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a b s t r a c t

We consider inverse problems in atmospheric modelling represented by a linear system which is based
on a source-receptor sensitivity matrix and measurements. Instead of using the ordinary least squares,
we add a weighting matrix based on the topology of measurement points and show the connection with
Bayesian modelling. Since the source-receptor sensitivity matrix is usually ill-conditioned, the problem is
often regularized, either by perturbing the objective function or by modifying the sensitivity matrix.
However, both these approaches may be heavily dependent on specified parameters. To ease this burden,
we propose to use techniques looking for a sparse solution with a small number of positive elements.
Finally, we compare all these methods on the European Tracer Experiment (ETEX) data where there is no
apriori information apart from the release position and some measurements.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decade, it often happened that a large amount of
harmful substance was released into the atmosphere over a short
period of time. As the probably most known examples we can
mention the nuclear power accidents in Fukushima in 2011 and
Chernobyl in 1986 or the Eyjafjallaj€okull volcanic eruption in 2010.
When such an accident happens, there are two major questions to
be asked. Where is the substance going to be in a day or two? And
how much of the substance was released into the atmosphere?

The problematic part is that in such cases only a certain amount
of measurements is known. And these two imposed questions have
to be answered based on this information from thesemeasurements.
The first question is usually simpler to answer: from the measure-
ments we apply a model and observe in which direction and how
fast the substance is transferred. The second question is generally
more demanding, besides applying a model, one usually has to
consider a certain optimization problem which needs to be solved.
Since in this case we are interested in computation of a quantity
which happened in the past, this field is often called inverse
modelling. In this paper, wewill focus purely on the second question.
Financial Mechanism under

nda@utia.cas.cz (M. Branda).
There has been much progress in the field of inverse modelling.
For a general introduction to inverse modelling in environmental
modelling and protection, see books Aster et al. (2012) and Tipping
(2002). Furthermore, we mention works related to power plant
accidents, for instanceMartinez-Camara et al. (2013) and Stohl et al.
(2012) focused on the Fukushima accident. Also volcanic ash,
aerosol and gas emissions can influence climate significantly and
pose hazards to human health and ocean productivity. Therefore,
the impact of Eyjafjallaj€okull volcanic eruption was investigated by
Stohl et al. (2011). Another application of the inverse modelling lies
in the monitoring of emission limits, e.g. P�etron et al. (2002)
focused on the emission of carbon monoxide. Miller et al. (2014)
applied several inverse methods to US anthropogenic methane
emissions modelling.

The problem described above gives rise to minimizing the
discrepancy between the measurements and the model pre-
dictions. As we have alreadymentioned, one usually knows a vector
of measurements ðy1;…; ymÞ2ℝm and tries to identify the un-
known release profile ðx1;…; xnÞ2ℝn. Both these vectors are
aggregated over spatial and/or temporal domain. As an example,
ðy1;…; ymÞ may consists of measurements at different places and
times while ðx1;…; xnÞ may represent release profile at one place
but for different times.

To be able to identify the release profile, one has to know a
mapping M : ℝn/ℝm which assigns expected measurements to a
release profile. In tracer transport modelling, this mapping is often
linear, represented by a matrix M2ℝm�n. This leads to an
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optimization problem

minimize
x

���Mx� y
���2
2

subject to x � 0;
(1)

where k ,k2 is the Euclidean norm. In the objective, we minimize
the discrepancy between the measured and predicted values. The
constraint x � 0 is natural here because release cannot be negative.

Matrix M is usually denoted as the source-receptor sensitivity
matrix, see Seibert and Frank (2004). The reason for this is that
element mij of matrix M represents the sensitivity of the mea-
surement at point i to the release at point j. Thus, in an ideal world
where we know M precisely, we would obtain mijxj ¼ yi. This
means that mij denotes the expected change in yi upon a unit
change in xj. For matrixM, wewill often use the shortened notation
sensitivity matrix.

To obtain a column of the sensitivity matrix, one usually em-
ploys a transportation model and simulates a release of a large
number of particles at the position corresponding to this column,
see again Seibert and Frank (2004). After doing so, predicted values
are computed at all places where a measurement is available. This
means that the number of rows of M is fixed and is equal to the
number of measurements. On the other hand, the number of col-
umns of M may be chosen arbitrarily. For example, it may be
increased by decreasing the time interval between two subsequent
possible release instances. Since the computation of one column of
M is very time consuming, M usually has many more rows than
columns and thus the system is overdetermined.

There are two main approaches to finding a solution to (1). The
first one is a deterministic approach and makes use directly of
formulation (1) and tries to solve it by optimization techniques.
Since the problem is often ill-conditioned, various regularizations
are used to make the problem more tractable. This approach usu-
ally results in the necessity of solving a constrained quadratic
problem. The second approach is a stochastic one and instead of
solving (1), it assumes that

y ¼ Mxþ ε; (2)

where ε is a random vector. Provided that ε has normal distribution
with independent components having zero mean and the same
variance, then applying the maximal likelihood estimate reduces
precisely to solving (1). Naturally, this problem can be seen as or-
dinary least squares with nonnegativity constraint.

Themain aim of this paper is twofold. The first goal is to propose
a modification of the deterministic approach for solving problem
(1) by adding nondiagonal weighting matrix W. This approach is
closely connected with Bayesian modelling, where the weighting
matrix enters as a covariance matrix of the measurements. How-
ever, we base the weighting matrix purely on the topology of the
measurement points and not on the measurement values as is the
case of Bayesian modelling.

