S. These results will be used later in Section 3 where the
local Lipschitzian continuity of

S : Rd ÑW 1,2pr0, T s,Rnq
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is shown.
Before stating the �rst lemma, we remind that u P Rd and by x :� px1, . . . , xKq P RKn. The

initial value x0 is omitted because x0 � a is not a subject to change.

Lemma 1 Consider problem (6) and �x any x̄ P SKpūq. Assume that for all k � 1, . . . ,K, gk is

continuously di�erentiable around pū, x̄k, x̄k�1q and Λk is closed. Assume further that the following

constraint quali�cation holds: if (7)�(10) are satis�ed with x� � 0, then u� � 0.
Then for D�SK : RKn Ñ Rd and for any element

u� P D�SKpū, x̄qpx�q
with x� � px�1 , . . . , x�Kq there exist for k � 0, . . . ,K � 1 multipliers

pk�1 P NΛk�1
pgk�1pū, x̄k, x̄k�1qq (7)

such that

u� �
Ķ

k�1

p∇ugkpū, x̄k�1, x̄kqqJpk. (8)

Moreover, for k � 1, . . . ,K � 1 the adjoint equations

�x�k � p∇vgkpū, x̄k�1, x̄kqqJpk � p∇xgk�1pū, x̄k, x̄k�1qqJpk�1 (9)

and the terminal condition

�x�K � p∇vgKpū, x̄K�1, x̄KqqJpK (10)

are satis�ed.

Proof It is simple to see that

gphSK �
$&
%pu, xq|

g1pu, x0, x1q P Λ1

. . .
gKpu, xK�1, xKq P ΛK

,.
- � tpu, xq| Gpu, xq P Σu

where we have de�ned Σ :� Λ1 � . . . ΛK and

Gpu, xq :�
�
� g1pu, x0, x1q

. . .
gKpu, xK�1, xKq

�

.

Using the multi�valued inverse, we can write gphSK � G�1pΣq, which due to the assumed
constraint quali�cation by virtue of [23, Theorem 6.14] implies

NgphSK pū, x̄q � ∇Gpū, x̄qJ NΣpGpū, x̄qq. (11)

Using the de�nition of coderivative and (11), we obtain

D�SKpū, x̄qpx�q �
"
u�|

�
u�

�x�


P NgphSK pū, x̄q

*

�
"
u�|

�
u�

�x�


P ∇Gpū, x̄qJ NΣpGpū, x̄q

*
.

(12)

The Jacobian of G has the following form

∇Gpū, x̄q �

�
����

∇ug1 ∇vg1

∇ug2 ∇xg2 ∇vg2

...
. . .

. . .

∇ugK ∇xgK ∇vgK

�
���
 (13)

From [23, Proposition 6.41] we know that

NΣpGpū, x̄qq �
K�1¡
k�0

NΛk�1
pgk�1pū, x̄k, x̄k�1qq. (14)

Finally by plugging (13) and (14) into (12) we obtain statement of the lemma.
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In the next few lines we will brie�y comment on Lemma 1. As we have already said, the main
goal is to perform the sensitivity analysis of solution map SK . From Mordukhovich criterion [23,
Theorem 9.40] we immediately see that SK has the Aubin property if ∇vgk�1pū, x̄k, x̄k�1q has
full row rank for all k � 0, . . . ,K � 1. Unfortunately, as in our desired application the sets Λk
will mostly depend on state or control variables and will have to be rewritten via their graphs as
shown in (5), additional arti�cial functions will be added and hence, this full row rank property
cannot be expected and another approach has to be used.

It is certainly possible to relax the used constraint quali�cation. According to [9, Proposition
3.3] the constraint quali�cation from Lemma 1 corresponds to the Aubin property of multifunction

Mpqq � tpu, xq| gk�1pu, xk, xk�1q � qk�1 P Λk�1, k � 0, . . . ,K � 1u
around point p0, ū, x̄q. According to [9, Proposition 3.2], the same result would hold true if we
assumed only calmness of M at the same point. However, since the main goal of this paper lies in
the next theorem whose assumptions imply the Aubin property of M around the reference point,
and thus the constraint quali�cation of Lemma 1 is satis�ed, we keep the current state.

