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Identification of some nonsmooth evolution systems with illustration
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A class of evolution quasi-static systems which leads, after a suitable time
discretization, to recursive non-linear programs, is considered and optimal con-
trol or identification problems governed by such systems are investigated. The
resulting problem is an evolutionary Mathematical Programs with Equilibrium
Constraints. A subgradient information of the (in general nonsmooth) compos-
ite objective function is evaluated and the problem is solved by the implicit
programming approach. The abstract theory is illustrated on an identification
problem governed by delamination of a unilateral adhesive contact of elastic
bodies discretized by finite-element method in space and a semiimplicit formula in
time. Being motivated by practical tasks, an identification problem of the fracture
toughness and of the elasticity moduli of the adhesive is computationally imple-
mented and tested numerically on a two-dimensional example. Other applications
including frictional contacts or bulk damage, plasticity or phase transformations
are outlined.

Keywords: rate-independent systems; optimal control; identification; fractional-
step time discretization; quadratic programming; gradient evaluation; variational
analysis; implicit programming approach; limiting subdifferential; coderivative;
nonsmooth contact mechanics; delamination

AMS Subject Classifications: 35Q90; 49N10; 65K15; 65M32; 74M15; 74P10;
90C20

1. Introduction

Many evolution systems have the structure of the generalized gradient flow
.
q ∈ ∂ξR

∗(q;−∂qE (t, q))

with functionals E (t, q) and R∗(q; ξ). Here, q is an abstract state of the system and
.
q

denotes its time derivative. Quite typically, R∗(q; ·) is convex and, making the conjugate
of R∗(q; ξ) with respect to the ‘driving force’ variable ξ , i.e. R(q; v) = supξ [〈v, ξ 〉 −
R∗(q; ξ)], the generalized gradient flow can equivalently be written in the Biot-equation
form

∗Corresponding author. Email: adam@utia.cas.cz
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∂ .
qR(q; .

q) + ∂qE (t, q) � 0. (1)

In many cases, the problem is nonsmooth due to a nonsmoothness of R(q; ·) or E (t, q),
which is why we wrote inclusion in (1) rather than equality. Ansatz (1) is very general
and covers great variety of problems in particular in nonsmooth continuum mechanics.
The state variable q may involve displacements and various internal parameters (but also
various concentrations of some constituents subjected to diffusive processes). In this paper,
we focus on a subclass of such problems where the state has the structure

q = (u, z) (2)

for each time instance t in a Banach space U × Z . In this way, a quasi-static plasticity, or
damage or various phase transformations at small strains can be modelled, and also various
problems in contact mechanics like friction or adhesion, together with various combinations
of these phenomena.

After a suitable time discretization, (1) gives rise to recursive optimization problems.
Often (or, in applications in continuum mechanics we have in mind, rather typically) q ranges
over an infinite-dimensional Banach space and, after a possible ‘spatial’ discretization,
these minimization problems have a structure of strictly convex Quadratic Programming
problems. It is then relatively easy to use such a discretized evolution problem as a governing
system for some optimization problem, e.g. optimal control or identification of parameters.
This leads to Mathematical Programs with Evolution Equilibrium Constraints (MPEEC)
which have been studied, e.g. in [1–3].

The functionals in (1) depend also on an abstract parameter π and have a special form

R(π, q; .
q) = R1(π, u, z; .

u) + R2(π, u, z; .
z),

E (t, π, q) = E (t, π, u, z).

We then consider an optimal-control or an identification problem on a fixed time interval
[0, T ]:

Minimize
∫ T

0
j (u, z) dt + H(π)

subject to ∂ .
uR1(π, u, z; .

u) + ∂uE (t, π, u, z) � 0 for a.a. t ∈[0, T ], u(0) = u0,

∂ .
zR2(π, u, z; .

z) + ∂zE (t, π, u, z) � 0 for a.a. t ∈[0, T ], z(0) = z0,

u ∈ L∞(0, T ; U ), z ∈ L∞(0, T ; Z), π ∈ �

(3)

with some j : U × Z → R and H : � → R specified later; here � is a closed convex set
of a Banach space where π lives. In some models, the flow rule for u in (3) is purely static,
i.e. R1 = 0. In this case, if there is no dissipation in this part, then only z0, but not u0 is
decisive when considering ∂uE (t, π, u0, z0) � 0. We use the standard notation for Bochner
space L∞(0, T ; ·) of Banach-space-valued Bochner measurable functions on [0, T ].

The main aim of the paper is a deep analysis of a discretized version of MPEEC (3)
leading both to sharp necessary optimality conditions as well as to an efficient numerical
procedure based on the so-called Implicit Programming approach (ImP), cf. [4,5]. In
particular, on the basis of the subdifferential calculus of Mordukhovich [6,7] we will show
that the solution map S : π 	→ (u, z) defined via the discretized equilibrium relations in (3),
is single-valued and locally Lipschitz and satisfies henceforth the basic ImP hypothesis. In
the respective proof, one has to deal with a difficult multifunction arising in connection with
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Optimization 2027

our evolving constraint sets. The application of standard tools of generalized differential
calculus provides us in this case only with an upper estimate of the coderivative of the
normal cone mapping to the overall constraint set, which could be a substantial drawback
both in the optimality conditions as well as in the used numerical approach. To overcome
this hurdle, we have employed a new result from [8], which enables us to compute the
limiting coderivative of the mentioned normal cone mapping exactly.

The plan of the paper is the following. In Section 2, we briefly introduce a suitable
discretization of the identification problem (3) that yields a unique response (u, z) of the
constraint system of (3) for a given π and allows for efficient optimization technique. After
introducing some notation and notions from variational analysis in Section 3, we formulate
in Section 4 first-order necessary optimality condition for the discrete version of MPEEC
(3) and derive a subgradient formula for the composite objective function of the discretized
problem. In Section 5, we formulate a specific application-motivated identification problem
from contact continuum mechanics that fits (and illustrates) the system (3). Eventually, in
Section 6, we illustrate the usage of the subgradient evaluation procedure via an adhesive
contact problem in a non-trivial two-dimensional example involving a spatial discretization
by Finite-Element-Method (FEM).

2. Discretization of the identification problem (3)

The natural procedure is to discretize the problem (3) in time. This might be a rather delicate
problem, especially when the inclusions in the controlled system (3) exhibit responses of
different time scales, and in particular with tendencies for jumping, which quite typically
happens in rate-independent systems governed by non-convex potentials E (t, π, ·, ·).

We consider (for simplicity) an equidistant partition of the time interval [0, T ] with a
time step τ > 0 such that T/τ =: K ∈ N and then a fractional-step-type semi-implicit
time discretization of (3). Moreover, if U , Z or � is infinite-dimensional, the time-discrete
problem still remains infinite-dimensional, and to implement it on computers, we need
to apply also an abstract space discretization controlled by a parameter, let us denote it
by h > 0. Such an approximation can be considered by replacing U , Z and � in (4)
by their finite-dimensional subsets Uh , Zh , and �h . Counting also a possible numerical
approximation of E , denoted by Eh , altogether, (3) turns into the problem:

Minimize τ
∑K

k=1 j (uk
τh, zk

τh) + H(π)

subject to ∂ .
uR1

(
π, uk−1

τh , zk−1
τh ; uk

τh−uk−1
τh

τ

)
+ ∂uEh(kτ, π, uk

τh, zk−1
τh ) � 0, u0

τh = u0h,

∂ .
zR2

(
π, uk−1

τh , zk−1
τh ; zk

τh−zk−1
τh

τ

)
+ ∂zEh(kτ, π, uk

τh, zk
τh) � 0, z0

τh = z0h,

uk
τh ∈ Uh and zk

τh ∈ Zh for k = 1, . . . , K , π ∈ �h,

(4)

where (u0h, z0h) ∈ Uh×Zh is an approximation of the initial condition (u0, z0). Let us note
that the controlled system (4) decouples so that, for a given π , one has to solve alternating
optimization problems

Minimize τR1

(
π, uk−1

τh , zk−1
τh ; u−uk−1

τh

τ

)
+ Eh(kτ, π, u, zk−1

τh ) subject to u ∈Uh (5a)
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2028 L. Adam et al.

and, taking (one of) its solution for uk
τh , further

Minimize τR2

(
π, uk−1

τh , zk−1
τh ; z−zk−1

τh

τ

)
+ Eh(kτ, π, uk

τh, z) subject to z ∈ Zh (5b)

which yields zk
τh as (one of) its solution. Assuming E (t, π, ·, ·) as well as its approximation

Eh(t, π, ·, ·) separately strictly convex (and, of course, coercive with compact level sets)
and Ri (π, u, z; ·) convex, i = 1, 2, both problems in (5) have unique solutions uk

τh and
zk
τh , respectively, and thus the whole recursive problem in the constraint system of (4) has a

unique response for a given π as well. This allows us to reformulate (4) as a minimization
problem for a functional depending on π only, cf. (9) below. This will be exactly the
situation we will consider in the rest of this article. The fully discretized system (4) can thus
be understood as an MPEC for which a developed theory exists.