The second goal is to show a new approach of dealing with ill-
conditioned sensitivity matrix M. To the best of our knowledge,
the usual approach is either to use some regularization or to ignore
certain measurements, which reduces the number of rows in M.
This, however, may lead to a suboptimal solutionwhen the solution
of the reduced problem is not a solution to the original problem.
Moreover, if this approach is applied, a certain parameter, such as
the maximal matrix row norm, has to be specified. This parameter
usually has huge impact on the optimal solution and thus, the
problem is not very stable with respect to a choice of this param-
eter. This is especially true if the parameter takes form of apriori
information.
We try to prevent this behaviour and suggest to look for a sparse
solution x, which means that x should contain as many zeros as
possible. This problemmay be formulated as a multiobjective (two-
objective) optimization: we try tominimize themeasurement error
kMx� yk22 and at the same time, we try to minimize the number of
nonzeros, which is denoted by jxj jj0. To obtain the so called efficient
solutions of such multiobjective problem, we might rewrite it as a
single-objective one, in which one of the criteria is minimized and
the other one is constrained by a prescribed maximal bound.

It is important to note that looking for a sparse solution has a
natural effect of ignoring columns of M with small norm, and thus
only the goal value enters the problem as a parameter. This
parameter prescribes the maximum number of nonzeros x0 � ktol.
Note that the parameter ktol is an integer and has a natural expla-
nation. Moreover, it is invariant to the scaling of variables, thus it is
not necessary to rescale ktol whenever y are measured in different
units. As there are only finite number of possible values for ktol, this
parameter is relatively simple to choose. This is in contrast with
most of the currently used regularization techniques.

The main assumption of following this approach is that the
solution x is indeed sparse. For example, it can be used for both
problems of identification of the source location and of the time
process of the source release. In the first case, it is usually assumed
that there is only one or few release points and the task is to find
them. In the second case, the considered time window is usually
much longer than the duration of the actual release. In both cases,
the optimal solution should contain a large number of zeros,
justifying the use of sparsity techniques. Clearly, there are also in-
stances where the sparse solution approach cannot be used. One
example of this possibility is the CO2 emission monitoring. This is
caused by the fact that CO2 is released globally and thus does not
have a localized point source.

This paper is organized as follows: in Section 2 we comment on
properties of M and suggest a way of enhancing model (1) by
multiplying both term in the objectiveMx and y by a certain matrix
W. Relations to stochastic Bayesian inverse modelling techniques
are discussed.

Section 3 summarizes the current state of the art for inverse
modelling of tracer transport and proposes alternative approaches.
After a short motivational part showing that the sensitivity matrix
M is often ill-conditioned, two subsections follow which present
ways of solving problem (1) while dealing with this ill-
conditioning. The first one summarizes the most widely used
deterministic optimization techniques used for identifying point
releases while the second one proposes a new way of handling the
problem by looking for sparse solutions instead of regularizing the
problem or modifying the sensitivity matrix.

In Section 4 we apply the described techniques to the European
Tracer Experiment (ETEX). After providing some information about
the sensitivity matrix M, we show the validity of using the
weighting matrix W. After doing so, we depict both the known and
the proposed solutions and compare them.

Finally, we would like to emphasize that all codes and data are
available online.1

2. Spatial and temporal locations weighting

In the introduction we have already described that the sensi-
tivity matrix M is obtained by repeatedly running an underlying
tracer transport model. We will shortly discuss the possible
shortcomings of applying these dispersive models. Unfortunately, it
may happen that the model does not describe the real situation
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precisely because of certain reasons. There are inherent un-
certainties related to the variability of the physical phenomena
(turbulence, for instance), which would prevent the models to be
fully realistic. This appears together with the specific problems of
input, initialization, boundary conditions, advanced or less
advanced parameterizations of all phenomena. Among specific
problems we can include for example imprecise weather descrip-
tion, inability to incorporate mountain ranges, or omitting some
meteorological events. Novel approaches for designing a source-
receptor relationship for air pollution modelling were recently
introduced by Clappier et al. (2015) or Vedrenne et al. (2014).

In this section, we introduce spatial and temporal location
weighting to handle these possible deficiencies. We start with a
simple example showing that relatively small changes in the
sensitivity matrix M can lead to big changes in solution x of (1).

Example 1. Assume that we have the following data

M ¼
�
0
1

�
; y ¼

�
1
0

�
:

Thus, we have two measurements and only one potential release,
leading to m ¼ 2 and n ¼ 1. By solving problem (1), we obtain
trivial solution x ¼ 0.

Matrix M suggests that if a release occurred, all content of this
release was transmitted to the second measurement point and
nothing to the first one. Assume now that the locations of these two
measurement points are close to each other and that a wrong wind
direction was considered and all release should have been trans-
mitted to the first measurement point instead of the second one.
This corresponds to using ~M ¼ ð1;0Þu instead of M. If we indeed
consider ~M instead of M, then we obtain optimal release ~x ¼ 1
instead of x ¼ 0.

We can observe a highly undesirable situation when a small
change in the real situation may cause a big change in the sensi-
tivity matrix M and in the obtained solution x. In the rest of this
subsection, we will suggest a way of dealing with this problem.
Unfortunately, this situation cannot be handled by adding a pos-
sibility to perturb M with a penalization of such perturbation.