Having Lemma 1 at hand, the condition for ful�llment of the Aubin property of SK , and thus
of the local Lipschitzian property if SK is single�valued, is well�known. To be able to deduce some
some results for S, we need some uniformity boundedness of the Lipschitzian moduli both over
time and on some neighborhood of ū. This condition is stated in (15).

Together with xK � pxK1 , . . . , xKKq P RKn, we will also consider its piecewise linear and piece-
wise constant extensions xKp�q. Both will satisfy xKp0q � a and xKptkq � xKk for all k � 1, . . . ,K.
The piecewise linear extension will be obtained by connecting these points while the piecewise
constant extension will satisfy xKptq � xKptKk�1q whenever t P rtKk�1, t

K
k q for all k � 1, . . . ,K.

Theorem 1 If in the setting of Lemma 1 there exists a constant LpK, ūq such that

|u�K | ¤ LpK, ūq|x�K |,
then SK has the Aubin property around pū, x̄q with modulus not larger than LpK, ūq.

Assume further that there exists a neighborhood V of ū such that multifunctions SK and S are

single�valued on V . For all u P V �nd LpK,uq as above, de�ne
MpK,V q :� sup

uPV
LpK,uq

to be the upper bound for the Lipschitzian modulus of SK on V and assume that

MpV q :� lim inf
KÑ8

1?
K
MpK,V q   8. (15)

Finally, assume that for every u P V we have xKp�q á x in L2pr0, T s,Rnq, where x � Spuq,
xK � SKpuq and xKp�q is the piecewise constant or piecewise linear extension of SKpuq.

Then S : Rd Ñ L2pr0, T s,Rnq is locally Lipschitz on V with modulus less or equal to
?
TMpV q.

Proof The �rst statement follows immediately from [23, Theorem 9.40].
For the second part recall the already several times mentioned fact that the Aubin property

coincides with the locally Lipschitzian property for single�valued mappings. Using the same the-
orem as in the �rst part, we obtain that SK is locally Lipschitzian on V with modulus at most
MpK,V q. Fix arbitrary parameters u, ũ P V and denote the corresponding state variables by xK

and x̃K . Even though the Lipschitzian modulus is de�ned as in�mum of all constants satisfying
(50), having uniform bound for this modulus on V , we can deduce that

1?
K
|x̃K � xK |l2 ¤ 1?

K
MpK,V q|ũ� u|. (16)

For simplicity denote zK :� x̃K�xK and consider �rst its piecewise constant extension denoted
by zKp�q. For k � 1, . . . ,K and j � 1, . . . , n we denote by zKk,j the j�th component of zKk and
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similarly by zKj ptq we understand the j�th component of its piecewise constant extension. Further
recall that, as mentioned in the introduction, we consider the Euclidean norm on product spaces
and hence

|zKp�q|L2 �
gffe ņ

j�1

|zKj p�q|2L2 �
gffe ņ

j�1

» J
0

pzKj ptqq2dt.

For the left�hand side of (16) due to T � Kh we obtain

1?
K
|zK |l2 �

gffe 1

Kh

ņ

j�1

Ķ

k�1

hpzKk,jq2 �
gffe 1

T

ņ

j�1

» J
0

pzKj ptqq2dt �
1?
T
|zKp�q|L2 . (17)

From the assumptions we know that for the solutions of the continuous problems x̃ :� Spũq and
x :� Spuq we have x̃K � xK á x̃� x in L2pr0, T s,Rnq and thus

lim inf
KÑ8

1?
K
|x̃K � xK |l2 � lim inf

KÑ8

1?
T
|x̃Kp�q � xKp�q|L2 ¥ 1?