In what follows, we will confine ourselves to problems with a bit more detailed (but
nevertheless still fairly general) structure, namely

E (t, π, u, z) =
{

E(t, π, u, z) if u ∈ �t
0, z ∈ K t

0,

∞ otherwise,
(6a)

R1(π, u, z,
.
u) = R1(π, u, z,

.
u), (6b)

R2(π, u, z,
.
z) =

{
R2(π, u, z,

.
z) if

.
z ∈ K1,

∞ otherwise,
(6c)

where E , R1, and R2 are finite and smooth, �t
0, K t

0, and K1 are convex closed set, the last
one being a cone. We will use Eh as a possible approximation of E .

Although, in Section 6, we will illustrate usage of this model on a rather special inverse
adhesive-contact problem, most of the considerations can expectedly be applied (after
possible modification) to many other problems from continuum mechanics and physics,
as (various combination of) damage, phase-transformations, plasticity, etc.

Remark 1 (Stability and convergence for τ → 0 and h → 0) The focus of this article is on
the identification of the discrete finite-dimensional problem. Nevertheless, the convergence
towards the original continuous problem when τ → 0 and h → 0 is of interest.

Without going into (usually rather technical) details, let us only mention that under
certain qualification of R1, R2 and Eh , a boundedness (= numerical stability) and conver-
gence of a solution (uτh, zτh) to the discrete state problem obtained by interpolation from
values (uk

τh, zk
τh)K

k=1 towards a weak solution (u, z) to controlled state system for a fixed
π can usually be shown at least in terms of subsequences in various situation. A rather
simple situation is if R2, or possibly also R1, is uniformly convex; this corresponds to
some viscosity. In a special fully rate-independent case when R1 = 0 and R2(π, u, z; ·) is
1-homogeneous and independent of (u, z), such convergence was proved in [9]; in this case
the weak solutions are called local solutions. The uniqueness is, however, not guaranteed in
general. If E (t, π, ·, ·) is jointly uniformly convex, then this uniqueness and even continuous
dependence on π hold, cf. [10,11] for a survey of such situations. This is, e.g. the case of
linearized rate-independent plasticity with hardening. Sometimes, viscosity can help for
this uniqueness. This is the case of frictional normal-compliance contact of viscoelastic
bodies which, after a certain algebraic manipulation gets the structure with E (t, π, ·, ·)
separately uniformly quadratic with linear constraints in two-dimensions, cf. [12], or with
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Optimization 2029

conical constraints in three-dimensions. The uniqueness of the response of the continuous
problems was shown in [13].

As usual, the convergence of solutions to (4) towards solutions to (3) is much more
delicate and it is a well-known fact that it cannot be expected unless the controlled state
system in (3) has a unique response or at least any solution to (1) can be attained by the
discretized solutions, which is however usually not granted unless the solution to (1) is
unique. In any case, one needs to show the continuous convergence of the solution map
Sτh : π 	→ (uτh, zτh), i.e. that τ → 0 and h → 0 and π̃ → π implies Sτh(π̃) → S(π).
This is usually a relatively simple modification of the convergence for π fixed.

3. Notation and selected notions of variational analysis

Having in mind the discrete problem with τ > 0 and h > 0, we will use notation

pk
τh(π, ũ, u, z̃) := ∇uR1

(
π, ũ, z̃,

u − ũ

τ

)
+ ∇uEh

(
kτ, π, u, z̃

)
, (7a)

qk
τh(π, ũ, u, z̃, z) := ∇zR2

(
π, ũ, z̃,

z − z̃

τ

)
+ ∇zEh

(
kτ, π, u, z

)
, (7b)

Kk(z̃) := (K1 + z̃
) ∩ K kτ

0 , (7c)

J (π, û, ẑ) := τ

K∑
k=1

j (uk, zk) + H(π) with û = (u1, . . . , uK ) and ẑ = (z1, . . . , zK ).

(7d)

Since problems (5) are convex, necessary optimality conditions are also sufficient and thus,
taking into account structure (6), problem (4) can equivalently be written in the form:

Minimize J (π, uτh, zτh) with uτh := (u1
τh, . . . , uK

τh) and zτh = (z1
τh, . . . , zK

τh)

subject to 0 ∈ pk
τh(π, uk−1

τh , uk
τh, zk−1

τh ) + N�k
τ
(uk

τh), k = 1, . . . , K , u0
τh = u0h,

0 ∈ qk
τh(π, uk−1

τh , uk
τh, zk−1

τh , zk
τh) + NKk (zk−1

τh )
(zk

τh), k = 1, . . . , K , z0
τh = z0h,

π ∈ �h

(8)

with K = T/τ . Defining the solution map Sτh : π 	→ (u, z) implicitly via the constraints
in (8), we may use the so-called implicit programming approach to rewrite problem (8)
equivalently into the form

Minimize J (π, Sτh(π)) subject to π ∈ �h . (9)

In the rest of the paper, we will make use of the following standing assumption, which
imply in particular the single-valuedness of the solution map Sτh :

(A1): Eh(t, π, u, ·) and Eh(t, π, ·, z) are strictly convex,
(A2): R1(π, u, z, ·) and R2(π, u, z, ·) are convex,
(A3): pk

τh(π, ũ, ·, z) and qk
τh(π, ũ, u, z̃, ·) are continuously differentiable mappings, and

(A4): �k and Kk(z̃) are closed convex sets.
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2030 L. Adam et al.

Note that (A1)–(A3) imply that pk
τh(π, ũ, ·, z) and qk

τh(π, ũ, u, z̃, ·) have a positive definite
Jacobian.

In what follows, we will fix time (and, if any, also space) discretization and thus we
will omit τ and h in the following sections. The dimension of Uh , Zh and �h will be,
respectively, denoted by N , M and L .

Before devising a (necessarily) quite complicated procedure to evaluate a gradient
information for the nonsmooth functional π 	→ J (π, S(π)), let us still briefly present
basic notions from variational analysis which are essential for this paper. More information
can be found in [7] for finite-dimensional setting or in [6] and [14] for the general infinite-
dimensional case.

All objects in this section are finite-dimensional. For a sequence of sets Ak ⊂ R
n we

define the Painlevé-Kuratowski upper limit as

Limsup
k→∞

Ak = {x | ∃xk ∈ Ak, x is an accumulation point of {xk}
}
.

Using this construction, we define for any x̄ ∈ A the Bouligand tangent cone, Fréchet
normal cone and the limiting normal cone, respectively, as

TA(x̄) = {v | ∃vk → v, λk ↘ 0, x̄ + λkvk ∈ A
}
,

N̂A(x̄) = (TA(x̄))∗ = {x∗ | 〈x∗, v〉 ≤ 0 for all v ∈ TA(x̄)
}
,

NA(x̄) = Limsup
x

A→x̄

N̂A(x),

where by x
A→ x̄ we understand x → x̄ with x ∈ A. If NA(π̄) = N̂A(π̄), then we say that

π̄ is a regular point of A, otherwise it is a non-regular point.
To a function f : R

n → R ∪ {∞} we can define its subdifferential at x̄ as

∂ f (x̄) = {x∗ | (x∗,−1) ∈ Nepi f (x̄, f (x̄))
}
.

