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1 Introduction

Many important solution concepts for transferable-utility n-person coalition
games can be equivalently expressed as formulas involving gradients or gen-
eralized gradients of a suitable extension of the given game. This applies to
some of the well-known single-valued solutions, such as the Shapley value and
the Banzhaf–Coleman index of power. These constructions usually rely on the
multilinear extension of coalition games from the discrete cube {0, 1}n onto
[0, 1]n; see [11, Chapter XII], for example. The purpose of such a “differential
representation” of the solution is not only computational, but also to provide
a new interpretation of the corresponding payoff vectors, which usually revolves
around the idea of marginal contributions to a given (possibly virtual) coalition.

The recent progress in variational analysis [10,15] enables us to construct
various kinds of generalized derivatives, the so-called subgradients and su-
pergradients, for a very large family of lower semicontinuous functions. Thus
the notion of a unique gradient of a differentiable function is replaced by
the concept of a subdifferential (superdifferential) of a possibly nonsmooth
function. The elements of a superdifferential—the supergradients—have a close
geometric connection with Jacobians of all smooth majorants of the function
at the neighborhood of a given point; see A. Among the main superdifferentials
count the Fréchet, the limiting and the Clarke superdifferential, respectively.

The representation of some solution concepts by generalized derivatives
for selected classes of cooperative games was studied already by Aubin [2].
The authors of [5,16] use the Lovász extension of a coalition game in order
to express the core and the Weber set in terms of its Fréchet and the Clarke
superdifferential, respectively.

In this paper we pursue a converse research direction by adopting the idea
proposed in [16]: we employ the limiting superdifferential to define directly
a new solution concept for coalition games, the so-called intermediate set.
Specifically, the intermediate set is the limiting superdifferential of the Lovász
extension of the game calculated at the grand coalition. The associated payoff
vectors are thus marginal contributions to the grand coalition in the sense
conveyed by the limiting superdifferential. However, several questions arise at
this point, for instance:

– What are game-theoretical properties of such a solution?
– Is the intermediate set the set of payoff vectors determined by some reason-

able principle of profit allocation among players?

The main goal of this paper is to argue that the newly constructed solution
is meaningful and interesting from many perspectives. Using the tools of
variational analysis only, we will show that the intermediate set

– is always nonempty, subadditive and Pareto optimal solution,
– is a finite union of convex polytopes, and hence it is not generally convex-

valued,
– lies in-between the core and the Weber set,
– coincides with the core iff the game is supermodular (convex).
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The intermediate set can be viewed as a nonempty interpolant between the
core and the Weber set, which is convenient especially whenever the former
is empty or small and the latter is huge. Our Theorem 1 provides a clear
interpretation of the payoff vectors from the intermediate set: for some ordered
partition of the player set, each such vector is a Weber-style marginal vector on
the level of blocks of coalitions and, at the same time, no coalition inside each
block can improve upon this payoff vector in the sense of marginal coalitional
contributions. The intermediate set is thus a solution concept that looks globally
like the Weber set, but behaves locally like the core concept.

The article is structured as follows. We fix our notation and terminology
in Section 2, where we repeat the basic facts about the core, the Weber
set, the Lovász extension and its superdifferentials. Section 3 contains the
characterization of the intermediate set based on ordered partitions of the
player set (Theorem 1) and the discussion of a distribution process that leads
to a payoff vector in the intermediate set. Some motivating examples are
also included (Examples 1 and 3). We carry out an in-depth inspection of
the properties of the intermediate set and compare it to the various solution
concepts in Section 4. The differences among the core, the intermediate set
and the Weber set are captured by Table 1. The selected classes of coalition
games—the simple games, the clan games and the glove game—are analyzed in
Section 5 and the formula from Theorem 1 is refined in order to derive a neat
description of the intermediate set. The main part of the paper is concluded
with an outlook towards further research in Section 6. Appendix consists of
two parts. A brief explanation of the notions from nonsmooth analysis is in
Appendix A, with no attempt at a comprehensive discussion of all the results
from this area used in the paper. Appendix B contains the proof of the main
characterization result, Theorem 1.

2 Core and Weber Set

We use the standard notions and results from cooperative game theory; see [12].
Let N = {1, . . . , n} be a finite set of players, where n is a positive integer. By
2N we denote the powerset of N whose elements A ⊆ N are called coalitions.
A (transferable utility coalition) game is a function v : 2N → R with v(∅) = 0.
Any x = (x1, . . . , xn) ∈ Rn is called a payoff vector. We introduce the following
notation:

x(A) =
∑
i∈A

xi, for every A ⊆ N .

We say that a payoff vector x is feasible in a game v whenever x(N) ≤ v(N).
The set of all feasible payoff vectors in v is denoted by F(v).

Let Γ (N) be the set of all games and Ω ⊆ Γ (N). A solution on Ω is a set-
valued mapping σ : Ω → 2R

n

that maps every game v ∈ Ω to a set σ(v) ⊆ F(v).
We recall the core solution and the Weber set. The core of a game v is the
convex polytope

C(v) = {x ∈ Rn | x(N) = v(N), x(A) ≥ v(A) for every A ⊆ N}.
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Let Πn be the set of all the permutations π of the player set N . Let
v ∈ Γ (N) and π ∈ Πn. A marginal vector of a game v with respect to π is the
payoff vector xv(π) ∈ Rn with coordinates

xvi (π) = v

 ⋃
j≤π−1(i)

{π(j)}

− v
 ⋃
j<π−1(i)

{π(j)}

 , i ∈ N. (1)

The Weber set of v is the convex hull of all the marginal vectors of v,

W(v) = conv{xv(π) | π ∈ Πn}.

Since xv(π)(N) = v(N), the Weber set is a solution on Γ (N) in the sense
defined above. Moreover, it always contains the core solution; see [23, Theorem
14].

Proposition 1 C(v) ⊆ W(v) for every v ∈ Γ (N).