T
|x̃p�q � xp�q|L2 (18)

and combination of (18), (16) and (15) yields

1?
T
|x̃p�q � xp�q|L2 ¤ lim inf

KÑ8

1?
K
|x̃K � xK |l2

¤ lim inf
KÑ8

�
1?
K
MpK,V q|ũ� u|

�
�MpV q|ũ� u|

and the result for the case of piecewise constant extension has been proven.

If the extension is piecewise linear, the only thing which needs to be modi�ed is (17). Again,
we keep the same symbols for this extension as in the previous case. By simple computation it can
be shown that

1?
T
|zKp�q|L2 �

gffe h

3T

ņ

j�1

Ķ

k�1

pz2
k,j � zk,jzk�1,j � z2

k�1,jq

¤
gffe h

3T

ņ

j�1

Ķ

k�1

p3z2
k,j � 2z2

0,jq �
gffe 1

K

ņ

j�1

Ķ

k�1

z2
k,j �

1?
K
|zK |l2

(19)

because z0,j � 0. Finally, the theorem statement follows exactly from the same arguments as in
the previous case.

3 Applications

In this �nal section we present applications of Theorem 1. Even though the main strength of this
theorem lies in admitting the multi�valued part, �rst we set this part to zero and consider an
ordinary di�erential equation. We are fully aware that for this case it is possible to obtain stronger
results by simpler means, however, we have decided to include this example to illustrate the basic
estimates on which the next example is based. In the second part we consider a di�erential inclusion
called the sweeping process motivated by electrical circuits with ideal diodes [1] and show the local
Lipschitzian continuity of the solution map.

In all cases we will need the following two lemmas, the �rst one being a discrete version of
Gronwall's lemma.
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Lemma 2 ([6, Proposition 3.1, Proposition 3.2]) If 1� λh ¡ 0 and

ak�1 � ak
h

¤ λak�1 � gk�1,

then

ak ¤ p1� λhq�k
�
a0 � h

ķ

j�1

gk

�
.

Similarly, if 1� λh ¡ 0 and

ak�1 � ak
h

¤ λak � gk�1,

then

ak ¤ p1� λhqk
�
a0 � h

ķ

j�1

gk

�
.

Lemma 3 Let A be a positive de�nite matrix. Fix any r and �nd any p and q solving the following
system

p�Aq � r

pJq ¤ 0.
(20)

Denoting

d :� min
}x}�1

xJAx,

then one has

}q} ¤ 1

d
}r}.

Finally, for pJq ¤ 0 it is su�cient that

�
p
q



P Ngph NΓ px, yq

for any y P NΓ pxq and convex Γ .

Proof Constant d is positive because A is positive de�nite. For q � 0 the statement is obvious. In
the opposite case, multiply equation (20) by q and perform simple algebraic operations to obtain

qJr � qJp� qJAq ¤ �d}q}2,

which implies

}q}2 ¤ �1

d
qJr ¤ 1

d
}q}}r},

which in turn amounts to the �rst part of the lemma statement.

If Γ is convex, then by virtue of [22, Theorem 4] we know that x ÞÑ NΓ pxq is a maximal
monotone operator, and thus [21, Theorem 2.1] implies pJq ¤ 0.
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3.1 Ordinary di�erential equation

Consider an ordinary di�erential equation

9yptq � fpt, u, yptqq (21)

with initial condition yp0q � a. As we have already said, this is only an illustrative example with
not satisfactory results and thus we impose rather strong assumptions on f to keep this subsection
as short as possible. Speci�cally, we will assume that f is bounded, continuous in the time variable
and continuously di�erentiable in last two variables.

First, we need to discretize (21). Since we are not interested in convergence analysis, we keep
the discretization as simple as possible and use the forward Euler method. It is possible to use

yKk�1 � yKk � hKfptKk , u, yKk q � 0, (22)

however, in this case, we would obtain only local Lipschitzian continuity of the solution map of
(21) when considered as S : Rd Ñ L2pr0, T s,Rnq. Thus, we introduce an arti�cial variable and
perform the following discretization

yKk�1 � yKk � hKzKk�1 � 0 (23a)

zKk�1 � fptKk , u, yKk q � 0 (23b)

with y0 � a �xed. As we will see later, in this case, we will be able to prove local Lipschitzian
continuity of the solution map of (21) when considered as S : Rd ÑW 1,2pr0, T s,Rnq.