If A happens to be convex, both normal cones coincide and are equal to the normal cone in
the standard sense of convex analysis

NA(x̄) = {x∗ | 〈x∗, x − x̄〉 ≤ 0 for all x ∈ A
}

and similarly, if f is continuously differentiable at x̄ , then ∂ f (x̄) = {∇ f (x̄)}.
For a set-valued mapping M : R

n ⇒ R
m and for any (x̄, ȳ) ∈ gph M we define the

coderivative D∗ M(x̄, ȳ) : R
m ⇒ R

n at this point as

D∗ M(x̄, ȳ)(y∗) = {x∗ | (x∗,−y∗) ∈ Ngph M (x̄, ȳ)
}

If M is single-valued, we write only D∗ M(x̄)(y∗) instead of D∗ M(x̄, M(x̄))(y∗). If M is
single-valued and smooth, then its coderivative amounts to the adjoint Jacobian.

A set-valued mapping M : R
n ⇒ R

m has the Aubin property around (x̄, ȳ) ∈ gph M if
there exist a constant L and neighbourhoods U of x̄ and V of ȳ such that for all x, x ′ ∈ U
the following inclusion holds true

M(x) ∩ V ⊂ M(x ′) + L|x − x ′|B(0, 1),

where B(0, 1) ⊂ R
m is the unit ball. If M is single-valued, then the Aubin property reduces

exactly to locally Lipschitzian property.
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Optimization 2031

Example 3.1 For a short illustration of the aforementioned objects, we use a simple
example whose extension will be used later in the text. Consider C := [0, 1] ⊂ R. Since C
is convex, both normal cones coincide and we have

gph NC = gph N̂C = ({0}×R−
) ∪ ([0, 1]×{0}) ∪ ({1}×R+

)
.

Fix now (x̄, ȳ) = (0, 0) and compute

N̂gph NC (x̄, ȳ) = R−×R+,

Ngph NC (x̄, ȳ) = (R−×R+
) ∪ ({0}×R+}) ∪ (R−×{0}).

One can see that in this case limiting normal cone is strictly greater than Fréchet one. This
means that (0, 0) is a non-regular point. Similarly, one can see that so is also (1, 0).

4. Evaluation of a subgradient of π �→ J(π, S(π)) and first-order necessary optimal-
ity conditions for (8)

To solve problem (8) or equivalently (9) efficiently, we need to compute a subgradient
information for the mapping π 	→ J (π, S(π)). Unfortunately, we cannot expect that S
is a differentiable function and thus, we need first to compute some kind of generalized
derivative of S.

We will work with the generalized differential calculus of Mordukhovich [6,7] and
compute the limiting subdifferential of the objective in (9). To be able to do so, we first
have to compute the so-called coderivative D∗ S, which for continuously differentiable
functions amounts to the adjoint Jacobian. First we state a lemma which links these two
concepts together.

Lemma 4.1 Consider the solution mapping S : π 	→ (ū, z̄) being implicitly defined by
system (8) and fix some (ū, z̄) = S(π̄). Assume that S is Lipschitz continuous on some
neighborhood of π̄ and that J is continuously differentiable on some neighbourhood of
(π̄ , ū, z̄). Denoting J̃ (π) := J (π, S(π)), we have

∂ J̃ (π̄) = ∇π J (π̄ , ū, z̄) + D∗ S(π̄ , ū, z̄)(∇u J (π̄, ū, z̄),∇z J (π̄, ū, z̄)).

Proof It follows directly from [6, Theorem 3.13] and [7, Exercise 8.8]. �

To obtain the necessary optimality conditions in the form of original data, we need to
compute D∗ S. This is carried out in the next lemma which will also be the basis for proving
the Lipschitzian continuity of S later in Corollary 4.4.

Lemma 4.2 Consider the setting of the solution mapping S : π 	→ (ū, z̄) being implicitly
defined by system (8) and fix some (ū, z̄) = S(π̄). Assuming (A1)–(A4), the upper estimate
of D∗ S(π̄ , ū, z̄)(u∗, z∗) is the collection of all quantities

−
K∑

k=1

(∇π pk)�βk −
K∑

k=1

(∇πqk)�δk (10)
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2032 L. Adam et al.

such that for k = 1, . . . , K the adjoint equations

−u∗k = αk − (∇u pk)�βk − (∇uqk)�δk − (∇ũ pk+1)�βk+1 − (∇ũqk+1)�δk+1, (11a)

−z∗k = γ k − (∇zqk)�δk − (∇z̃ pk+1)�βk+1 − (∇z̃qk+1)�δk+1 (11b)

with the terminal conditions βK+1 = 0 and δK+1 = 0 are fulfilled. For the multipliers
α, β, γ, δ we have the relations(

αk

βk

)
∈ Ngph N

�k (ū
k,−pk(π̄, ūk−1, ūk, z̄k−1)), (12a)(

γ

δ

)
∈ Ngph Q(z̄,−q(π̄, ū, z̄)), (12b)

where γ = (γ 1, . . . , γ K ) and δ = (δ1, . . . , δK ) and where, for u = (u1, . . . , uK ) and
z = (z1, . . . , zK ), we have defined

q(π, u, z) :=
⎛⎝ q1(π, u0, u1, z0, z1)

. . .

q K (π, uK−1, uK , zK−1, zK )

⎞⎠: R
L × R

K N × R
K M → R

K M ,

Q(z) :=∏K
k=1 NKk (zk−1)(z

k) : R
K M ⇒ R

K M .

Proof Similarly to q and Q, we define

p(π, u, z) :=
⎛⎝ p1(π, u0, u1, z0)

. . .

pK (π, uK−1, uK , zK−1)

⎞⎠ : R
L × R

K N × R
K M → R

K N ,

P(u) :=∏K
k=1 N�k (uk) : R

K N ⇒ R
K N .

We define the following partially linearized mapping

M(μ, ν) :=
{
(π, u, z)

∣∣∣∣μ ∈ p(π̄ , ū, z̄) + ∇u p(π̄ , ū, z̄)(u−ū) + ∇z p(π̄ , ū, z̄)(z−z̄)

+ P(u)ν ∈ q(π̄ , ū, z̄) + ∇uq(π̄ , ū, z̄)(u−ū) + ∇zq(π̄ , ū, z̄)(z−z̄) + Q(z)

}
and show that it is single–valued and locally Lipschitz around (0, 0). Indeed, the relations
defining M read for k = 1, . . . , K

μk ∈ pk(π̄ , ūk−1, ūk, z̄k−1) + ∇u pk(π̄, ūk−1, ūk, z̄k−1)(uk − ūk)

+ ∇ũ pk(π̄, ūk−1, ūk, z̄k−1)(uk−1−ūk−1)

+ ∇z̃ pk(π̄ , ūk−1, ūk, z̄k−1)(zk−1−z̄k−1) + N�k (uk),

νk ∈ qk(π̄ , ūk−1, ūk, z̄k−1, z̄k) + ∇uqk(π̄ , ūk−1, ūk, z̄k−1 z̄k)(uk−ūk)

+ ∇ũqk(π̄, ūk−1, ūk, z̄k−1, z̄k)(uk−1−ūk−1) + ∇zqk(π̄, ūk−1, ūk, z̄k−1)(zk−z̄k)

+ ∇z̃qk(π̄ , ūk−1, ūk, z̄k−1)(zk−1−z̄k−1) + NKk (zk−1)(z
k)

with u0 = ū0 and z0 = z̄0. Since the first inclusion is solved for uk and the second one for
zk , we obtain that M is single-valued due to (A1)–(A4). By virtue of [16, Corollary 3D.5]
we further obtain that M is Lipschitz continuous around π̄ , so that the system defining S is
strongly regular (in the sense of Robinson [17]) at (0, 0, π̄ , ū, z̄).

D
ow

nl
oa

de
d 

by
 [

14
7.

23
1.