The potential problemwith Example 1 is that model (1) may not
be entirely suitable for modelling phenomena where additional
information such as the spatial and temporal location of mea-
surements is known. In our opinion, it could be advantageous not to
compare Mx and y componentwise but to take into account their
spatial and temporal locations and compare the sum on a neigh-
bourhood of every component. To present this idea in a more
concise way, assume that for every measurement yj we know
additional data zj ¼ ðzxj ; z

y
j ; z

t
j Þ, where pair ðzxj ; z

y
j Þ represents the

longitude and latitude of a measurement point and ztj the mea-
surement time. We would like to define weights related to the
distance betweenmeasurement points zi and zj. First, we define the
space and time weights as follows

wS zi;zj
� �

:

¼
(
exp �aS

��� zxi ;z
y
i

� �
� zxj ;z

y
j

� ����� �
if
��� zxi ;z

y
i

� �
� zxj ;z

y
j

� ����� smax;

0 otherwise;
(3a)

wT zi; zj
� �

:¼
	
exp �aT

���zti � ztj
���� �

if
���zti � ztj

��� � tmax;

0 otherwise;
(3b)

where aS � 0, aT � 0 and smax2½0;∞�; tmax2½0;∞� are given pa-
rameters; the last two are known as cutoff distances. Since both
quantities in (3) lie in interval ½0;1�, we may define the (non-
normalized) weights related to the distance between zi and zj as

w
�
zi; zj

�
:¼ wS

�
zi; zj

�
wT
�
zi; zj

�
(4)

Note that this weight is zero if the measurements are performed
at distant places (as specified by smax) or at distant times (as
specified by tmax). Moreover, the weight decreases with increasing
spatial or temporal distance. This rate of decrease is determined by
aS and aT .

When considering ordinary least squares, we try tominimize for
every j ¼ 1;…;m the following discrepancy

Mxð Þj � yj
� �2

: (5)

Following the idea from Example 1, instead of minimizing quantity
(5) at given point j, we will minimize the difference between Mx
and y on a neighbourhood of point j. If we relate this neighbour-
hood to weightw defined in (4), for every measurement j ¼ 1;…;m
we try to minimize the following quantity

 Xm
i¼1

w
�
zj; zi

�
Pm

k¼1w
�
zj; zk

� ðMxÞi �
Xm
i¼1

w
�
zj; zi

�
Pm

k¼1w
�
zj; zk

� yi
!2

; (6)

where the denominator is used for weight normalization. Formula
(6) corresponds precisely to (5) provided that wðzi; ziÞ ¼ 1 and
wðzi; zjÞ ¼ 0 for isj. When we combine components (6) into one
vector, we arrive at minimizing

Xm
j¼1

 Xm
i¼1

w
�
zj; zi

�
Pm

k¼1w
�
zj; zk

� �ðMxÞi � yi
�!2

;

which is equal to

jW Mx� yð Þj jj22; (7)

where matrix W consists of elements

wij ¼
w
�
zi; zj

�
Pm

k¼1wðzi; zkÞ
: (8)

For other possibilities of choosing matrix W, we refer the reader to
Gaspari and Cohn (1999) or Hamill et al. (2001).

To conclude this approach, we propose to solve the (weighted
least squares) problem

minimize
x

jWMx�Wyj jj22
subject to x � 0

(9)

instead of the (ordinary least squares) problem (1), wherematrixW
has been defined in (3), (4) and (8). Now we present a continuation
of Example 1 which strongly supports our arguments for using
matrix W.

Example 1 (continued). Consider the same data as in Example
1. Denoting w :¼ wðz1; z2Þ, we have

W ¼ 1
1þw

�
1 w
w 1

�
; WMx�Wy ¼ 1

1þw

��1þwx
�wþ x

�
;

and thus problem (9) reads
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minimize
x

1

1þwð Þ2
1þw2
� �

x2 � 4wxþ 1þw2
h i

subject to x � 0:

Since w � 0, for the optimal solution we obtain

x ¼ 2w
1þw2 :

We note that forw ¼ 0, matrixW is equal to the identity matrix.
Then problem (9) amounts to solving (1), and that the solution is
indeed x ¼ 0 for this case. However, if w is close to 1, then the
measurement points are at almost identical point, which means
that they should not be distinguished as separate measurement
points. Indeed, we obtain that x is close to 1, which is in accordance
to our expectation.

Even though this whole paper is based on deterministic
formulation, problem (9) has close connection with stochastic
(random) solution methods, where one make use of formula (2)
and employs Bayesian modelling, see papers by Bocquet (2008),
Osorio-Murillo et al. (2015) with open source software package
MAD# or �Smídl and Hofman (2014), where Monte Carlo methods
are proposed.

By computing the optimal solution to (9) without the non-
negativity constraint imposed on x, we obtain

x ¼ �MuWuWM
�þMuWuWy;

where ðMuWuWMÞþ is a MooreePenrose pseudoinverse matrix,
see Albert (1972). If the matrix in question is invertible, then the
pseudoinverse reduces to the classical inverse matrix. If WuW is a
regular matrix, then solution x corresponds to the best linear un-
biased estimator (BLUE) for model y ¼ Mxþ ε; where ε is random
vector with zero mean and covariance matrix ðWuWÞ�1, see
Stewart et al. (2008). However, there is a major difference between
our approach and with that of the Bayesian modelling. In our
approach, there will be a strong negative correlation between close
points, which may seem slightly counterintuitive from the point of
Bayesian modelling. However, there is a simple explanation for
such event: the closeness of points is penalized in the Bayesian
approach to prevent similar measurements to have great impact on
the solution. However, in our approach we want to perform a sum
with respect to neighbouring points, thus we want to promote and
not penalize closeness of points. We show this behaviour in
Example 1.