For discretized problem (23) we consider slightly rede�ned solution map, speci�cally we will
consider SK : u ÞÑ pyK , zKq, hence to the parameter not only the state variable but also its
derivate is assigned. It is clear that SK is single�valued. De�ne now fKk pu, yKk q :� fptKk , u, yKk q,
�x any ū and some its bounded neighborhood V . Then the following constants are �nite

c1 :� supt∇yfkpu, ykq| u P V, pyK , zKq P SKpuq,K P N, k � 1, . . . ,Ku
c2 :� supt∇ufkpu, ykq| u P V, pyK , zKq P SKpuq,K P N, k � 1, . . . ,Ku. (24)

Fix now any u P V , compute pyK , zKq � SKpuq and set pyKp�q, zKp�qq P L2pr0, T s,Rnq �
L2pr0, T s,Rnq to be the extension of pyK , zKq P RKn � RKn which is piecewise linear for yKp�q
and piecewise constant for zKp�q. From the assumptions on f it is simple to deduce that yKp�q
and zKp�q are uniformly bounded in L8pr0, T s,Rnq and thus we may extract a subsequence such
that yKp�q á yp�q and zKp�q á zp�q, both in L2pr0, T s,Rnq. Moreover, it can be shown that
9yp�q � zp�q and that yp�q is the unique solution to (21). In the next several lines, we will consider
�xed discretization level K and thus we omit it.

Denote the multiplier corresponding to (23a) by pk and to (23b) by qk. Then Lemma 1, with
the not yet veri�ed constraint quali�cation, yields that if u� P D�SKpu, y, zqpy�, z�q, then

u� � �
Ķ

k�1

p∇ufkpu, ykqqJqk (25)

and the terminal condition

�y�K � pK (26a)

�z�K � �hpK � qK (26b)

and for k � 1, . . . ,K � 1 the adjoint equations

�y�k � pk � pk�1 � p∇yfk�1pu, yk�1qqJqk�1 (27a)

�z�k � �hpk � qk. (27b)

are satis�ed. Moreover, from these expressions, it is simple to see that the constraint quali�cation
of Lemma 1 indeed holds.
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Plugging (27b) into (27a) yields

pk � pk�1

h
� p∇yfk�1pu, yk�1qqJpk�1 � 1

h
py�k � p∇yfk�1pu, yk�1qqJz�k�1q, (28)

which due to Lemma 2 results in

}pk}1 ¤ ec1T p}y�K}1 �
K�1̧

j�k

p}y�j }1 � c1}z�j�1}1qq ¤ ec1T
Ķ

j�1

p}y�j }1 � c1}z�j }1q.

By plugging this estimate back to (27b) we have

}qk}1 ¤ }z�k }1 � hec1T
Ķ

j�1

p}y�j }1 � c1}z�j }1q (29)

and noting that y�K P RKn stands for vector py�1 , . . . , y�Kq, we have

}y�K}1 �
Ķ

k�1

}y�k }1 (30)

and thus from (25) due to (29) we have estimate

}u�}2 ¤ }u�}1 ¤ c2

Ķ

k�1

}qk}1 ¤ c2

Ķ

k�1

�
}z�k }1 � hec1T

Ķ

j�1

p}y�j }1 � c1}z�j }1q
�

� c2
�}zK�}1 � Tec1T p}yK�}1 � c1}zK�}1q

�
¤ c2

?
Kn

�}zK�}2 � Tec1T p}yK�}2 � c1}zK�}2q
�
.