1.
10

] 
at

 2
2:

22
 2

5 
O

ct
ob

er
 2

01
7 



Optimization 2033

This enables us to use [3, Proposition 3.2] and [7, Theorem 6.14] to obtain, with I being
the identity matrix, that

Ngph S(π̄ , ū, z̄) ⊂

⎛⎜⎜⎝
0 I 0

−∇π p(π̄ , ū, z̄) −∇u p(π̄ , ū, z̄) −∇z p(π̄ , ū, z̄)
0 0 I

−∇πq(π̄ , ū, z̄) −∇uq(π̄ , ū, z̄) −∇zq(π̄ , ū, z̄)

⎞⎟⎟⎠
�⎛⎜⎜⎝

α

β

γ

δ

⎞⎟⎟⎠ .

with some α, β ∈ R
K N and γ, δ ∈ R

K M satisfying(
α

β

)
∈ Ngph P(ū,−p(π̄ , ū, z̄)) and

(
γ

δ

)
∈ Ngph Q(z̄,−q(π̄ , ū, z̄)).

Applying the product rule for normal cones [7, Proposition 6.41] we obtain the statement
of the lemma. �

If �k is a (convex) polyhedral set, then Ngph �k (·) can be computed due to [18, Theorem
2] or [19, Proposition 3.2]. For the computation of Ngph Q(·), we will consider two cases of
Kk , specifically

Kk(zk−1) = R
M or (13a)

Kk(zk−1) = {z ∈ R
M | 0 ≤ z ≤ zk−1}, (13b)

where in (13b), the inequality is understood componentwise.
The former case (13a) corresponds to K t

0 = K1 = R
M , while the latter case (13b)

corresponds to K t
0 = R

M+ and K1 = R
M− . The former case is simple because from (12b) we

immediately obtain that γ k = 0 and δk ∈ R
M .

For the analysis of the more complicated case (13b) we recall the definition of Q and
define its counterpart Q̃ for a single time instant

Q(z) = {v ∈ R
K M | vk ∈ N[0,zk−1](zk), k = 1, . . . , K },

Q̃(z̃) := {(z, v) ∈ R
M × R

M | v ∈ N[0,z̃](z)}.
This case is more involved than the previous one, because in Q one has to do with normal
cones to moving sets whereby (components of) z arise simultaneously both as the arguments
as well as parameters specifying the movement of the constraint sets. Such a situation occurs
typically in quasi-variational inequalities and has been studied, e.g. in [20]. Unfortunately,
the results of [20] cannot be directly applied here because the set

Kk(0) = {0}
does not satisfy even the Mangasarian–Fromovitz constraint qualification when described
in the form (13b).

As we have mentioned in the introduction, it would be possible to use standard calculus
rules to obtain a formula for Ngph Q based on multiple computations of Ngph Q̃ . The graph

of Q̃ can easily be visualized in Figure 1 and thus, Ngph Q̃ can be computed by analysing

8 parts of gph Q̃ separately, see definition of Q̃i below. However, when computing Ngph Q
on the basis of Ngph Q̃ and the chain rule from [21, Theorem 4.1] one obtains only an upper
estimate and not equality.
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2034 L. Adam et al.

Figure 1. Visualization of gph Q̃.

That is why we make use of [8] where formulas for Fréchet and limiting normal cones
to a finite union of polyhedral sets have been derived and then applied to a special structure
arising in time dependent problems. For simplicity, we will show the result only for the
simplest case of M = 1. However, the generalization to a more–dimensional space is
straightforward and can be conducted in componentwise way.

In the following text, we will assume that i0 = 1. Define now the following sets

Q̃1 =
{
(z̃, z, v) ∈ R

3 | z̃ ∈ (0,∞), z = z̃, v ∈ (0,∞)
}

,

Q̃2 =
{
(z̃, z, v) ∈ R

3 | z̃ ∈ (0,∞), z = z̃, v = 0
}

,

Q̃3 =
{
(z̃, z, v) ∈ R

3 | z̃ ∈ (0,∞), z ∈ (0, z̃), v = 0
}

,

Q̃4 = (0,∞) × {0} × {0},
Q̃5 = (0,∞) × {0} × (−∞, 0),

Q̃6 = {0} × {0} × (−∞, 0),

Q̃7 = {0} × {0} × {0},
Q̃8 = {0} × {0} × (0,∞).

It is not difficult to show that ∪8
i=1 Q̃i = gph Q̃. Moreover, {Q̃i | i = 1, . . . , 8} forms the

so-called normally admissible stratification of gph Q̃ as defined in [8]. Now, define the
following index sets
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Optimization 2035

� =
⎧⎨⎩(i1, . . . , i K )

∣∣∣∣∣∣
i k ∈ {1, . . . , 8}
i k−1 ∈ {1, 2, 3} =⇒ i k ∈ {1, 2, 3, 4, 5}
i k−1 ∈ {4, 5, 6, 7, 8} =⇒ i k ∈ {6, 7, 8}

⎫⎬⎭ ,

I (s) =

⎧⎪⎪⎨⎪⎪⎩(i1, . . . , i K ) ∈ �

∣∣∣∣∣∣∣∣
sk = 1 =⇒ i k = 1, sk = 5 =⇒ i k = 5
sk = 2 =⇒ i k ∈ {1, 2, 3}, sk = 6 =⇒ i k ∈ {5, 6}
sk = 3 =⇒ i k = 3, sk = 7 =⇒ i k ∈ {1, . . . , 8}
sk = 4 =⇒ i k ∈ {3, 4, 5}, sk = 8 =⇒ i k ∈ {1, 8}

⎫⎪⎪⎬⎪⎪⎭,

where we assume that s = (s1, . . . , sK ) ∈ {1, . . . , 8}K and all relations are required to hold
for all k = 1, . . . , K . Further define

Qi :=
{
(z, v) ∈ R

2K
∣∣∣ (zk−1, zk, vk) ∈ Q̃ik , k = 1, . . . , K

}
.

As shown in [8], we obtain that ∪i∈�Qi = gph Q and that {Qi | i ∈ �} forms a normally
admissible statification of gph Q. Now, we may state the result concerning the computation
of Ngph Q(z̄, v̄), which replaces the computation of normal cone to a non-convex set by the
computation of multiple normal cones to convex sets.

Proposition 4.3 [8, Section 4] Fix any (z̄, v̄) ∈ gph Q and denote by s̄ the index of the
unique component Qs̄ such that (z̄, v̄) ∈ Qs̄. Then

Ngph Q(z̄, v̄) =
⋃

s∈I (s̄)

⋂
i∈I (s)

Ncl Qi (Qs),

where Ncl Qi (Qs) denotes the common value Ncl Qi (z, v) for any (z, v) ∈ Qs. For any
s ∈ � and i ∈ I (s), this value can be computed as

Ncl Qi (Qs) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

μ1 + μ̃1

...

μK + μ̃K

ν1

. . .

νK

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

2K

∣∣∣∣∣∣∣∣∣∣∣∣∣

⎛⎝μ̃k−1

μk

νk

⎞⎠ ∈ Ncl Q̃ik
(Q̃sk ), k = 1, . . . , K

μ̃K = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
.

Note that the computation of Ncl Qi(z, v) is simple as long as z > 0 in which case standard
results can be used. The situation changes, however, if there exists i such that zi−1 = 0.
Then Ncl Q̃i

(zi−1, z, v) is generated by normal cones to all ‘neighboring’ components. This

is the reason why we have to consider all Q̃1, . . . , Q̃8.
Now we have enough information to prove the Lipschitz continuity of S for both cases

in (13). Due to assumptions (A1)–(A3) and [18, Proof of Theorem 2] we obtain that if
a pair (αk, βk) satisfies (12a), then we have αk�βk ≤ 0. However, for (γ, δ) satisfying
(12b), it may happen that γ k�δk > 0 (see formula (17) below). Nevertheless, we are able
to overcome this problem by making use of the specific structure of gph Q.

Corollary 4.4 In the setting of Lemma 4.2 assume that Kk is defined via (13a) or (13b).
Fix some (ū, z̄) = S(π̄). Then S is Lipschitz continuous around π̄ .
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2036 L. Adam et al.

Proof Without loss of generality we may assume that M = 1. Since S is single-valued,
it is locally Lipschitz around π̄ if and only if it has the so-called Aubin property around
(π̄ , ū, z̄). Moreover, this property is according to [7, Theorem 9.40] equivalent to

D∗ S(π̄ , ū, z̄)(0, 0) = {0}. (14)

To show this, we plug u∗ = z∗ = 0 into system (11)–(12) and attempt to deduce that
β = δ = 0, which would imply that (10) is equal to zero as well, and thus condition (14)
is fulfilled.