The fundamental tool in this paper is the concept of Lovász extension [9].
For every set A ⊆ N let χA denote the incidence vector in Rn whose coordinates
are given by

(χA)i =

{
1 if i ∈ A,

0 otherwise.
(2)

We write 0 in place of χ∅. The embedding of 2N into Rn by means of the
mapping A 7→ χA makes it possible to interpret a game on 2N as a real function
on {0, 1}n. Indeed, it suffices to define v̂(χA) = v(A), for every A ⊆ N . In
the next step we will extend the function v̂ onto the whole of Rn. For every
x ∈ Rn, put

Π(x) = {π ∈ Πn | xπ(1) ≥ · · · ≥ xπ(n)}.
Given i ∈ N and π ∈ Π(x), define

V πi (x) = {j ∈ N | xj ≥ xπ(i)}.

Note that V πi (x) = V ρi (x) for every π, ρ ∈ Π(x). This implies that any vector
x ∈ Rn can be unambiguously written as a linear combination

x =

n−1∑
i=1

(xπ(i) − xπ(i+1)) · χV πi (x) + xπ(n) · χN . (3)

Using the convention V π0 (x) = ∅, we can rewrite (3) as

x =

n∑
i=1

xπ(i) ·
(
χV πi (x) − χV πi−1(x)

)
. (4)

The Lovász extension v̂ of v ∈ Γ (N) is the function Rn → R defined linearly
with respect to the decomposition (4):

v̂(x) =

n∑
i=1

xπ(i) ·
(
v(V πi (x))− v(V πi−1(x))

)
, for any x ∈ Rn. (5)
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Observe that the definition of v̂(x) is independent on the choice of π ∈ Π(x).
Clearly v̂(χA) = v(A) for every coalition A ⊆ N . It is easy to see that the
Lovász extension v̂ of any game v fulfills these properties:

– v̂ is continuous and piecewise linear on Rn;
– v̂ is positively homogeneous, that is, v̂(λ · x) = λ · v̂(x) for every λ ≥ 0 and

x ∈ Rn;
– the mapping v ∈ Γ (N) 7→ v̂ is linear.

The following easy lemma says that the local behavior of v̂ is the same around
χN as in the neighborhood of 0.

Lemma 1 For any x ∈ Rn it holds true that

v̂(x + χN ) = v̂(x) + v̂(χN ).

Proof This follows directly from the definition (5) together with the identities
Π(x+χN ) = Π(x), Π(χN ) = Πn and V π1 (χN ) = . . . = V πn (χN ) = N for every
π ∈ Πn. ut

A game v ∈ Γ (N) is called supermodular (or convex ) if the following
inequality is satisfied:

v(A ∪B) + v(A ∩B) ≥ v(A) + v(B), for every A,B ⊆ N .

A submodular game v is such that −v is supermodular. A game v is called
additive when v(A ∪ B) = v(A) + v(B) for every A,B ⊆ N with A ∩ B = ∅.
We will make an ample use of several characterizations of supermodular games
appearing in the literature.

Proposition 2 Let v ∈ Γ (N). Then the following are equivalent:

1. v is supermodular;
2. {xv(π) | π ∈ Πn} ⊆ C(v);
3. C(v) =W(v);
4. The Lovász extension v̂ of v is a concave function.

Proof Shapley [18] proved 1. ⇒ 2. and Weber [23] showed that 2. ⇒ 3.,
respectively. The implication 3.⇒ 1. was shown by Ichiishi [8]. The equivalence
between 1. and 4. is the “supermodular” version of the theorem originally
proved by Lovász in [9] for submodular games. ut

Remark 1 An extensive survey of other conditions equivalent to supermodular-
ity together with (references to) the proofs can be found in [20, Appendix A].
The notion of “convexity” would be somewhat overloaded in this paper since
it could refer to both convex games and convex sets of solutions on games.
Moreover, convex games have concave Lovász extensions. For those reasons we
strictly prefer the term “supermodular game” over “convex game”, although
the latter is commonly used.
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The Lovász extension v̂ of a game v can be used to characterize the core
solution and the Weber set by using the tools of nonsmooth calculus; the reader
is invited to consult Appendix A for all the notions related to superdifferentials
of functions. It was shown in [5, Proposition 3] that the core coincides with

the Fréchet superdifferential of the Lovász extension at 0, C(v) = ∂̂v̂(0).
Similarly, from [16, Proposition 4.1] we know that the Weber set is the Clarke
superdifferential of v̂ at 0, W(v) = ∂v̂(0). It may be more natural to use the
grand coalition N in place of the empty coalition in those formulas. As a direct
consequence of Lemma 1 this is always possible and thus we can shift the
computations of the respective superdifferentials to χN .

Proposition 3 For every game v ∈ Γ (N),

C(v) = ∂̂v̂(χN ) = ∂̂v̂(0),

W(v) = ∂v̂(χN ) = ∂v̂(0).

3 Intermediate Set

This section is composed of two subsections. In the first one we define the
intermediate set using the limiting superdifferential. Its characterization based
on ordered partitions of the player set is proved in the second subsection.

3.1 Definition and basic properties

As we have already mentioned in the introduction, it may often happen that the
core is small or empty and the Weber set is too coarse. For this reason we follow
the idea of Boris Mordukhovich, which was mentioned in [16], and by analogy
with Proposition 3 we define a new solution concept as ∂v̂(χN ), where ∂ is
the limiting superdifferential. By its definition—see Appendix A—the limiting
superdifferential always lies in-between the Clarke superdifferential and the
Fréchet superdifferential. A simple interpretation of the limiting superdiffer-
ential is that it coincides with the union of all Fréchet superdifferentials with
respect to some sufficiently small neighborhood of the point in question. In Sub-
section 3.2 we will refine the original (analytic) Definition 1 into a combinatorial
description analogous to many solution concepts for coalition games.

Definition 1 Let v ∈ Γ (N). The intermediate set M(v) of v is the set

M(v) := ∂v̂(χN ).