Example 1 (continued). It is not difficult to compute

�
WuW

��1 ¼ ð1þwÞ2�
1�w2

�2
�
1þw2 �2w
�2w 1þw2

�
:

We see that we have obtain nonnegative large off-diagonal ele-
ments for close points (w is close to one), which agrees with the
discussion in the previous paragraph.
3. Sparse optimization

In this section we first provide reasons why the sensitivity
matrix M may be ill-conditioned. The rest of the section is divided
into two subsections and presents several possible ways of dealing
with this problem. In the first one, we show several current
methods and in the second one, we present the concept of sparse
solution, thus a solution which contains many zero elements.

We are fully aware that the true release does not have to be
sparse in general. In this case, our methods should not be used.
However, looking for a sparse solutionmakes sense in the following
widely used applications: identifying release points and identifying
release time profile.Whenwe know that the releasewas performed
only from one or few places and the goal is to find these places,
sparsity is naturally present. On the other hand, if we know the
release place and want to identify the release time profile, the
sparsity is present as well because the examined window of po-
tential release is usually much longer than the true release window.

As we have mentioned in the introduction, the sensitivity ma-
trix is computed by simulating a release of huge number of parti-
cles. Since the underlying model is stochastic, the trajectory of
every particle is governed by a different realization of the random
vector. Thus, every particle follows a different trajectory. The
resulting concentration y is then based on the number of particles
in the vicinity of a measurement point.

To explain why the sensitivity matrix M may be ill-conditioned,
we consider identification of a time profile of a release where the
true release point is known. Then xj denotes the released amount at
some time tj and the sum of j-th column of M denotes the total
predicted sum of measurements at all measurement places per unit
release at tj. It is very likely that there will be some time instant tj
which has no influence on the predicted values at themeasurement
places, for example if tj occurred much earlier than the first mea-
surement was taken. But since the underlying process is stochastic
and there is a large amount of considered particles, it may happen
that some particles reached the measurement place. This would
results in very small entries in the sensitivity matrix M. Unfortu-
nately, this is a very undesirable behaviour as we show in the
following example.

Example 2. Consider the following data

M ¼
�
1 0
1 10�10

�
; y ¼

�
1
1

�
:

Then it is clear that matrix M is ill-conditioned and that the unique
solution is equal to x ¼ ð1;0Þ. However, if there is slight error in the
measurements, for example if we consider ~y ¼ ð1;1þ 10�5Þ, then
the original solution x changes by a big margin into ~x ¼ ð1;105Þ.

Let us impose nowa requirement that atmost one component of
x can be nonzero. Then since we want to minimize the discrepancy
betweenMx and y, the solutionwill always be close to ð1;0Þ for any
small perturbation of y. This is precisely the case of sparse
optimization.

There have been some attempts to deal with this problem. In
Martinez-Camara et al. (2014a, 2014b) outliers were detected and
removed from the model. In the first paper, an extension of the
Random Sample Consensus (RANSAC) algorithm was proposed
while in the second one, twomatricesM1 andM2 were constructed
and outliers were detected and removed based on differences in
these matrices. Finally, in Martinez-Camara et al. (2013) it was
suggested to keep removing rows fromM until the resulting matrix
has a better condition number. However, we believe that the rows
of M should stay mostly untouched because removing rows of M
means ignoring valuable data (for example in the latter paper
approximately 60% of all measurements were removed).

On the other hand, sparse optimization tries to find a sparse
(approximate) solution of a linear system, where only a limited
number of nonzero elements appears. There exist many underlying
practical applications whichmake use of the developed theory. One
of the well-known examples is the image compressing into special
formats such as JPEG. During such compressing, the pixel infor-
mation is transformed using special transforms such as Fourier
transform. These transforms are constructed in such a way that
only the first several coefficients are large (and thus important) and
thus, the remaining ones can be ignored without losing much
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information. Hence, the image has a sparse representation. Another
application from image processing is the image denoising of image
deblurring. Applications from different fields amount for magnetic
resonance imaging (MRI) or target location via radars. For more
information about this field see Bruckstein et al. (2009) and Foucart
and Rauhut (2013) for annotated bibliography and references, and
Mairal et al. (2010) for implementation of selected algorithms in
SparseLab or Sparse Modeling Software (SPAMS).
3.1. Traditional e approximate e approaches to inverse modelling

In this subsection, we formulate and shortly discuss methods
which were already used for dealing with badly scaled matrices.
Thesemethodswill be then comparedwith the sparse optimization
technique in the empirical part in Section 4. In particular, we focus
on removing low-influential columns of M and two traditional
regularization techniques.
3.1.1. Columns removal
The most obvious strategy is to remove columns of the sensi-

tivity matrix. We can imagine that we solve problem (9) where the
components of x corresponding to the omitted columns are fixed to
zero. However, it may happen that the optimal solution of this
problem is far from an optimal solution to the original problem (9).
Specifically, denoting a column of M by mj, we remove all columns
of M which satisfy��mj

��
2 � ccolumn max

k¼1;…;m
kmkk2; (10)

where ccolumn >0 is a given constant.
3.1.2. l2-regularization: Tikhonov approach
Another possibility is to use the Tikhonov regularization and to

solve problem

minimize
x

���WMx�Wy
���2
2
þ a

���x���2
2

subject to x � 0

(11)

with fixed penalization parameter a>0. The second term in the
objective penalizes the Euclidean norm of the release. Note that the
optimal solutions usually contain many small nonzero values, thus
they are not sparse.