To this end, we first realize that the first case (13a) implies γ k = 0 and δk ∈ R
M .

In the rest of the proof, we will consider only the second case (13b) with a note that
case (13a) can be shown by a slight modification of the last paragraph. Fix any (γ, δ) ∈
Ngph Q(z̄,−q(π̄ , ū, z̄)). From Proposition 4.3 we know that there is some s ∈ I (s̄) such
that for all i ∈ I (s) there exist some μk

i , μ̃k
i and νk

i such that γ k = μk
i + μ̃k

i , δk = νk
i ,

μ̃K
i = 0 and relation

⎛⎝μ̃k−1
i
μk

i
νk

i

⎞⎠ ∈ Ncl Q̃ik
(Q̃sk ) (15)

holds for all k = 1, . . . , K .
We will define now the index set

I =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(i1, . . . , i K )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

sk = 1 =⇒ i k = 1, sk = 2 =⇒ i k ∈ {1, 3}
sk = 3 =⇒ i k = 3, sk = 4 =⇒ i k ∈ {3, 5}
sk = 5 =⇒ i k = 5
sk = 6, i k−1 ∈ {1, 3} =⇒ i k = 5
sk = 6, i k−1 ∈ {5, 6, 8} =⇒ i k = 6
sk = 7, i k−1 ∈ {1, 3} =⇒ i k ∈ {1, 5}
sk = 7, i k−1 ∈ {5, 6, 8} =⇒ i k ∈ {6, 8}
sk = 8, i k−1 ∈ {1, 3} =⇒ i k = 1
sk = 8, i k−1 ∈ {5, 6, 8} =⇒ i k = 8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
and say that property (Pk) holds if

sk ∈ {1, 2} =⇒ μk
i = 0 for all i ∈ I, and (16a)

∃ j < k : s j = 4, s j+1 = · · · = sk = 8 =⇒ μk
i ≥ 0 for some i ∈ I (16b)

with i j = 3 and i j+1 = · · · = i k = 1.

Naturally, this property is satisfied if sk /∈ {1, 2, 8} and it can be shown that I ⊂ I (s). We
will now show that for all k = 1, . . . , K − 1 we have the following implication

γ k+1�δk+1 ≤ 0 and (Pk+1) holds =⇒ γ k�δk ≤ 0 and (Pk) holds. (17)

Thus, we assume γ k+1�δk+1 ≤ 0 and that property (Pk+1) holds. We will now make
use of the fact that δk = νk

i , and thus νk
i does not depend on i . By evaluating (15), we obtain

that there exists i ∈ I ⊂ I (s) such that
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Optimization 2037

sk+1 = 1 =⇒ μ̃k
i = −μk+1

i , sk = 1 =⇒ νk
i = 0,

sk+1 = 2 =⇒ μ̃k
i = −μk+1

i , sk = 2 =⇒ μk
i ≥ 0, νk

i ≤ 0,

sk+1 = 3 =⇒ μ̃k
i = 0, sk = 3 =⇒ μk

i = 0,

sk+1 = 4 =⇒ μ̃k
i = 0, sk = 4 =⇒ μk

i ≤ 0, νk
i ≥ 0,

sk+1 = 5 =⇒ μ̃k
i = 0, sk = 5 =⇒ νk

i = 0,

sk = 6 =⇒ νk
i = 0,

sk = 7 =⇒ νk
i = 0,

sk = 8 =⇒ νk
i = 0.

The implication sk = 7 =⇒ νk
i = 0 follows from I ⊂ I (s), the non-dependence of νk

i
on i and from the possibility to choose either i k ∈ {1, 5} or i k ∈ {6, 8}. We observe now
that in any case we have μk�

i δk = μk�
i νk

i ≤ 0. This means that we have managed to prove
γ k�δk ≤ 0 provided μ̃k

i = 0 or νk
i = 0.

Thus, to prove the first part of (17) it remains to investigate cases sk+1 ∈ {1, 2, 6, 7, 8}
and sk ∈ {2, 3, 4}. We will restrict now to these problematic cases. If sk+1 ∈ {1, 2}, then
(Pk+1) implies μ̃k

i = −μk+1
i = 0 and we may apply the previous result. If sk+1 ∈ {6, 7}

and sk = 4, then choosing i k+1 = 5 and i k = 3 results in μ̃k
i ≤ 0 and μk

i ≤ 0, which
together with νk

i ≥ 0 implies γ k�δk ≤ 0. Due to definition of �, it remains to investigate
the last case: sk+1 = 8 and sk = 4. In this case, we choose i k+1 = 1 and i k = 3, which
leads to μk+1

i + μ̃k
i ≤ 0 and μk

i ≤ 0. But since μk+1
i ≥ 0 due to (Pk+1), we have μ̃k

i ≤ 0,
and thus we again obtain γ k�δk ≤ 0. So far, we have managed to prove that if the left-hand
side of (17) holds true, then we have γ k�δk ≤ 0.

To show the validity of formula (17), we need to verify that (Pk) holds as well. To do
so, we multiply the adjoint Equation (11b) by δk , which due to assumption (A1)–(A2) and
the already proven γ k�δk ≤ 0 results in γ k = μk

i + μ̃k
i = 0 and δk = νk

i = 0 for all i ∈ I .
We will now investigate the cases described on the left-hand side of (16).

For (16a) we have sk ∈ {1, 2}. This by definition of � yields sk+1 ∈ {1, 2, 3, 4, 5}.
If sk+1 ∈ {3, 4, 5}, then μ̃k

i = 0 and thus μk
i = 0 follows. If on the other hand we have

sk ∈ {1, 2}, then from assumed (Pk+1) we get μ̃k
i = −μk+1

i = 0, and thus μk
i = 0 follows

for this case as well. To prove (16b) consider some j < k and s j = 4, s j+1 = · · · = sk = 8,
i j = 3 and i j+1 = · · · = i k = 1. If sk+1 = 8, then i k+1 = 1 and we may apply (Pk+1) to
obtain μk+1

i ≥ 0, which together with μ̃k
i + μk+1

i ≤ 0 and μk
i + μ̃k

i = 0 implies μk
i ≥ 0.

If sk+1 ∈ {6, 7}, then choosing i k+1 = 5 results in μ̃k
i ≤ 0, which again implies μk

i ≥ 0.
Since these are all possibilities due to the definition of �, we have showed formula (17).

Having this formula at hand, the rest of the proof is performed by a finite induction. Since
μ̃K

i = 0, by similar arguments as in the previous text we obtain that γ K�δK = μK�
i νK

i ≤ 0,
which further yields γ K = μK

i = δK = 0, and thus property (P K ) is satisfied. Hence, we
have obtained the validity of the first step for finite induction. Plugging this into the first
adjoint Equation (11a) and multiplying it by βK , we obtain that αK = βK = 0. Since the
left-hand side of (17) is satisfied, we immediately obtain that γ K−1�δK−1 ≤ 0 and that
(P K−1) holds. Performing this procedure K times, we obtain that (14) indeed holds, which
finishes the proof. �

Finally, we summarize the derivation of the necessary optimality conditions in Theorem
4.5 below. Thereby, the normal cone Ngph Q(·) is computed in Proposition 4.3 and for
the computation of Ngph �k (·) we refer the reader to [18, Theorem 2] or [19, Proposition
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2038 L. Adam et al.

3.2]. Moreover, when solving system (12) and (19), one may use [22, Lemma 4.7] to its
advantage.

Theorem 4.5 (First-order optimality conditions) Consider the setting of the solution
mapping S : π 	→ (ū, z̄) implicitly defined by system (8) and fix some (ū, z̄) = S(π̄).
Assume (A1)–(A4) and that J is continuously differentiable at (π̄ , ū, z̄). If (π̄ , ȳ, z̄) is a
local minimum of problem (8), then there exists multipliers (α, β, γ, δ) satisfying (12) such
that the optimality condition

0 ∈ ∇π J (π̄, ū, z̄) −
K∑

k=1

(∇π pk)�βk −
K∑

k=1

(∇πqk)�δk + N�(π̄), (18)

the adjoint equations with k = 1, . . . , K

−∇uk J (π̄, ū, z̄) = αk − (∇u pk)�βk − (∇uqk)�δk − (∇ũ pk+1)�βk+1 − (∇ũqk+1)�δk+1,

(19a)

−∇zk J (π̄, ū, z̄) = γ k − (∇zqk)�δk − (∇z̃ pk+1)�βk+1 − (∇z̃qk+1)�δk+1 (19b)

and terminal conditions βK+1 = 0 and δK+1 = 0 are satisfied.