We will start with a motivating example of the three-player glove game, in
which we show the form of the intermediate set. The general formula, which
bypasses the computation of Lovász extension and the limiting superdifferential,
will be proved later.
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Example 1 Consider a game with the player set N = {1, 2, 3} in which the
first player owns a single left glove, while the remaining two players possess
one right glove each. The profit of a coalition is the number of glove pairs the
coalition owns:

v(A) =

{
1 if A ∈ {{1, 2}, {1, 3}, N},
0 otherwise.

It is not difficult to compute C(v),M(v) and W(v) directly. Since v is both
a simple game and a glove game investigated in Subsection 5.1 and 5.3, respec-
tively, we can also use Theorem 2 and 4 to recover M(v). Thus,

C(v) = {(1, 0, 0)},
M(v) = conv{(1, 0, 0), (0, 1, 0)} ∪ conv{(1, 0, 0), (0, 0, 1)},
W(v) = conv{(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

x2

x1

x3

Intermediate set

x2

x1

x3

Weber set

Fig. 1: The intermediate set and the Weber set for the 3-person glove game

We will briefly comment on the shape of the solutions. The core C(v) is
a singleton, reflecting the principle of stability according to which the total
payoff goes to the owner of the sparser kind of glove: player 1 has the ability
to block effectively the contract among the players. On the other hand, the
Weber set W(v) contains any individually rational and Pareto optimal payoff,
which may be difficult to interpret. The intermediate set M(v) admits two
scenaria: player 1 does a deal with either player 2 or player 3, but he does
not need both of them in the same time. Once the contract is made, player 1
may decide to share the total profit in an arbitrary ratio. The remaining player
(a non-contractor) is thus eliminated from further bargaining.

In the rest of this section, we will show some basic properties of M(v).
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Lemma 2 For every game v ∈ Γ (N), the intermediate set M(v) is nonempty
and

C(v) ⊆M(v) ⊆ W(v), (6)

where both inclusions may be strict. If v is supermodular, then C(v) =M(v) =
W(v). Moreover, we have

W(v) = convM(v).

Proof Due to [15, Corollary 8.10, Theorem 9.13] we have thatM(v) is nonempty.

Inclusion (6) follows from the relation ∂̂f(x) ⊆ ∂f(x) ⊆ ∂f(x) and the equalities
from Proposition 3. The last part is a consequence of [15, Theorem 8.49]. ut

From the viewpoint of game theory, it makes sense to evaluate superdiffer-
entials of Lovász extensions for core-like solutions at χN since it conforms with
the idea of marginal contributions to the grand coalition N . On the other hand,
from the computational point of view it may be easier to compute the limiting
superdifferential at the origin 0 since v̂ is a positively homogeneous function.

Lemma 3 The following identity is satisfied for every game v ∈ Γ (N):

M(v) = ∂v̂(χN ) = ∂v̂(0).

Proof It follows from the definitions and from the fact that v̂ has the same
structure around χN and 0 due to Lemma 1. ut

Putting together Proposition 3 and Lemma 3, we can now summarize the
relations between the discussed solutions and the superdifferentials as follows:

C(v) = ∂̂v̂(χN ) = ∂̂v̂(0),

M(v) = ∂v̂(χN ) = ∂v̂(0),

W(v) = ∂v̂(χN ) = ∂v̂(0).

3.2 Characterization by ordered partitions

In this section we are going to prove the main characterization of the inter-
mediate set, Theorem 1. Its purpose is twofold. First, this result shows that
the purely analytic definition of intermediate set can be equivalently stated
in terms of the combinatorial and order-theoretic properties of a coalition
game. Second, it may be better to use Theorem 1 than the definition based on
the limiting superdifferential for the computational reasons. In what follows
the main tool is the notion of an ordered partition of the player set, which
generalizes the permutations π ∈ Πn.

An ordered partition of the player set N is a partition of N together with
a total order on the coalitions forming the partition. Thus every ordered
partition of N is just a K-tuple P := (B1, . . . , BK) (K ≥ 1) of coalitions
∅ 6= Bi ⊆ N such that Bi ∩Bj = ∅ (i 6= j) and B1 ∪ · · · ∪BK = N . Note that
there is always a total order on the blocks of the partition and thus the notion
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of an ordered partition is truly different from that of a coalition structure [3],
which is just a partition of the player set. Let

P = {P | P is an ordered partition of N}.

The family P is associated with the following scheme of allocating profits x
among the players in a game v:

1. The players may be split into any ordered partition P = (B1, . . . , BK) ∈ P .
2. Each block of players Bk can distribute the total amount

x(Bk) = v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1)

to its members, which can be interpreted as the marginal contribution of
coalition Bk to the coalition B1 ∪ · · · ∪ Bk−1 with respect to the ordered
partition P .

3. No coalition B in a block Bk may improve upon x while respecting the
given order of coalition blocks, that is,

x(B) ≥ v(B1 ∪ · · · ∪Bk−1 ∪B)− v(B1 ∪ · · · ∪Bk−1).

Note that the players shares the total of v(N) among them as a consequence
of the second principle. The distribution procedure explained above has two
extreme cases. Assume that the ordered partition P is the finest possible:
P = ({π(1)}, . . . , {π(n)}) for some permutation π ∈ Πn. In this case the
allocation scheme in a game v leads to the marginal vectors xv(π) defined
by (1). On the contrary, if the partition contains one block only, P = (N),
then all the players (and coalitions) are treated equally, which results in
distributing payoffs according to the definition of core. Any ordered partition
P = (B1, . . . , BK) different from the two extreme cases generates a combination
of the principle of marginal distribution on the level of blocks with the core-
like stability inside each block of the partition, while respecting the given
order of coalitions. Such a distribution process is thus always a mixture of the
considerations endogenous to Bi and those which are exogenous to Bi. Also
for this reason we have coined the term “intermediate set” for M(v).

Our main result says that x ∈ M(v) if and only if x is allocated in
accordance with the above distribution principles based on some ordered
partition P .