A similar approach was used in Stohl et al. (2012) where the

following: minimizex�0 jW1 Mx� yð Þj jj22 þ
���W2x

���2
2
þ
���W3Dx

���2
2
:

MatricesW1,W2 andW3 are diagonal with positive entries on their
diagonal and thus allow for weighting of individual elements.
Matrix D represents discretized differential operator, see Chapter 8
in Nocedal and Wright (2006), and thus the last term forces x to be
as smooth as possible. Another possibility is to add term

kW4ðx� xaÞk22 to the objective function, where xas0 is either an
expert or apriori estimate. Since optimal solution x would strongly
depend on the choice of xa in this case, we try to avoid this
possibility.
3.1.3. l1-regularization: LASSO
To the best of our knowledge, there have not been many at-

tempts to use sparse optimization for atmospheric modelling. One
of the attempts was performed in Martinez-Camara et al. (2013),
where problem
minimize
x

jWMx�Wyj jj22 þ a

���x���
1

subject to x � 0
(12)

was considered. This can be understood as the Least absolute
shrinkage and selection operator (LASSO) method, which was
introduced in Tibshirani (1996) and later thoroughly studied in
Donoho and Tsaig (2008). Compared with (11), this method pe-
nalizes l1 norm of the release instead of l2 norm. Since x is
nonnegative, problem (12) is smooth.

3.2. Exact approaches to sparse optimization

All approaches from the previous subsection somehow regu-
larized the problem and depended heavily on a real parameter. In
this subsection we present another approach. Instead of modifying
the objective or the data, it assumes that the solution is sparse and
tries to search for a solution with only a limited number of non-
zeros. Even though a (regularization) parameter is present as well
in this case, it is an integer and thus much easier to select properly.

There are two possibilities in problem (9). Either systemMx ¼ y
is underdetermined, which usually corresponds to the case ofm<n.
Then there exist multiple solutions and the task of sparse optimi-
zation is to select the one with the lowest number of nonzero
components. However, in our case it usually happens that the
system is overdetermined, which usually corresponds to m>n.
Then the solution of (9) is uniquely determined but the solution
may be dense. In such cases it is possible to trade lower density for a
slightly worse error jWMx�Wyj jj2. A big advantage of sparse so-
lutions is that columns corresponding to zero components of a
solution are ignored. This means that sparse solutions naturally
deal with ill-conditioned matrices as described earlier in this
section.

The basic concept used is the l0 “norm”, which is defined as

k xk0 :¼ #fij xis0g;

where #A denotes the number of elements in a set A. The term l0
norm was coined because

��x��0 ¼ limp/0 jxj jjpp, see Section 2.1 in
Foucart and Rauhut (2013). Thus, sparse optimization tries to
minimize jxj jj0, together with criterion (7); a problemwhich can be
understood as a multiobjective optimization, see Miettinen (1999).
This gives rise to problem

minimize
x

���WMx�Wy
���2
2

subject to jxj jj0 � ktol;
x � 0;

(13)

where ktol2ℕ is a natural number which denotes the maximal
number of nonzeros in x.

Because the feasible set of problem (13) is highly nonconvex (for
example for n ¼ 2 and ktol ¼ 1 it consists of two halflines), this
problem is usually very difficult to solve efficiently. One of the
possibilities of handling these constraints is to use artificial binary
variables zi2f0;1g such that

zi ¼ 0 ⇔ xi ¼ 0;
zi ¼ 1 ⇔ xi >0; (14)

which leads to exact expression

kxk0 ¼
Xn
i¼1

zi:

Relation (14) is equivalent to



Fig. 1. Locations of measurement stations for the ETEX experiment.

2 http://www-03.ibm.com/software/products/en/cpleoptiforzos.
3 http://www-03.ibm.com/software/products/en/category/decision-

optimization.
4 For plotting this and all further maps we have used package border, which is

freely available at http://www.mathworks.com/matlabcentral/fileexchange/50390-
borders.
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0 � xi � zi$ubi; (15)

where ubi >0 is a given upper bound for the release (or a suffi-
ciently large number). Instead of this relation, we will consider

zi$lbi � xi � zi$ubi; (16)

where lbi � 0 are lower bounds for release. Even though lbi and ubi
may seem as additional penalization parameters, this is not the
case. They serve only to improve the properties of the following
integer programming. If lbi ¼ 0, then constraints (15) and (16)
coincide. Moreover, if ubi ¼ ∞ then the upper bounds in (15) and
(16) are eliminated from the system.

Concerning the interpretation of lbi: if this constant is strictly
positive, thus lbi >0, then either there is no release (zi ¼ 0 and
xi ¼ 0) or if there is any positive release xi >0, then this release
must be at least lbi (zi ¼ 1 and xi � lbi). Hence, this constraint
basically says that if there is any release, then it has to be auto-
matically greater than lbi.

By the analysis in the previous paragraph, we have derived the
following problem related to (13)

minimize
x;z

jWMx�Wyj jj22
subject to

Pn
i¼1

zi � ktol;

zi$lbi � xi � zi$ubi; i ¼ 1;…;n;
zi2 0;1f g:

(17)

Note that the constraints imply xi � 0 and thus, it is not necessary
to state this constraint explicitly. For a solution x of this problem, we
always have that at most ktol components xi are positive and if this
is the case, then they are greater than lbi.