Remark 2 (More general dissipation I) In a number of applications R2 is finite, but
nonsmooth at 0 and K1 = Z . In this case, in the generalized equation system defining S,
one has generally a sum of multifunctions which is typically very difficult to handle, cf.
[7, Theorem 10.41]. Sometimes, however, an analytic formula for the behaviour of S at
the single time instances can be obtained and then D∗S can be computed by applying the
(first-order) generalized differential calculus, see [6,7].

Another possible approach to this situation is to transform it into the form considered
here, i.e. R2 smooth and a suitable K1. Let us illustrate this on a one-dimensional case
Z = R with R2(

.
z) = a max(0,

.
z)+b max(0,−.

z) with some a, b ≥ 0 and, e.g. E (z) = 1
2 z2.

Considering artificial variable (z1, z2) such that z1 + z2 = z, we may write

E (z1, z2) = 1

2
(z1+z2)

2 and R2(
.
z1,

.
z2) =

{
a
.
z1 − b

.
z2 if

.
z1 ≥ 0 and

.
z2 ≤ 0,

∞ otherwise.
(20)

Such a transformation allows to widen the application range towards e.g. damage or de-
lamination problems with healing in arbitrary space dimension. Another application can
be frictional contact [23] or adhesive contact with an interfacial plasticity [24] allowing
to distinguish less dissipative mode I (opening) from more dissipative mode II (shear) in
two-dimensional cases. Another, rather academical, application is the bulk plasticity with
kinematic hardening in one dimension. Naturally, all these applications are considered with
a suitable space discretization.

Remark 3 (More general dissipation II) In some applications, the cone K1 could be the
second-order (Lorentz, or colloquially also called ‘ice-cream’) cone, defined in R

l by

{x ∈ R
l | xl ≥ |(x1, . . . , xl−1)|}.

where | · | stands for the Euclidean norm. In this case, it is possible to make use of
coderivatives of the normal cone mapping associated with second-order cones, which have
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Optimization 2039

been computed in [25]. Then, however, the special technique of [8], tailored to polyhedral
multifunctions, cannot be used anymore and we have to confine ourselves to standard
calculus rules, which leads to less selective necessary optimality conditions.

Typical applications of this type with K1 = Z are a frictional contact in three-dimensional
case or plasticity with kinematic hardening in two- or three-dimensional case, again having
in mind a suitable space discretization in each case. An example which uses a combination
of K1 �= Z with a nonsmooth potential R2, both being of the ‘ice-cream-type’, is plasticity
with isotropic hardening, cf. [10,26,27] which has the dissipation potential acting on the
rate of z = (p, η) of the form:

δ∗
S(

.
p) + δK1

(
.
p,

.
η) with 0 ∈ S ⊂ R

d×d
dev and K1 := {( .p,

.
η) ∈ R

d×d
dev ×R; .

η ≥ qHδ∗
S(

.
p)
}

(21)

where qH > 0 and R
d×d
dev := {A ∈ R

d×d; A = A�, tr A = 0}, and δA stands for an
indicator function of a convex set A and δ∗

A of its conjugate. Typically, S a ball, which
makes both δ∗

S and K1 of the ‘ice-cream-type’.
A combination of the preceding case with a general polyhedral set K0 is also possible.

This combination allows for some applications in identification of parameters of some
phenomenological models of phase transformations in certain ferroic materials as shape-
memory alloys where K0 forms constraints on an internal variable like p in (21) and may be
considered polyhedral, cf. the polycrystalic models in [28,29], possibly also in combination
with plasticity like that one in (21), cf. [30,31].

5. Adhesive contact problem and its identification

We illustrate the above abstract identification problem (3) on an unilateral adhesive-contact
problem for a linear elastic body at small strains. We consider � ⊂ R

2 a Lipschitz domain
with �C ⊂ ∂� and �D ⊂ ∂� disjoint parts of the boundary ∂�, where the delamination
is undergoing and time-varying Dirichlet boundary condition where wD(t) is prescribed,
respectively. Now, u : � → R

2 is the displacement and z : �C → [0, 1] is a delamination
parameter having the meaning of the portion of bonds of the adhesive which are not
debonded. With C the tensor of elastic moduli, h : [0, 1] → R a convex adhesive-stored-
energy function, and with e(u) denoting the small-strain tensor, i.e. [e(u)]i j = 1

2
∂ui
∂x j

+ 1
2

∂u j
∂xi

,
we will consider the boundary-value problem

div Ce(u) = 0 in [0, T ] × �, (22a)

Ce(u)�n = 0 on [0, T ] × (�\(�C ∪ �D)),

(22b)

u|�D = wD(t, ·) on [0, T ] × �D, (22c)

uN ≥ 0, zκNuN + �n�
Ce(u)�n ≥ 0,(

zκNuN + �n�
Ce(u)�n)uN = 0.

z ≤ 0, ξ + αF ≥ 0,
.
z(ξ+αF) = 0,

ξ + h′(z) + 1
2 (κNu2

N+κTu2
T

) − εdivS∇Sz ≥ 0, z ≥ 0,(
ξ + h′(z) + 1

2 (κNu2
N+κTu2

T

)− εdivS∇Sz
)

z = 0,

zκTuT + Ce(u)�n − (�n�
Ce(u)�n)�n = 0,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
on [0, T ] × �C, (22d)
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2040 L. Adam et al.

where we used the decomposition of the trace of displacement u = uN�n + uT with uN

being the normal displacement defined as u · �n and uT being the tangential displacement
on �C, and where ∇S denotes a ‘surface gradient’, i.e. the tangential derivative defined as
∇Sz = ∇z − (∇z·�n)�n for z defined around �C. Alternatively, pursuing the concept of fields
defined exclusively on �C, we can consider z : �C → R and extend it to a neighbourhood
of �C and then again define ∇Sz := (∇z)P with P = I− �n ⊗ �n onto a tangent space, which,
in fact, does not depend on the particular extension. Moreover, divS := tr ∇S. Then divS∇S

is the so-called Laplace-Beltrami operator.
Let us remark that (22a) is the force equilibrium, (22b) prescribes the zero-traction

(i.e. free surface) on �\(�C ∪ �D). The condition (22d) combines three complementarity
problems related, respectively, to the Signorini unilateral contact for the displacement u, the
non-negativity constraint for z, and the unidirectionality constraint (i.e. the non-positivity
constraint on

.
z), and eventually the equilibrium of tangential stress. More in detail, the

last two mentioned complementarity problems write in the classical formulation as the
inclusion ∂δ∗

[−αF,∞)(
.
z) � ξ with the admissible driving force fulfilling the inclusion ξ ∈

−∂zE (t, π, u, z) = εdivS∇Sz − h′(z) − 1
2 (κNu2

N+κTu2
T) − N[0,∞)(z).

Referring to the abstract problem (1), the boundary-value problem (22) corresponds to
the stored and the dissipation energies

E (t, π, u, z) :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
�C

1

2
z
(
κNu2

N + κTu2
T

)+ h(z) + 1

2
ε∇Sz·∇Sz dS

+
∫

�

1

2
Ce(u) : e(u) dx if u|�D = wD(t, ·) on �D and

u|�C ·�n ≥ 0 and z ≥ 0 on �C,

∞ otherwise,

(23a)

R1 ≡ 0, R2(
.
z) :=

⎧⎨⎩
∫

�C

αF|
.
z | dS if

.
z ≤ 0 a.e. on �C,

∞ otherwise,
with π = (αF, κN, κT),

(23b)

Note that E (t, π, ·, ·) is not convex but it is separately convex and, if �D is non-empty
and h is strictly convex, it is separately strictly convex, complying with our assumption
(A1)–(A2). Considering h quadratic, this leads, after a suitable spatial discretization of (4),
to recursive alternating strictly convex Quadratic-Programming (QP) which can be solved
by efficient prefabricated software packages.