Theorem 1 For every game v ∈ Γ (N),

M(v) =
⋃
P∈P
MP (v), (7)

where MP (v) with P = (B1, . . . , BK) is the set of all x ∈ Rn such that the
folowing two conditions hold for every k = 1, . . . ,K:

x(Bk) = v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1), (8a)

x(B) ≥ v(B1 ∪ · · · ∪Bk−1 ∪B)− v(B1 ∪ · · · ∪Bk−1) for each B ⊆ Bk.
(8b)
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Proof See Appendix B. ut

The preceding result can serve as an alternative definition of M(v). Since
the union in (7) runs over the family P , computingM(v) can be quite a complex
task. It is known that the number of ordered partitions over an n-element set
equals the n-th ordered Bell number. For example, in case n = 4 there are
already 75 ordered partitions of {1, 2, 3, 4}.

Remark 2 Note that when we choose K = 1 and B1 = N , then P = (N) and
the relations (8) are precisely those relations defining the core: MP (v) = C(v).
Analogously, setting K = n and each Bk to be equal to a singleton yield
a single marginal vector (1): MP (v) = {xv(π)} for some π ∈ Πn and P =
{(π(1), . . . , π(n))}.

We will now present two examples. In the first one, we will make use of
Theorem 1 to write the general form of the intermediate set for any 3-player
coalition game. In the second one, we further build on the first one and present
another game where the three presented solution concepts differ in a significant
way.

Example 2 Let N = {1, 2, 3}. In order to simplify the notation for coalitions
we will omit the parentheses and commas so that a coalition {i, j} is written
as ij. The family P of all ordered partitions over {1, 2, 3} is

P ={(N), (1, 23), (2, 13), (3, 12), (23, 1), (13, 2), (12, 3)} ∪⋃
π∈Πn

{(π(1), π(2), π(3))}.

Let v ∈ Γ (N). For example, the choice P = (1, 23) gives

MP (v) = {x ∈ R3 |x1 = v(1),x(23) = v(N)− v(1),

x2 ≥ v(12)− v(1), x3 ≥ v(13)− v(1)}.

Theorem 1 says that

M(v) = C(v) ∪
M(1,23)(v) ∪M(2,13)(v) ∪M(3,12)(v) ∪
M(23,1)(v) ∪M(13,2)(v) ∪M(12,3)(v) ∪
{xv(π) | π ∈ Πn}.

Example 3 Let N = {1, 2, 3} and

v(A) =


0 if |A| = 1,

2 if |A| = 2,

3 if A = N.

It is easy to see that v is not supermodular but only superadditive, that is,
v(A ∪B) ≥ v(A) + v(B) for every A,B ⊆ N with A ∩B = ∅.
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(a) Core (b) Intermediate set (c) Weber set

Fig. 2: The solutions from Example 3 in the barycentric coordinates

The core of this game is single-valued, C(v) = {(1, 1, 1)}, while the Weber set
W(v) is the hexagon whose 6 vertices are all the coordinate-wise permutations
of the payoff vector (0, 1, 2). The intermediate set is the union of three line
segments—see Figure 2. We obtain that M(i,jk)(v) = ∅ for every ordered
partition (i, jk) of N . On the other hand, M(ij,k)(v) is the line segment whose
endpoints are the two marginal vectors x with xk = 1. Thus a payoff vector x
is in M(v) iff it belongs to M(ij,k)(v) for some ordered partition (ij, k) of N .
Note that the example shows that, in general, the intermediate set is not
a union of selected faces of the Weber set.

The following lemma presents an additional characterization of supermodu-
larity based on the core solution; cf. Proposition 2.

Lemma 4 A game v is a supermodular if and only if C(v) = M(v). If v is
submodular, then M(v) = {xv(π) | π ∈ Πn}.

Proof By Proposition 2 supermodularity is equivalent to C(v) =W(v). But this
is equivalent to C(v) =M(v) since W(v) = convM(v) and C(v) is a convex
set.

Let v be a submodular game and consider an ordered partition P =
(B1, . . . , BK) as in Theorem 1 and let x ∈MP (v). If K = n, then system (8)
generates a marginal vector x. Hence assume that there exists some Bk with
|Bk| ≥ 2. Without loss of generality, we may assume that k = 2. For every
i ∈ B2 we obtain

v(B1 ∪B2)− v(B1)
(8a)
= x(B2) = x(B2 \ {i}) + xi
(8b)

≥ v(B1 ∪B2 \ {i})− v(B1) + v(B1 ∪ {i})− v(B1).

By rearranging the previous inequality, we obtain

v(B1 ∪B2) + v(B1) ≥ v(B1 ∪B2 \ {i}) + v(B1 ∪ {i}).

Since submodularity provides the converse inequality, we get

xi = v(B1 ∪ {i})− v(B1).
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As we obtain this relation for all i, we see that x is a marginal vector, which
finishes the proof. ut

Remark 3 The ordered partitions of N are in one-to-one correspondence to
strict weak orders on N . Indeed, given P ∈ P, define a binary relation ≺P on
N as follows: i ≺P j whenever there are Bk and B` with k < ` and i ∈ Bk,
j ∈ B`. Otherwise the two elements i and j are incomparable. It is easy to see
that ≺P is a strict weak order on N , which means that it satisfies the following
conditions:

1. irreflexivity,
2. transitivity,
3. for every i, j, k ∈ N , if i is incomparable with j and j is incomparable with
k, then i is incomparable with k.

Conversely, every strict weak order ≺ on N gives rise to an ordered partition
P≺ whose blocks correspond to equivalence classes of incomparability and the
order is inherited from ≺ in a natural way. The previous results about the
representation of the intermediate set can be thus equivalently rephrased in
terms of all strict weak orders on the player set. In the light of this interpretation,
the core solution corresponds to the unique strict weak order on N in which
no pair of players is comparable, while a marginal vector arises from a total
order on N .

4 Properties of Intermediate Set

In this section the intermediate set is compared in detail with the core and the
Weber set, respectively. We list selected properties and show whether they are
satisfied for these solution concepts. Further, we briefly discuss the relation of
the intermediate set to other set-valued solutions.