Solvers available in Matlab employ a matrix representation of
the problems, thus we present it for our problem (17). It is not
difficult to see that the problem may be written in the following
form

minimize
u

uuHuþ huu

subject to Au � b;
uz2 0;1f g;

(18)

where u ¼ ðx; zÞ, uz refers to the second part of u and the data read

H ¼
�
MuWuWM 0n�n

0n�n 0n�n

�
; h ¼

�
�2MuWuWy

0n�1

�

and

A ¼
01�n 11�n

�diag 1n�1ð Þ diag lbð Þ
diag 1n�1ð Þ �diag ubð Þ

0
@

1
A; b ¼

ktol
0n�1
0n�1

0
@

1
A:

Here 0m�n stands for matrix (vector for n ¼ 1 or m ¼ 1) of zeros,
1m�1 and 11�n stand for vectors of ones and diagðvÞ is a diagonal
matrix formed from vector v.

Thus, we managed to recast problem (13) into mixed-integer
convex quadratic problem (18). Unfortunately, mixed-integer
quadratic programming problems are highly computationally
demanding. Thus, a special purpose software for solving such
problems is necessary. Such software often works with a relaxed
problem, where the integer requirements uz2f0;1g are relaxed
into simple box constraints uz2½0;1�. Since the relaxed problem is
convex, then the branch-and-bound algorithm, well known from
mixed-integer linear problems, works well for such problems.
Moreover, cutting planes can further improve its performance, see
Bertsimas and Shioda (2009) and Sun et al. (2013).
For the algorithmic implementation we have used one of the

best available commercial solvers for mixed-integer linear and
quadratic problems, CPLEX.2 Solver CPLEX is delivered with IBM
ILOG CPLEX Optimization Studio,3 which is free for academic pur-
poses and can be easily connected to Matlab. Other possibility is to
employ the free optimization library OPTI Toolbox delivered
together with noncommercial solver SCIP, see Achterberg (2009).
For the convex problems we have used CVX Grant and Boyd (2008).
4. Application to ETEX

In this section we present numerical results and comparison of
methods presented in this paper. The ETEX (European Tracer
Experiment) is one of the few controlled tracer experiments with
detailed information about the release. Similar experiments are for
example CAPTEX (Cross-Appalachian Tracer Experiment), ANATEX
(Across North America Tracer Experiment) or the not so well-
known KATREX (Karlsruhe Tracer Experiment), see Anfossi and
Castelli (2014). Among these three experiments, ETEX is the new-
est one and was performed in 1994 near Rennes in France. This
experiment was performed twice, for the first time on 23 October
1994 and for the second time on 14 November 1994. Here, we will
consider only the first experiment.

A total mass of 340 kg of PMCH (Perfluoro-Methyl-Cyclo-Hexane)
was released into the atmosphere during the course of 12hours. After
that, this substance got carriedover Europe and its concentrationwas
measured over the following several days. The sampling network
consisted of 168 stations. The locations of these stations are depicted
in Fig. 1.4 Each station was supposed to sample over the period of
72 hours with the time difference between two subsequent mea-
surements being 3 hours. The starting point for sampling was
different for all stations: stations closest to the releasepoint started to
sample 3 hours before the release while the stations far away from
the release ended their sampling activity 90 hours after the release
had started.Unfortunately, large partof thedatawas either corrupted

http://www-03.ibm.com/software/products/en/cpleoptiforzos
http://www-03.ibm.com/software/products/en/category/decision-optimization
http://www-03.ibm.com/software/products/en/category/decision-optimization
http://www.mathworks.com/matlabcentral/fileexchange/50390-borders
http://www.mathworks.com/matlabcentral/fileexchange/50390-borders
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or not usable which resulted in having only 3104 instead of the
intended number of 4032 measurements.

The sensitivity matrix was of dimension 3104� 112, thus
m ¼ 3104 and n ¼ 112 and the system was overdetermined. Every
component of vector x denoted a potential time when a release
could have occurred. The time difference between two subsequent
components was 1 hour. Since the true release was performed over
12 hours, the true solution had sparsity of 12, which is approxi-
mately 10% of the whole vector. The sensitivity matrix was gener-
ated by Hysplit 4. As we have mentioned several times, this matrix
is badly scaled. This can be seen in the ratio of the greatest and
smallest nonzero element, which is equal to 1:83,107. For the
sensitivity matrix from a different experiment in Martinez-Camara
et al. (2013), this ratio was much worse and reached. 8:16$1014:

We have divided this section into three subsections. In the first
one, we provide numerical justification for introducing the
weighting matrixW. In the second part, we briefly comment on the
dependence of optimal solutions on parameters. Finally, in the last
part we summarize results obtained by different optimization
methods and compare them with each other.