(31)

Since c1 and c2 are not dependent on the choice of u P V , we may apply Theorem 2 to obtain
that mapping u ÞÑ py, 9yq solving (21) is locally Lipschitz continuous as V Ñ L2pr0, T s,Rnq �
L2pr0, T s,Rnq. This is equivalent to local Lipschitzian continuity of solution map u ÞÑ y to (21)
when considered as V Ñ W 1,2pr0, T s,Rnq. We again emphasize that this is only a toy example
with simpli�ed assumptions and not entirely satisfactory results.

3.2 Sweeping process

The purpose of the previous example was to give an insight of what needs to be done. In this
second example we consider a proper di�erential inclusion with discontinuous multifunction and
derive similar results as in the �rst example. The considered model is a version of the sweeping
process from [1] which takes the following form

�A1 9yptq �A0yptq � fptq P NCptqp 9yptqq, t P r0, T s a.e.
yp0q � a.

(32)

Such systems arise in modeling electrical circuits with ideal diodes, matrices A0 and A1 accumulate
information about components of the circuit and y stands for the charge in circuit. We add
perturbation u to data and consider the following model

�A1puq 9yptq �A0puqyptq � fpt, uq P NCptqp 9yptqq, t P r0, T s a.e.
yp0q � a.

(33)

The goal is to perform sensitivity analysis of S : u ÞÑ xp�q with xp�q :� pyp�q, 9yp�qq solving (33).
Thus, we investigate how the change of various parameters of the model, such as resistances,
in�uences the change of the charge in the circuit.
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On the contrary to the original paper [1], instead of an arbitrary Hilbert space we restrict
ourselves only to yptq P Rn. Under certain assumptions, in [1, Theorem 5.6] the convergence of the
discretized solutions is proved using a modi�ed version of the catching up algorithm, in which one
solves for k � 0, . . . ,K�1 de�nes doubles xk�1 :� pyk�1, zk�1q and solves iteratively the following
system starting with y0 � a

gk�1pu, xk, xk�1q :�
�
� zk�1

�A1puqzk�1 �A0puqyk�1 � fk�1puq
yk�1 � yk � hzk�1

�

P
�

�
�gph NCk�1

0

�

�: Λk�1 (34)

where fKk puq :� fptKk , uq and CKk :� CptKk q are closed convex sets. It is shown in [1, Theorem
5.7] that S is single�valued under additional assumptions and similar result is shown for SK in [1,
Remark 2]. In the rest of this section we assume that this single�valuedness is satis�ed.

From now on, we assume that the constraint quali�cation of Lemma 1 is satis�ed. This con-
straint quali�cation will be veri�ed later on. Fix any ū and some its neighborhood V and assume
further that for i � 0, 1 and t P r0, T s the mappings u ÞÑ Aipuq and u ÞÑ fpt, uq are continuously
di�erentiable for all u P V .

First, �x any u P V and apply Lemma 1. It is well�known that gph NCk is closed for any
set Ck and hence, with the not�yet�veri�ed constraint quali�cation, all the assumptions of this
lemma are satis�ed. For simplicity, for the corresponding multipliers from this lemma we omit their
dependence on u, and hence write e. g. only pk instead of pkpuq. However, for various constants
used as upper bounds, their dependence on u is emphasized.

Computing the partial derivatives of gk, we obtain

∇ugk �
�
� 0
Bkpuq

0

�

,∇xgk �

�
� 0 0

0 0
�I 0

�

,∇vgk �

�
� 0 I
�A0puq �A1puq

I �hI

�



with
Bk�1puq :� �∇uA1puqzk�1 �∇uA0puqyk�1 �∇ufk�1puq.