4.1 Comparison with the core and the Weber set

In this subsection some of the properties of the intermediate set are summarized;
see Table 1. We follow the approach presented in [12, Section 8.11], where
numerous properties and solution concepts are listed together with conditions
under which a certain property is satisfied by a given solution concept. For the
reader’s convenience we repeat the definitions and include the known properties
of the core and the Weber set for a direct comparison.

Definition 2 Let ∅ 6= Ω ⊆ Γ (N). We say that a solution σ : Ω → 2R
n

satisfies

– nonemptiness (NE) if σ(v) 6= ∅ for every v ∈ Ω;
– convex–valuedness (CON) if σ(v) is convex for every v ∈ Ω;
– Pareto optimality (PO) if x(N) = v(N) for every v ∈ Ω and every x ∈ σ(v);
– individual rationality (IR) if xi ≥ v({i}) for every i ∈ N , every v ∈ Ω and

every x ∈ σ(v);
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– superadditivity (SUPA) if σ(v1) + σ(v2) ⊆ σ(v1 + v2) for every v1, v2 ∈ Ω
such that v1 + v2 ∈ Ω;

– subadditivity (SUBA) if σ(v1) + σ(v2) ⊇ σ(v1 + v2) for every v1, v2 ∈ Ω
such that v1 + v2 ∈ Ω;

– additivity (ADD) if σ is both subadditive and superadditive;
– anonymity (AN) if σ(πv) = π(σ(v)) for every v ∈ Ω and every π ∈ Πn

such that πv ∈ Ω, where πv is defined for every A ⊆ N by πv({π(i) | i ∈
A}) = v(A), and π(σ(v)) = {(xπ−1(1), . . . , xπ−1(n)) | x ∈ σ(v)};

– equal treatment property (ETP) if xi = xj for every x ∈ σ(v), every
v ∈ Ω and any pair of players i, j ∈ N that are substitutes in v, that is,
v(A ∪ {i}) = v(A ∪ {j}), for each A ⊆ N \ {i, j};

– reasonableness (RE) if for every v ∈ Ω and for every x ∈ σ(v) we have
bmini (v) ≤ xi ≤ bmaxi (v) for all i ∈ N , where

bmini = min
A⊆N\{i}

(v(A ∪ {i})− v(A)),

bmaxi = max
A⊆N\{i}

(v(A ∪ {i})− v(A));

– covariant under strategic equivalence (COV) if for every v, w ∈ Ω, every
α > 0 and every additive game z such that w = αv + z, we have σ(w) =
ασ(v) + {(z({1}), . . . , z({n})};

– null player property (NP) if for every v ∈ Ω and every x ∈ σ(v), we have
xi = 0 whenever player i is a null player, that is, v(A ∪ {i}) = v(A) for all
A ⊆ N ;

– dummy property (DUM) if for every v ∈ Ω and every x ∈ σ(v) we have
xi = v({i}) whenever player i is a dummy player, that is, v(A ∪ {i}) =
v(A) + v({i}) for all A ⊆ N \ {i}.

C(v) M(v) W(v)
Nonemptiness • X X
Convex–valuedness X X
Pareto optimality X X X
Individual rationality X • •
Superadditivity X
Subadditivity X X
Additivity
Anonymity X X X
Equal treatment property
Reasonableness X X X
Covariance X X X
Null player property X X X
Dummy property X X X

Table 1: Fulfillment of selected properties. The mark X means that the property
is satisfied on Ω = Γ (N), while • means that only a “significant” subclass of
games Ω ( Γ (N) has the corresponding property. The empty space indicates
that the property is not satisfied by every game.
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Not all the proofs are presented here. We included only those of them which
are nontrivial, important or use the concepts of nonsmooth calculus. In all
other cases the reader is referred to an analogous comparison [12, Table 8.11.1].
We do not mention the notoriously known facts about the core, nevertheless
they are included in Table 1.

Lemma 5 Both M and W satisfy NE.

Proof Since the limiting and the Clarke superdifferential of a Lipschitz function
are nonempty by [15, Corollary 8.10, Theorem 9.13], bothM(v) and W(v) are
nonempty for any game v. ut

It follows directly from the corresponding definitions that both C and W
satisfy CON. However, the setM(v) does not have to be convex; see Example 1.
Since PO is satisfied by W, it is also satisfied by any smaller solution concept.
The example below shows that neither M nor W satisfy IR.

Example 4 Let N = {1, 2} and v be a game such that v({1}) = v({2}) = 1
and v(N) = 0. Then it is easy to see that M(v) = {(1,−1), (−1, 1)}, which is
a non-convex set.

However, in the next lemma we show that IR holds true for M and W on
a large subclass of games, which includes all superadditive games.

Lemma 6 Both M and W satisfy IR on the following class of games:

Γ ∗(N) = {v ∈ Γ (N) | v(A∪{i}) ≥ v(A)+v({i}) for all A ⊆ N and i ∈ N \A}.

Proof Let v ∈ Γ ∗(N). It is easy to see from Theorem 1 that any x ∈ M(v)
satisfies

xi ≥ v(A ∪ {i})− v(A) ≥ v({i})
for every i ∈ N and every A ⊆ N \ {i}. The proof is analogous for the Weber
set. ut

Remark 4 The games in Γ ∗(N) are called zero-monotonic or weakly superaddi-
tive. The class Γ ∗(N) is investigated in [13], where the authors show that the
condition v ∈ Γ ∗(N) is equivalent to external stability of W(v), among others.

Concerning SUPA, SUBA and ADD, the proofs are consequences of the
general results about superdifferentials/subdifferentials.

Lemma 7 M and W are subadditive and none of them is additive, in general.

Proof We can apply the superdifferential sum rule [15, Corollary 10.9, Exercise
10.10] directly to the Lovász extension of a game to obtain this result. ut

Anonymity holds true for bothM andW due to Proposition 3 and Lemma 3,
since all the discussed superdifferentials have an analogous property. Since
ETP is in general violated by C, it cannot hold for any larger solution concept.
Similarly, property RE is true forW and thus for any solution σ included inW .