The (distributed) parameters to be identified will be the fracture toughness αF and the
elasticity-moduli of the adhesive κN and κT, i.e. we have considered simply π = (αF, κN, κT)

as outlined in (23b). This choice has a certain motivation in engineering where, in contrast
to essentially all the bulk material properties, these parameters are largely unknown and
have to be set up in a rather ad-hoc way to fit at least roughly some experiments, cf. e.g.
[32,33] based on experiments from [34]. Actually, the models of adhesive contacts used in
engineering may be more complicated; typically they distinguish modes of delamination
(opening vs shear) and/or may involve friction. Identification of friction/adhesive contacts
may have interesting applications in geophysics where such contact surfaces (called faults)
are deep in lithosphere and not accessible to direct investigations although a lot of indirect
data from earthquakes are usually available; a popular rate-and-state friction model involves
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Optimization 2041

one internal parameter (called ageing) which is analogous to the delamination parameter
used here, cf. [35] for a survey or also e.g. [36]. Other models that may lead to a recursive
QP have been mentioned in Remark 2, in contrast to problems from Remark 3 that would
lead to a recursive Second-Order Cone Programming (SOCP) for which efficient codes do
exist, cf. [37].

We prescribe some initial conditions u0 ∈ H1(�) and z0 ∈ H1(�C), 0 ≤ z0 ≤ 1; note
that then 0 ≤ z ≤ 1 is satisfied during the whole evolution process. We further consider a
fixed time horizon T > 0 and assume that we have some given desired response (ud, zd)

corresponding, e.g. to some experimentally obtained measurements, and we want to identify
parameters π such that the response (u, z) = S(π) is as close to (ud, zd) as possible, i.e.
we want to minimize the objective∫ T

0

[ ∫
�

ζ

2

∣∣u − ud
∣∣2 dx +

∫
�C

1

2

∣∣z − zd
∣∣2 dS

]
dt, (23c)

where ζ is a fixed weight balancing both parts of the objective function.
After the semi-implicit time discretization, the whole problem (23) reads as

Minimize τ

K∑
k=1

[ ∫
�

ζ

2

∣∣uk − uk
d

∣∣2 dx +
∫

�C

1

2

∣∣zk − zk
d

∣∣2 dS
]

subject to (uk, zk) = Sk(π, uk−1, zk−1), k = 1, . . . , K , and
π = (αF, κN, κT) ∈ �,

(24a)

where the solution map Sk : (π, uk−1, zk−1) 	→ (uk, zk) for a particular time instant is
now defined by the alternating recursive system: given π = (αF, κN, κT) and previous
values (uk−1, zk−1), the first one is solved for uk and the second one for zk recursively for
k = 1, . . . , K :

Minimize
u∈H1(�,Rd )

∫
�

1

2
Ce(u) : e(u) dx +

∫
�C

1

2
zk−1(κNu2

N + κTu2
T

)
dS

subject to u|�D = wk
D := wD(kτ, ·) and u|�C ·�n ≥ 0,

(24b)

Minimize
z∈H1(�C)∩L∞(�C)

∫
�C

[
h(z)+ε

2
∇Sz·∇Sz +

(1

2

(
κN(uk

N)2+κT(u
k
T)

2)− αF

)
z
]

dS

subject to 0 ≤ z ≤ zk−1.

(24c)

Discretizing system (24b) via finite elements, we obtain

Minimize
u=(uC,uF,uD)

1

2
u� A(π, zk−1)u

subject to uC ∈ �0 := {u| u·�n ≥ 0} and uD = wk
D,

(25)

where the components of u = (uC, uF, uD) correspond to the displacement on contact
boundary �C, in free nodes (interior and Neumann) in �̄ \ (�C∪�D), and on Dirichlet
boundary �D, respectively. Matrix A has the following form

A(π, zk−1) =
⎛⎝ACC ACF ACD

AFC ACF AFD

ADC ADF ADD

⎞⎠+
⎛⎝ Ã(π, zk−1) 0 0

0 0 0
0 0 0

⎞⎠
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2042 L. Adam et al.

where the first part corresponds to the discretization of the first part of the objective in (24b)
and similarly for the second part. Using simple calculus, discretized problem (25) can be
written as

Minimize
uC

1

2
u�

C (Aα + Ã(π, zk−1))uC + (Aβwk
D)�uC

subject to uC ∈ �0,
(26a)

where we have defined

Aα := ACC − ACF A−1
FF AFC, Aγ := −A−1

FF AFC,

Aβ := ACD − ACF A−1
FF AFD, Aδ := −A−1

FF AFD.

Similarly, when discretizing (24c), we obtain the following problem

Minimize
z

1

2
z� Bz + b(π, uk)�z

subject to 0 ≤ z ≤ zk−1.

(26b)

Since both problems in (26) are quadratic, we can pass to their necessary optimality
conditions and the whole optimization problem (8) reads as

Minimize
π,uC,z

τ

K∑
k=1

[ζ
2

∣∣uk
C − [ud]k

C

∣∣2 + ζ

2

∣∣Aγ uk
C + Aδw

k
D − [ud]k

F

∣∣2 + 1

2

∣∣zk − zk
d

∣∣2]
subject to 0 ∈ (Aα + Ã(π, zk−1))uk

C + Aβwk
D + N�0(u

k
C), k = 1, . . . , K , u0 = u0,

0 ∈ Bzk + b(π, uk) + N[0,zk−1](zk), k = 1, . . . , K , z0 = z0,

π ∈ �.

(27)

By passing from uk to uk
C we have managed to reduce the number of parameters in (24b)

from the number of all nodes to the number of contact nodes only. This is especially
powerful because the first inclusion in (27) will be solved many times during the parameter
identification procedure while it is sufficient to compute matrices Aα , Aβ , Aγ and Aδ only
once.

To be able to use Theorem 4.5, we need to check whether assumptions (A1)–(A4) are
satisfied. But this amounts to showing that matrices Aα + Ã(π, zk−1) and B are positive

definite. Since Aα is Schur complement of ACC in Â :=
(

ACCACF

AFCAFF

)
, it is positive definite if

Â is positive definite. But the positive definiteness of Â follows from the conformal FEM
via positive definiteness of C together with the Korn inequality using Dirichlet boundary
conditions on �D. More precisely, the FEM may also involve some numerical integration
(which in fact has been used for our implementation, too).

Remark 4 (Boundary-element method) Note that (26a) is the optimization problem on
�C because we eliminated the values uD and uF. This is the philosophy of the boundary-
integral method and (Aβwk

D)� in (26a) is in the position of the (discretized) Poincaré-
Steklov operator transferring Dirichlet boundary conditions on �C to traction forces on
�C.

The discretization then leads to the celebrated Boundary-Element Method (BEM). One
option for this discretization is FEM, cf. e.g. [38], which is in fact what we used here and
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Optimization 2043

Figure 2. Geometry and boundary conditions of the two-dimensional problem used for calculation.

such BEM represents a noteworthy interpretation of (26a). Other options are based on a
direct discretization of the Poincaré-Steklov operator using the approximate evaluation of
the so-called Somigliana identity based on the underlying integral Green operators, cf. e.g.
[33,39–41].

Remark 5 (Variants of the adhesive model) The contribution h(z) in (23a) has the
meaning of a stored energy deposited in the adhesive bonds and, during delamination,
this energy naturally increases. If a reversible damage (called healing) were allowed, cf.
Remark 2 above, h′(z) would give a driving force for it. Strict convexity of h represents
certain cohesive effects: when delamination is tended to be complete, still more and more
energy is needed for complete delamination. Cohesive effects can also be modelled by
letting κN and κT dependent on z so that z 	→ zκN(z) and z 	→ zκT(z) are convex. This
however does not guarantee strict convexity of E (t, π, u, ·). Other option complying with a
purely adhesive contact (e.g. h = 0) would be to consider a small, linear viscosity in z, i.e.
R2 strictly convex and quadratic. Then the usual concept of weak solution can be used again
together with the semi-implicit fractional-step-type time discretization. Yet, such problem
becomes computational difficult if the viscosity is small, as often considered with the goal
to approximate so-called vanishing-viscosity solution in the rate-independent inviscid limit,
cf. [42].