Lemma 1 then states that if u� P D�Spu, xqpx�q, then this element can be expressed as

u� �
Ķ

k�1

BJ
k puqqk (35)

where there are multipliers ppk, qk, rkq satisfying for k � 1, . . . ,K�
pk
qk



P Ngph NCk

pzk,�A1puqzk �A0puqyk � fkpuqq. (36)

Assuming that matrices A0puq and A1puq are symmetric, then the adjoint equations (9) read for
k � 1, . . . ,K � 1

rk � rk�1 �A0puqqk � y�k (37a)

pk �A1puqqk � hrk � z�k (37b)

and the terminal condition (10) is equal to

rK � A0puqqK � y�K (38a)

pK �A1puqqK � hrK � z�K . (38b)

De�ne now the following constants

cpuq :� 1

min}x}1�1 xJA1puqx

dpK,uq :� 1

1� hcpuq}A0puq}8

�
1� Tcpuq}Apuq}8

K


�K
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If A1puq is positive de�nite, we may employ Lemma 3 to (37b) and (38b) to obtain for k � 1, . . . ,K

}qk}1 ¤ cpuq}hrk � z�k }1. (39)

Then by plugging estimate (39) into (38a) and (37a) we obtain

}rK}1 ¤ cpuq}A0puq}8ph}rK}1 � }z�K}1q � }y�K}1
}rK}1 ¤ 1

1� hcpuq}A0puq}8 pcpuq}A0puq}8}z�K}1 � }y�K}1q
(40)

and for k � 1, . . . ,K � 1

}rk}1 � }rk�1 �A0puqqk � y�k }1 ¤ }rk�1}1 � cpuq}A0puq}8ph}rk}1 � }z�k }1q � }y�k }1
or equivalently

}rk}1 � }rk�1}1
h

¤ cpuq}A0puq}8}rk}1 � 1

h
}y�k }1 �

1

h
cpuq}A0puq}8}z�k }1.

This enables us to use Lemma 2 with, together with (40) and (30), to obtain

}rk}1 ¤
�

1� Tcpuq}Apuq}8
K


�K �
}rK}1 �

K�1̧

l�k

r}y�l }1 � cpuq}A0puq}8}z�l }1s
�

¤ dpK,uq
Ķ

l�1

r}y�l }1 � cpuq}A0puq}8}z�l }1s

� dpK,uqr}yK�}1 � cpuq}A0puq}8}zK�}1s.

(41)

Assume further that there exist constants ρy and ρz such that for all u P V , for all K and for
the corresponding pyK , zKq � SKpuq we have

|yKk | ¤ ρy, |zKk | ¤ ρz

for all K and k � 1, . . . ,K. Due to the structure of the considered model, this assumption is
satis�ed when all sets Cptq are uniformly bounded. Then if }∇ufp�, uq}8 is bounded on r0, T s,
then we get the following estimate

}Bkpuq}8 ¤ }∇uA1puq}8ρz � }∇uA0puq}8ρu � sup
tPr0,T s

}∇ufpt, uq}8 �: bpuq. (42)

Formulas (35), (42), (39) and (41) then imply

|u�| ¤ }u�}1 ¤ bpuq
Ķ

k�1

}qk}1 ¤ bpuqcpuq
Ķ

k�1

ph}rk}1 � }z�k }1q

¤ bpuqcpuqrTd1pK,uqd2pK,uqr}yK�}1 � cpuq}A0puq}8}zK�}1s � }zK�}1s
¤ bpuqcpuqmaxtTdpK,uq, TdpK,uqcpuq}A0puq}8 � 1u}pyK�, zK�q}1
¤
?

2KnbpuqcpuqmaxtTdpK,uq, TdpK,uqcpuq}A0puq}8 � 1u|pyK�, zK�q|.
Moreover, from this formula it is clear that the constraint quali�cation of Lemma 1 is satis�ed.

Theorem 1 then implies that SK has the local Lipschitzian property around u with modulus
less or equal to LpK,uq where

LpK,uq :�
?

2KnbpuqcpuqmaxtTdpK,uq, TdpK,uqcpuq}A0puq}8 � 1u. (43)

To use the second part of Theorem 1, we need to �nd supuPV LpK,uq. Assume furthermore that
u ÞÑ ∇ufpt, uq is continuous on V uniformly in t and �x any ε ¡ 0 such that εcpūq   1. This,
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together with previously imposed assumptions, allows us to shrink the neighborhood V of ū such
that for all u P V and for all t P r0, T s we have

}Aipuq �Aipūq}8 ¤ ε

}∇uAipuq �∇uAipūq}8 ¤ ε

}∇ufpt, uq �∇ufpt, ūq}8 ¤ ε.