Concerning COV, we will first show the following lemma and then a proof
that COV holds for all the three solution concepts.
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Lemma 8 If v is an additive game, then v̂ is a linear function.

Proof Consider any vector x ∈ Rn with all the coordinates different. According
to (5),

v̂(x) =

n∑
i=1

xπ(i)
(
v(V πi (x))− v(V πi−1(x))

)
=

n∑
i=1

xπ(i)v({π(i)}) =

n∑
i=1

xiv({i}).

Since v̂ is continuous, this formula holds true for any x ∈ Rn so that v̂ is indeed
linear. ut

Lemma 9 C, M and W satisfy COV.

Proof Let v, w ∈ Ω and α > 0 be such that w = αv+ z, where z is an additive
game. Since the mapping v ∈ Γ (N) 7→ v̂ is linear, we obtain

ŵ(x) = αv̂(x) + ẑ(x), x ∈ Rn.

Additivity of z implies linearity of ẑ due to Lemma 8. The sought result is
a consequence of the superdifferential sum rule [15, Exercise 8.8]. ut

As regards the null player property, we have xi = 0 for any marginal
vector x and a null player i ∈ N in a game v. NP is preserved by passing to
the convex hull and thus xi = 0 for every x ∈ W(v), which was to be proved.
Since NP and COV implies DUM by [12, Remark 4.1.18], we have completed
the whole Table 1.

4.2 Relation to other solution concepts

We will briefly comment on the relation between the intermediate set and
selected solution concepts for coalition games. Our sample contains only those
candidates that bear a formal resemblance to the intermediate set or those
solutions that contain the core. We omit the discussion of the solutions whose
position with respect to the intermediate set is clear due to a known result,
such as the selectope, which is always at least as large as the Weber set [6].
For the sake of brevity we do not repeat definitions of the discussed solutions,
but refer to the literature instead.

Solutions for Coalition Structures A coalition structure in an n-person
game is an (unordered) partition {B1, . . . , BK} of the player setN . Although
coalition structures of Aumann and Dreze [3] are used to define various
solution concepts such as the core, they differ from the intermediate set
in many aspects. Namely the payoff vectors x associated with games on
coalition structures usually satisfy Pareto optimality locally, that is, x(Bi) =
v(Bi) for each block Bi of the partition. This is certainly not the case of
a payoff x ∈MP (v) since the coalition Bi takes into account its position in
an ordered partition P = (B1, . . . , BK) due to the condition (8a). Another
point of dissimilarity is that in the core of a game with a coalition structure
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{B1, . . . , BK}, the condition x(A) ≥ v(A) with A ⊆ N goes across all the
blocks of partition, while (8b) applies only to the coalitions inside a given
block.

Equal Split-Off Set (ESOS) This solution concept is also based on ordered
partitions and may attain non-convex values; see [4, Section 4.2]. It follows
from Example 1 that M(v) is not contained in the ESOS of v. Moreover,
the additive game from Example 4.2(iv) in [4] shows that ESOS is not
a part of M either.

Equal Division Core (EDC) The solution EDC is another non-convex so-
lution concept, which was introduced by Selten in [17] and consists of
“efficient payoff vectors for the grand coalition which cannot be improved
upon by the equal division allocation of any subcoalition”. Using Example 1
we can show that EDC of v does not contain and is not contained in M(v):
the EDC of this game coincides with the set

{x ∈ I(v) | x1 ≥ 1
2 ∨ (x2 ≥ 1

2 ∧ x3 ≥
1
2 )},

where I(v) = {x ∈ Rn | x(N) = v(N), xi ≥ v({i}), i ∈ N} is the set of all
imputations in game v.

Core Cover (CC) This solution was introduced by Tijs and Lipperts [21].
Example 1 yields that CC of the glove game coincides with the core and
thus it is strictly smaller than the corresponding intermediate set. The
converse strict inclusion is rendered by Example 1 in [21].

Reasonable Set (RS) See [22] for details. Since the intermediate set has the
property RE from Definition 2, it holds true thatM(v) is included in RS(v)
whenever v ∈ Γ ∗(N).

Dominance Core (DC) The solution DC is the set of all undominated im-
putations in the game. If v ∈ Γ ∗(N) and DC(v) 6= ∅, then [4, Theorem
2.13] yields C(v) = DC(v) and thus M(v) contains DC(v).

In summary, the only remarkable relations are rendered by the last two items:
for every game v ∈ Γ ∗(N), we have DC(v) ⊆M(v) ⊆ RS(v).

5 Examples

In this section we analyze three types of games and simplify the formula for
the intermediate set from Theorem 1.

5.1 Simple games

In this subsection, we will compute the intermediate set for the class of all
simple games. Then we will compare our results to a formula for the core.
A game v ∈ Γ (N) is monotone if v(A) ≤ v(B) whenever A ⊆ B ⊆ N and v is
called simple if it is monotone with v(A) ∈ {0, 1} and v(N) = 1. Every simple
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game v over the player set N can be identified with the family V of winning
coalitions in v as follows:

V = {A ⊆ N | v(A) = 1}.

Conversely, any system of coalitions V such that N ∈ V, ∅ /∈ V and

A ⊆ B ⊆ N, A ∈ V ⇒ B ∈ V,

gives rise to a simple game v by putting v(A) = 1 if A ∈ V and v(A) = 0,
otherwise. The family of minimal winning coalitions in v is

Vm = {A ∈ V | B ( A⇒ B /∈ V, for every B ⊆ N}.

Based on the concept of minimal winning coalitions, we are able derive the
following formula for M(v). It states that M(v) arises as a union of faces of
the standard simplex, where each face corresponds to one minimal winning
coalition.