4.1. Justification of using weighting matrix W

Recall that the weighting matrix has been constructed via re-
lations (3), (4) and (8). To obtain it, we need to specify parameters
aS, aT , smax and tmax. We chose tmax ¼ 0, which means that we
allowed no measurement aggregation with respect to different
times. In other words, we have wT ðzi; zjÞ ¼ 1 when zi and zj were
taken at the same time instants and 0 otherwise. This also made
parameter aT obsolete. The space distance

��� zxi ; z
y
i

� �
� zxj ; z

y
j

� ����was
measured as the Euclidean norm applied on degrees of latitude and
longitude. Parameter smax was chosen in such a way that we
aggregated data from approximately 5% of all stations. Having
n ¼ 3104 measurement, we chose smax ¼ 2:5 to obtain

1
n

Xn
i¼1

Xn
j¼1

cwij >0 ¼ 8:32;

where

cwij >0 ¼
	
1 if wij >0
0 otherwise;

stands for the characteristic function. This indeed forms
Fig. 2. Comparison of
approximately 5% from the 159 stations which were able to provide
at least one measurement. For the remaining parameter, we have
chosen aS ¼ 1:15, which resulted in

1
n

Xn
i¼1

wii ¼ 0:50:

In other words, since the sum of every row of W equals to 1, this
means that approximately one half of the objective function of (9) is
based on the distance between the measured value yi and the
predicted value ðMxÞi at the same point. On the other hand, the part
consisting of the comparison of the measured value yi at a point
and the predicted values ðMxÞj at a neighbourhood amounts
approximately to the same amount of the objective. We find this to
be a good balance between the ordinary least squares (whichwould
correspond to only for the first part and none of the second one)
and considering also some measurements on a neighbourhood of
every point.

In the rest of the text, we will denote the OLS (ordinary least
squares) and WLS (weighted least squares) solution by the solu-
tions of problems (1) and (9), respectively. In Fig. 2 we show the
relation between the predicted and actual measurements. Fig. 2a
shows the OLS solution and depicts the relation between y andMx.
Similarly, Fig. 2b shows that WLS solution and depicts the relation
betweenWy andWMx. For the best fit, all data would have to lie on
the central line. Even though the fit is not perfect, we see that
Fig. 2b shows better results than Fig. 2a, and thus WLS solution has
much better approximation capability than OLS solution. This is
connected with the fact that adding weighting matrix W moves
uncertainties from a point to its neighbourhood. This visual hy-
pothesis is supported by the coefficient of determination R2, which
tells how many percent of the measurements were explained by
the model. We obtain the following data

R2OLS :¼ 1� jy�Mxj jj2
jy�mean yð Þj jj2

¼ 0:497;

R2WLS :¼ 1� jWy�WMxj jj2
jWy�mean Wyð Þj jj2

¼ 0:515:

In other words, by using the weighting matrix, we were able to
OLS and WLS fits.



Fig. 3. Dependence of the total release
Pn

i¼1xi on parameters: either log10ðccolumnÞ (for
matrix column reduction) or on log10ðaÞ (for Tikhonov regularization and LASSO).
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explain approximately 1:8% more of the measurements.
4.2. Parameter dependence of current methods

In this subsection, we show that the dependence of the current
methods, described in Subsection 3.1, on the involved parameters is
rather strong. We can see the results in Fig. 3, where the horizontal
axis depicts parameter value, either log10ðccolumnÞ for column
removal or log10ðaÞ for Tikhonov regularization and LASSO. The
vertical axis then depicts the total release

Pn
i¼1xi for the corre-

sponding x. The full line depicts the true release which is to be
estimated, the dashed line corresponds to the solution where we
removed certain amount of columns, the dash-dotted line to the
Tikhonov regularization (11) and finally the dotted line to the
LASSO (12). It can be seen that if the parameter is chosen in a bad
way, the computed solution is far off from the true solution. This
shows the principal difficulty of the regularized ordinary least
squared approach: it is not simple to choose the correct value of
parameter a.
Fig. 4. Dependence of Tikhonov and LAS
One of the possibilities is to choose the maximal a such that the
residual error jWMx�Wyj jj2 stays rather constant. As we can see in
Fig. 4, this happened for approximately a ¼ 10�4. However, it may
be difficult to find such a because it is a real parameter. This may
not be the case of sparse optimization and ktol which may take only
finite number of values. Moreover, in our opinion, it is much more
meaningful to work with parameter ktol rather than with a or
ccolumn: while it is simple to explain the meaning of the former
parameter, this is not the case of the latter two.
4.3. Sparse optimization and method comparison

Wewill start with Fig. 5 which depicts variant of Fig. 4 for sparse
solutions and shows the dependence of error jWMx�Wyj jj2 and
the coefficient of determination R2WLS on the solution sparsity, thus
the number of nonzeros. For a good comparison, we have included
l2 and l1 regularizations as well, thus solutions of problems (11) and
(12), respectively and their sparsities. Bennett et al. (2013) reviews
other techniques available across various fields for characterizing
the performance of environmental models. Constant a was chosen
as in the previous section, thus a ¼ 10�4. The remaining markers
correspond to WLS solution and l2 and l1 regularizations. We see
that for approximately ktol ¼ 10, the residual error got stable. For
this reason, we would recommend this parameter.

In Fig. 6 we plot comparison of selected solutions which were
presented in this paper. In the left column, we can see the true
release, the WLS solution and finally the LASSO regularization with
a ¼ 10�4. On the right hand side, we can see the sparse solution
with ktol ¼ 5, ktol ¼ 10 and ktol ¼ 15, respectively. On the horizontal
axis the time scale is located. On the vertical axis we can see the
release at the corresponding time instant. The grey dashed line on
the background depicts the scaled column sum of WM. We did not
include the Tikhonov regularization because it provided very
similar results to LASSO.