(44)

Hence we obtain

bpuq � }∇uA1puq}8ρz � }∇uA0puq}8ρu � sup
tPr0,T s

}∇ufpt, uq}8

¤ }∇uA1pūq}8ρz � }∇uA0pūq}8ρu � sup
tPr0,T s

}∇ufpt, ūq}8 � ερz � ερu � ε
(45)

For an estimate for cpuq, �x �rst any x P Rn with }x}1 � 1. Then by (44) we have

|xJA1puqx� xJA1pūqx| ¤ }x}1}A1puq �A1pūq}8}x}1 ¤ ε,

which implies

cpuq � 1

min}x}1�1 xJA1puqx ¤ 1

min}x}1�1 xJA1pūqx� ε
� cpūq

1� εcpūq . (46)

Similarly, for K large enough, the following estimate, which is independent of the choice of u P V ,
can be deduced

dpK,uq ¤
�

1

1� hpcpūq � εqp}Apūq}8 � εq

�

1� Tcpūqp}A0pūq}8 � εq
Kp1� εcpūqq


�K
KÑ8ÝÑ exp

�
Tcpūqp}A0pūq}8 � εq

1� εcpūq


.

(47)

By plugging (45), (46) and (47) into (43) we �nd upper estimate of supuPV LpK,uq, which in
accordance with Theorem 1 will be denoted by MpK,V q and similarly for

MpV q :� lim sup
KÑ8

1?
K
MpK,V q

we have
MpV q ¤

?
2nb̂ĉmaxtT d̂, T d̂ĉÂ� 1u.

where

Â :� }A0pūq}8 � ε

b̂ :� }∇uA1pūq}8ρz � }∇uA0pūq}8ρu � sup
tPr0,T s

}∇ufpt, ūq}8 � ερu � ερz � ε

ĉ :� cpūq
1� εcpūq

d̂ :� exp

�
Tcpūqp}A0pūq}8 � εq

1� εcpūq


.

If yKp�q á yp�q and zKp�q á 9yp�q both in L2pr0, T s,Rnq with yp�q being the unique solution of
(33) corresponding to u, then considering that ε may be arbitrarily small, Theorem 1 tells us that
S is locally Lipschitz around ū with modulus no more than

?
2nbcmaxtTeTc}A0pūq}8 , T eTc}A0pūq}8c}A0pūq}8 � 1u. (48)

where
b :� }∇uA1pūq}8ρz � }∇uA0pūq}8ρu � sup

tPr0,T s

}∇ufpt, ūq}8

c :� 1

min}x}1�1 xJA1pūqx.

We summarize the result in the following theorem.
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Theorem 2 For u P Rd de�ne the set of solutions y of problem (33) by Spuq. Assume that for

all t P r0, T s the sets Cptq are closed and convex. Moreover, let Cp0q be a bounded set and Cp�q
have a continuous variation, which means that there exists a nondecreasing continuous function

ν : r0, T s Ñ R with νp0q � 0 such that

|dpv, Cptqq � dpv, Cpsq| ¤ |νptq � νpsq| (49)

for all v P Rn and s, t P r0, T s.
Fix any ū and assume that there exists its neighborhood V with the following properties

� f is a continuous function on r0, T s � V
� fpt, �q is di�erentiable on V for every t P r0, T s and ∇ufpt, �q is continuous at ū uniformly in

t by which we understand that for every ε ¡ 0 there exists a neighborhood Ṽ of ū such that

sup
tPr0,T s

sup
uPṼ

|∇ufpt, uq �∇ufpt, ūq| ¤ ε.