Theorem 2 If v ∈ Γ (N) is a simple game, then

C(v) =
⋂

E∈Vm

x ∈ Rn
∣∣∣∣∣∣
xi = 0 if i ∈ N \ E
xi ≥ 0 if i ∈ E∑
i∈E xi = 1

 , (9a)

M(v) =
⋃

E∈Vm

x ∈ Rn
∣∣∣∣∣∣
xi = 0 if i ∈ N \ E
xi ≥ 0 if i ∈ E∑
i∈E xi = 1

 . (9b)

Proof The formula for core on simple games (9a) can be derived easily; see [11,
Example X.4.6], for instance.

Denote the right–hand side of (9b) by C. Let x ∈ C, choose any E such
that x lies in the simplex generated by E and define B1 := E, B2 := N \E. We
will show that K = 2 and B1, B2 satisfy relation (8), implying that x ∈M(v).
Due to the construction of C, we have v(B1) = v(B1 ∪ B2) = 1. This means
that from (8) for k = 2 we obtain xi = 0 for all i ∈ B2. Consider thus k = 1
and observe that relation (8a) is in this case equivalent to x(E) = 1. Since E
is a minimal winning coalition, relation (8b) reads as x(B) ≥ 0 for all B ( E,
which is satisfied. Thus x ∈M(v).

For showing the converse inclusion, let x ∈ M(v). By Theorem 1 there
is an ordered partition (B1, . . . , BK) satisfying (8). Denote by l the smallest
integer such that v(B1 ∪ · · · ∪ Bl) = 1. Find now any E ∈ Vm such that
E ⊆ B1 ∪ · · · ∪ Bl. From (8b) with k = l we see that x(E) ≥ 1, which turns
into x(E) = 1 due to (8a). Since x(N) = 0 and xi ≥ 0 for all i ∈ N , we have
finished the proof. ut

Remark 5 Formulas (9) are interesting also from the point of variational analy-
sis. While from Definition 4 we see that the limiting superdifferential is a union
of the Fréchet ones with respect to a suitable neighborhood, the previous theo-
rem states that in a special case the Fréchet superdifferential can be written as
an intersection of the limiting ones. This is a relation which does not hold true
in general.
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We will compute the intermediate set of the UN Security Council voting
scheme; see e.g. [11, Example XI.2.9].

Example 5 The UN Security Council contains 5 permanent members with veto
power and 10 non–permanent members. To pass a resolution, all the permanent
members and at least 4 non–permanent members have to vote for the proposal.
We assume that the players N = {1, . . . , 15} are ordered in such a way that the
first five are the permanent members and the last ten are the non–permanent
members. Then it is easy to show that the corresponding simple game v satisfies

C(v) =

{
x ∈ R15

∣∣∣∣∣ x ≥ 0,

5∑
i=1

xi = 1, xi = 0 for i = 6, . . . , 15

}
,

W(v) =

{
x ∈ R15

∣∣∣∣∣ x ≥ 0,

15∑
i=1

xi = 1

}
.

As a consequence of stability of core allocations, any payoff x ∈ C(v) is
distributed only among the permanent members. On the other hand, the
Weber set is the whole 14-dimensional standard simplex in R15, which is too
large and contains some payoff vectors whose meaning is problematic. For
instance, it is not entirely clear how to interpret a vector(

0, . . . , 0, 1
10 , . . . ,

1
10

)
∈ W(v).

As we will see, this vector is not contained in M(v).
Given i ∈ N , denote by ei ∈ R15 the vector whose coordinates are ej = 1 if

j = i and ej = 0 otherwise. Put

D = {D ⊆ {6, . . . , 15} | |D| = 4}.

Theorem 2 yields

M(v) =
⋃
D∈D

conv ({e1, e2, e3, e4, e5} ∪ {ei | i ∈ D}) .

In other words,M(v) is a union of
(
10
4

)
8-dimensional standard simplices, each

of which is a convex hull of eis corresponding to the five permanent members
and four other non–permanent members. These simplices are associated with
the ordered partitions having two blocks, (12345 ∪D,N \ (12345 ∪D)) where
D ∈ D.

5.2 Clan games

We will recover the intermediate set for a class of games which are very close
to simple games, the so-called clan games; see [4, Section 5.3].
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Definition 3 We say that v ∈ Γ (N) is a clan game if there exists a subset
C ⊆ N such that C /∈ {∅, N} and the following properties are satisfied:

v(A) ≥ 0 for all A ⊆ N, (10a)

v(N)− v(N \ {i}) ≥ 0 for all i ∈ N, (10b)

v(A) = 0 for each A 6⊇ C, (10c)

v(N)− v(A) ≥
∑

i∈N\A

[v(N)− v(N \ {i})] whenever A ⊇ C. (10d)

If (10d) is replaced with the following stronger property,

v(B)− v(A) ≥
∑
i∈B\A

[v(B)− v(B \ {i})] whenever B ⊇ A ⊇ C,

then we call v a total clan game.

The properties (10a)–(10d) are known as nonnegativity, nonnegative marginal
contributions to the grand coalition, clan property and union property, respec-
tively. Set C is called a clan. If v is a total clan game, we are able to simplify
substantially the formula from Theorem 1. Note that constraints (11b) below
are the box constraints and thus system (11) is easily solvable.

Theorem 3 Let v ∈ Γ (N) be a total clan game and let P = (B1, . . . , BK)
be an ordered partition of N . Then MP (v) given by (8) is empty whenever
B1 6⊇ C and there is B ⊆ B1 with v(B) > 0. If B1 ⊇ C, then MP (v) is the
set of payoff vectors x such that

x(Bk) = v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1), (11a)

v({i}) ≤ xi ≤ v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1 ∪Bk \ {i}),
(11b)

for every k = 1, . . . ,K and all i ∈ Bk.

Proof If B1 6⊇ C, then from (10c) we obtain v(B1) = 0 and thus x(B1) = 0 by
(8a). But then (8) cannot have any solution because xi ≥ v({i}) ≥ 0 for all
i ∈ Bk due to (10a) and v(B) > 0 for some B ⊆ B1. For the rest of the proof,
assume that B1 ⊇ C.