All solutions provided rather good approximation of the true
release. However, we may observe several interesting differences
between various solution types. The WLS solution contains one
large predicted release near the end of the time window. Note that
the corresponding column ofM contains only one nonzero element
(out of 3104) and the corresponding column of WM contains six
nonzero elements. What probably happened in this time is that the
“best” approximation was found at the remaining coordinates and
SO regularizations on parameter a.



Fig. 5. Dependence of computed solutions on sparsity.

Fig. 6. Values of selected solutions x. The left column depicts the true solution, the WLS solution and the LASSO regularization. The right column depicts the sparse solutions with
ktol ¼ 5, ktol ¼ 10 and ktol ¼ 15. The grey dashed line on the background depicts the scaled column sum of WM.
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this coordinate provided only a small correction to the final solu-
tion. Unfortunately, this small correction in the residuals caused to
increase the predicted total release by approximately 25%. It seems
that the LASSO regularization has produced a sparse solution, but
this is not true. From Fig. 5 we can see that this solution contains 84
Table 1
Numerical evidence to Fig. 6. The negative value of the coefficient of determination is po
solution (WLS in this case) and for other values it may be negative. Even though it may se
why this happened and that the model is still good.

Total release Mean

True 340.0 32.62
WLS 163.0 10.02
LASSO 135.8 10.02
Integer with ktol ¼ 5 118.5 10.20
Integer with ktol ¼ 10 138.0 10.02
Integer with ktol ¼ 15 139.5 10.02
nonzero coordinates, many of them are very small. This raises a
question whether these small elements should really be present in
the solution or if they just provide some small corrections in the
solution and are present only because of model or measurement
errors.
ssible because the coefficient of determination is nonnegative only for the optimal
em that the model is inappropriate because of this value, based on Fig. 7 we explain

square error Coef. of deter. Sparsity

�4.139 12
0.515 80
0.515 84
0.500 5
0.515 10
0.515 15



Fig. 7. The predicted plumes corresponding to the true release and the integer solution with ktol ¼ 10. The circles are the measurements with the value denoted by their shade of
gray. Similarly, the crosses are zero (or very small) measurements.

Table 2
Review of models and optimization techniques.

Method Solved problem Variables Optimization type

OLS (1) continuous only continuous quadratic
WLS (9) continuous only continuous quadratic
Tikhonov reg. (11) continuous only continuous quadratic
LASSO (12) continuous only continuous quadratic
Sparse opt. (13) integer and continuous mixed-integer quadratic
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This behaviour is suppressed for the sparse solutions which are
presented in the right column of Fig. 6. We can see that the nonzero
elements of the solution with ktol ¼ 5 are subset of nonzero ele-
ments of the solution with ktol ¼ 10 and similarly when ktol is
increased to 15. We would like to stress again that when using the
sparse solutions, we do not have to perform any procedure of
regularizing the sensitivity matrix or taking care of release ele-
ments with small or huge value.

We provide numerical summary of Fig. 6 in Table 1. We can see
that the release of the solutions of LASSO and all integer problems
are very similar and approximately half the true release. The
release of the WLS solution is almost exactly as the true solution
but this is caused mainly by the huge release at one of the later
time instant. Since the mean square error is reciprocal to the
coefficient of determination R2WLS, we will comment only on the
latter one. All the solutions besides the true have very similar
coefficient of determination around 51%. Based on the coefficient
of determination for the true solution, one may think that the
model is totally inappropriate. However, this is not true as we
show in Fig. 7. The last column shows the sparsity. It is not sur-
prising that only the solutions obtained by the sparse optimiza-
tion are indeed sparse.

In Fig. 7, we depict the position of the plume (released sub-
stance) at one particular time instant as predicted from the atmo-
spheric model, on which the computation of the sensitivity matrix
is based. The plume is showed in gray scale. The crosses denote
measurements with zero or negligible value. The circles denote
measurements with positive values, the value is depicted by the
shade of the circle. In Fig. 7a, we can find the plume corresponding
to the true solutionwhile in Fig. 7b, we see plume corresponding to
the solution of sparse optimization with ktol ¼ 10. Even though the
coefficient of determination suggested that the true solution is not
good, this figure tells that by slightly moving the plume (for
example via an elastic transformation of the underlying mesh), we
could obtain a very good fit as well.
5. Conclusion

In this paper, we have considered the identification of a source
term in atmospheric modelling. First, we have mentioned the well-
known technique of the ordinary least squares and showed the
standard regularization techniques of the Tikhonov and LASSO
regularization. After doing so, we have proposed to look for sparse
solutions instead of using classical the above-mentioned methods.
We can see the basic information about these methods in Table 2.
As suggested in this table, all methods besides the sparse optimi-
zation are rather simple to perform and amount to solving a
quadratic program. Besides suggesting to use the sparse optimi-
zation, we have also proposed to extend the model by adding a
weighting matrix W which is based purely on the topology of the
measurements and not on the measurement values as is the case in
Bayesian modelling.

To verify the proposed methods numerically, we have applied
them on the European Tracer Experiment. The obtained results
show good results of our techniques. Even though they are
computationally more demanding, it is much simpler to choose the
parameters in our case. Moreover, it is not necessary to distinguish
between small or high values of the release vector.

For the future, we see several possible extensions. As we have
already mentioned, the problem may be computationally
demanding. Thus, instead of solving the integer sparse problem, it
may be possible to use its continuous approximations, which still
provide a sparse solution and may be much easier to solve. This
holds true especially for large problems. For a second possible
extension, we intend to add additional constraints into the model,
which may represent for example the maximal ratio of two sub-
stances when there are more of them in the model.
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