6. Numerical experiments

In this section, we illustrate usage and efficiency of the theory developed in Section 4 and
later specified in Section 5 on a two-dimensional problem where an elastic body glued
along the x-axis and pulled in the direction of the y-axis by the time-varying loading wD,
cf. Figure 2. Considering the parameters αF, κN, and κT to be unknown, the main goal is to
identify them via an inverse problem. Following the delamination example in [24,42], we
considered the isotropic material in the bulk with the tensor of elastic moduli

Ci jkl := νE

(1+ν)(1−2ν)
δi jδkl + E

2(1+ν)
(δikδ jl + δilδ jk)

with the Young modulus E = 70 GPa and the Poisson ratio ν = 0.35. Concerning the
adhesive-stored-energy and the gradient terms in (23a), we used h(z) = 1

2 z2−z and ε = 1 J,
while the weight ζ was chosen as 1010m−2. For the space discretization we employed a
mesh with 14 × 20 nodes and the equidistant time discretization used 40 time instants. The
contact boundary consists of 12 nodes. As already said, there are three parameters to be
identified: αF, κN, and κT. Moreover, we assume that the values of these parameters are not
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2044 L. Adam et al.

Figure 3. Evolution of the deformed specimen with distribution of the delamination parameter z
along �C (only values 1 or 0 are displayed) at 17 selected time instances. Displacements depicted as
magnified by factor 50×.

constant along the contact boundary, but it may have different values in every contact node.
This leads to a total number of 3 × 12 = 36 parameters to be identified.

We fixed these 36 values, to be more specific the mean of αF, κN, and κT was 187.5 J/m2,
150 GPa/m and 75 GPa/m, respectively. The difference between the smallest and largest
value ofαF was approximately 10% and similarly forκN andκT. Next, we randomly generated
some (with time increasing) dragging loading wD, computed the corresponding (ud, zd),
and plugged them into the upper level of problem (27). Since there was no perturbation of
(ud, zd) present, the optimal objective value was zero, which allows numerical testing of
the efficiency of the optimization algorithm.

The computation of problem (27) was performed in Matlab. To compute uk from the
first inclusion in (27), we modified and used the already written code.[43] Since a direct
application of a gradient algorithm to whole problem (27) lead to rather inferior results,
we had to find another way to solve (27), specifically we used a combination of three
optimization algorithms. The first was PSwarm,[44] which combines pattern search with
genetic algorithm particle swarm, the second one standard Matlab function fminunc and
the last one a nonsmooth modification of BFGS algorithm [45] with its implementation.[46]

The optimization process was run in four phases. For the first phase, we simplified
the problem and assumed that the parameters are constant along the contact boundary. This
reduced the number of parameters from 36 to 3. To this problem, the algorithm PSwarm was
used, however, we did not let it converge to the optimal solution but it was interrupted when
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Figure 4. Development of the objective value during particular iterations of the optimization
algorithms used during the four phases of our optimization: phase 1 used a global optimization
algorithm (PSwarm), whereas phases 2–4 used a (sub)gradient algorithm with subsequently refined
discretization of �C.
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Figure 5. Parameter distribution along the contact boundary, graphs depicting form left to right αF,
κN and κT resulting after particular phases of the optimization algorithm.

the problem reached a priori given threshold or when the optimal value did not improve
much in several successive iterations. In other words, the goal of the first phase was to find
an estimate of the solution. Since PSwarm works rather with populations instead of single
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2046 L. Adam et al.

points, multiple initial points had to be chosen. These points were generated randomly from
the following intervals

αF ∈ [100 J/m2, 500 J/m2], κN, κT ∈ [10 GPa/m, 1000 GPa/m
]
.

In the second phase, the reduced problem was still considered but this time, an algorithm
using a gradient information was used. Similarly to the first phase, we did not let the it
converge and interrupted it prematurely. Because of this interruption, non-regular points
were usually evaded and it was possible to use fminunc, even though it is designed for
smooth functions.

While in the first two phases, the values of parameters were constant on the contact
boundary, this no longer holds true for the last two phases. In the third one, we considered
the state in which one parameter corresponds to two nodes on the contact boundary, while
in the fourth phase every parameter corresponded to only one node. This means that there
were 18 parameters in the third phase and 36 in the last one. The evolution of the optimal
value can be seen in Figure 4. Note that on the y axis the logarithm of the objective value
is depicted and that the vertical lines separate the four phases.

The following table summarizes the values of parameters and of the objective function
for all phases. The first column presents the best point in the initial population of PSwarm.
The next four columns show the optimal solutions and values of all four phases. Finally,
the last column corresponds to the actual values of parameters. Since there were multiple
values distributed along the boundary for the last three columns, we show only their mean
in such cases.

Starting Phase 1 Phase 2 Phase 3 Optimal Desired

αF 203.934 190.405 194.877 187.489 187.512 187.5
κN 0.822·1011 1.586·1011 1.462·1011 1.499·1011 1.500·1011 1.5·1011

κT 47.251·1010 2.326·1010 7.317·1010 7.498·1010 7.499·1010 7.5·1010

Objective 3138.97 70.503 14.184 3.573·10−4 7.538·10−11 0

In Figure 3, we show the the displacement u (magnified by factor 50) corresponding to
one of the random initial points used for PSwarm and solution of the four phases. A circle
on the contact boundary mean that no delamination has taken place yet at the corresponding
node while an asterisk means that the corresponding node has been completely delaminated.
No symbol being present indicates that only a partial delamination took place. Since the
contact boundary is shorter than the length of the body, there are no symbols at the bottom
right corner.

In Figure 5, we show the distribution of the elastic adhesive moduli κN and κT as well
as the fracture toughness αF along the contact boundary �C. Four lines corresponding to the
actual parameters and to the terminal points of phases 2, 3 and 4 are depicted. The horizontal
line without any symbols corresponds to phase 2, the line with circles corresponds to line 3
and the line with asterisks corresponds to phase 4, which means that it depicts the parameters
identified by the algorithm. The last line without any symbols (which coincides with the
line with asterisks for κN) depicts the actual parameters. We see that while the result of
phase 3 provided a good estimate for the actual parameters. Phase 4 provided only a slight
improvement for κT while it managed to identify the values of κN completely.
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7. Concluding remarks

The optimality conditions stated in Theorem 4.5 are in the MPEC literature called M-
stationarity conditions because they are based exclusively on notions from the Mordukhovich
subdifferential calculus. They are relatively sharp and can very well be used, e.g. for testing
this type of stationarity at points computed via ImP. It would be a great challenge to derive
suitable optimality conditions also for the original continuous MPEEC (3). Unfortunately,
this problem is formulated over non-Asplund spaces (with a possible exception of the space
for the variable π ) which are not amenable for a treatment via the Mordukhovich calculus.

If function R2 in (4) happens to be Non-differentiable as in Remarks 2–3, then in the
generalized equation system defining S one has to do with sums of multifunctions. Such
situations occur in the so-called Stampacchia variational inequalities, whose sensitivity and
stability analysis represents a great open problem. One possible way to overcome this hurdle
could be a smoothening of R2 or a smooth penalization of the constraint.

In this paper, apart from some particular cases like that mentioned in Remark 1, the
main peculiarity consists in the fact that the original continuous problem in (3) (whose
parameters π are to be identified) does not need to have a unique response. To control (or
identify) such systems is, from very fundamental reasons, very doubtful. Therefore, one
should interpret the approach used in this article carefully, counting only with a response
of (1) that can be approximated by a particular numerical method (4) and being aware that
possibly some other responses might exist and give even more accurate results. This is the
best one can do and assume in identification of system of the type (1) which may cover very
general situation, e.g. sudden ruptures which are naturally very difficult to be controlled (or
identified).
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[9] Roubíček T. Maximally-dissipative local solutions to rate-independent systems and application
to damage and delamination problems. (Preprint no. 2013-21, Nečas center, Prague). Nonlin.
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