� Aipuq is symmetric positive de�nite matrices such that Aip�q is continuously di�erentiable at ū
for i � 0, 1 and u P V .
Then SK and S are single�valued and there exist constants ρy and ρz such that for all u P V

and all the corresponding pyK , zKq � SKpuq we have |yKk | ¤ ρy, |zKk | ¤ ρz for all K and all

k � 1, . . . ,K. Finally, S : Rd Ñ W 1,2pr0, T s,Rnq is locally Lipschitz at ū with modulus no more

than (48).

Proof The proof has been basically performed in this section. We only �t the remaining blank
spots concerning assumptions. Constant ρz exists due to the boundedness of sets Cptq. From this
the existence of ρy follows immediately. The single�valuedness of SK and of S follows from [1,
Remark 2] and [1, Theorem 5.7]. The required convergence yKp�q á yp�q and zKp�q á 9yp�q in
L2pr0, T s,Rnq is a result of the proof of [1, Theorem 5.6].
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A Basic tools of variational analysis

In this section we present basic notions of variational analysis, which are essential for this paper. More information
can be found either in [23] for �nite�dimensional setting or in [16] and [4] for the in�nite�dimensional one.

All objects in this section are �nite�dimensional. For sequence of sets Ak � Rn we de�ne the Painlewé�
Kuratowski upper limit as

Limsup
kÑ8

Ak � tx| Dxk P Ak, x is an accumulation point of txkuu.

For multifunction M : Rn Ñ Rm we de�ne this limit as

Limsup
xÑx̄

Mpxq �
¤

xkÑx̄

Limsup
kÑ8

Mpxkq.

For x̄ P A we de�ne the Fréchet and limiting normal cones as

N̂Apx̄q � tx�| xx�, x� x̄y ¤ op}x� x̄}q for all x P Au

NApx̄q � Limsup

x
A
Ñx̄

N̂Apxq.

where by x
A
Ñ x̄ we understand standard convergence x Ñ x̄ with x P A.

To both normal cones, we can de�ne the corresponding subdi�erential of an extended single�valued function
f : Rn Ñ R as

B̂fpx̄q � tx�| px�,�1q P N̂epi f px̄, fpx̄qqu

Bfpx̄q � tx�| px�,�1q P Nepi f px̄, fpx̄qqu.
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If A happens to be convex, all the above cones coincide and are equal to the normal cone of convex analysis

NApx̄q � tx�| xx�, x� x̄y ¤ 0 for all x P Au

and similarly, if f is di�erentiable at x̄, then B̂fpx̄q � t∇fpx̄qu but as the limiting subdi�erential accumulates some
information from the neighborhood, we have only Bfpx̄q � t∇fpx̄qu. We obtain equality in the previous relation if
f is continuously di�erentiable at x̄.

It is not possible to use this de�nition if f is multi� or vector�valued. In this case one usually works with the
graph of the mapping instead of its epigraph. Hence, for a multifunction M : Rn Ñ Rm and for any ȳ P Mpx̄q we
de�ne the coderivative D�Mpx̄, ȳq : Rm Ñ Rn at this point as

D�Mpx̄, ȳqpy�q � tx�| px�,�y�q P Ngph M px̄, ȳqu

If M is single�valued, we write only D�Mpx̄qpy�q instead of D�Mpx̄,Mpx̄qqpy�q. If M is single�valued and smooth,
then its coderivative amounts to the adjoint Jacobian.

A multifunction M : Rn Ñ Rm has the Aubin property at px̄, ȳq P gphM if there exist a nonnegative modulus
L and neighborhoods U of x̄ and V of ȳ such that for all x, x1 P U the following inclusion holds true

Mpxq X V � Mpx1q � L}x� x1}Bp0, 1q, (50)

where Bp0, 1q � Rm is the unit ball. If M is single�valued on some neighborhood of x̄, then the Aubin property
reduces to the local Lipschitzian property. Since this will be mostly the case in the paper, the reader may interchange
these two properties. The in�mum of all L satisfying (50) for some U and V will be called the modulus of Aubin
property or Lipschitzian modulus for single�valued M .

For more information and properties of the abovementioned objects, we refer the reader again to [16] and [23].
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