Consider first any x which satisfies (8). Then, (11a) is directly (8a). Formula
(11b) follows from

xi = x(Bk)− x(Bk \ {i}) ≤ v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1)

− v(B1 ∪ . . . Bk−1 ∪Bk \ {i}) + v(B1 ∪ · · · ∪Bk−1),

and the inequality xi ≥ v({i}) is obvious.
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Conversely, let x satisfy (11). Then (8a) is of the form (11a) and it suffices
to show (8b). If k = 1, then the result follows directly from [4, Proposition
5.31]. If k ≥ 2, fix any B ⊆ Bk. Then

x(B) = x(Bk)−
∑

i∈Bk\B

xi
(11b)

≥ v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1)

−
∑

i∈Bk\B

[v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1 ∪Bk \ i)]

(10)

≥ v(B1 ∪ · · · ∪Bk−1 ∪B)− v(B1 ∪ · · · ∪Bk−1),

which was to be proved. Note that we were allowed to use (10) since B1 ∪ · · · ∪
Bk−1 ⊇ B1 ⊇ C due to the assumption k ≥ 2. ut

As a corollary we directly obtain the following result for the core. In our
setting we would be able to prove it only for total clan games. For the proof
for clan games we refer to [4, Proposition 5.31].

Corollary 1 Consider a clan game v ∈ Γ (v). Then we have

C(v) =

{
x

∣∣∣∣∣ x(N) = v(N)

v({i}) ≤ xi ≤ v(N)− v(N \ {i}) for all i ∈ N

}
.

5.3 Glove game

In the previous subsections we have managed to compute M(v) for the classes
of simple and total clan games. In this subsection, we will perform the same
task for the glove game, which belongs to the class of assignment games [19].
In the glove game, there are n = p+ q players and each of them has a glove:
either a left one or a right one. When a subset of players forms a coalition,
then their joint profit is the number of glove pairs owned together. Specifically,
assume that L is the set of all players having the left glove and R is the set of
all players having the right glove. Then

v(A) = min{|A ∩ L|, |A ∩R|}.

Without loss of generality, we always assume that L = {1, . . . , p}, R = {p +
1, . . . , p+ q} and p ≥ q.

Although the shape of core for glove game is known, we will reprove the
formula for C(v) and based on it, we will employ Theorem 1 to compute also
M(v).

Lemma 10 If p > q, then C(v) consists of a single point x with the following
coordinates: xl = 0 for all l ∈ L and xr = 1 for all r ∈ R.
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Proof Clearly, any x from the lemma statement satisfies x ∈ C(v). On the
other hand, let x ∈ C(v). Then the definition of core yields x(L ∪ R) = q.
Decompose L into L = L1 ∪ L2 such that |L1| = q and |L2| = p− q ≥ 1. Then
x(L1 ∪R) ≥ q, which immediately implies x(L1 ∪R) = q and x(L2) = 0. Since
L2 was chosen in an arbitrary way, we have x(L) = 0. Further, for every r ∈ R
we can deduce x({1, r}) ≥ v({1, r}) = 1, which together with x1 = 0 and
x(R) = q implies xr = 1. ut

Lemma 11 If p = q, then C(v) = conv{χL, χR}, where χL, χR are defined by
(2).

Proof Similarly as in the previous lemma, it is not difficult to verify that
χL, χR ∈ C(v) and thus C(v) ⊇ conv{χL, χR}. Conversely, let x ∈ C(v). Using
the definition of core, we obtain x(L ∪R) = q and x({l, r}) ≥ 1 for all l ∈ L
and r ∈ R. But summing q such terms results in x({l, r}) = 1, which further
implies xl1 = xl2 for all l1, l2 ∈ L and xr1 = xr2 for all r1, r2 ∈ R. This means
that x = (λ, . . . , λ, 1− λ, . . . , 1− λ) for some λ ∈ [0, 1]. ut

We will provide a simple way of determining the solution of (8). Note that
if pk−1 = qk−1, then system (8) can be computed directly from Lemmas 10
and 11.

Lemma 12 Let (B1, . . . , BK) be an ordered partition of N . Given k = 1, . . . ,K,
let pk and qk be the number of left and right gloves, respectively, owned by
B1 ∪ · · · ∪Bk.

– If pk−1 > qk−1 and pk < qk, then system (8) does not have a feasible
solution.

– If pk−1 > qk−1 and pk ≥ qk, then x is a solution to system (8) if and only
if xl = 0 for all l ∈ Bk ∩ L and xr = 1 for all r ∈ Bk ∩R.

– If pk−1 < qk−1 and pk > qk, then system (8) does not have a feasible
solution.

– If pk−1 < qk−1 and pk ≤ qk, then x is a solution to system (8) if and only
if xl = 1 for all l ∈ Bk ∩ L and xr = 0 for all r ∈ Bk ∩R.

Proof We will prove only the first two statements since the proof of the last
two assertions is completely analogous. Assume that pk−1 > qk−1 and consider
any solution x of (8). Then we have

x(Bk) = min{pk, qk} −min{pk−1, qk−1} = min{pk, qk} − qk−1. (12)

Taking B = {r} for any r ∈ Bk ∩ R results in xr ≥ 1. Similarly, by taking
B = {l} for l ∈ Bk ∩ L we get xl ≥ 0. This results in

x(Bk) = x(Bk ∩ L) + x(Bk ∩R) ≥ 0 + (qk − qk−1) = qk − qk−1. (13)

Combining formulas (12) and (13) leads to

qk ≤ min{pk, qk}. (14)
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If pk < qk, then formula (14) cannot be satisfied and thus, system (8) does
not have any feasible solutions. On the other hand, if pk ≥ qk, then from (12)
we see that x(Bk) = qk − qk−1, and (13) further implies that x(Bk ∩ L) = 0
and x(Bk ∩R) = qk − qk−1. But this means that xr = 1 for all r ∈ Bk ∩R and
one inclusion has been proved.

To finish the proof, we must show that for pk ≥ qk and for x with xl = 0
for all l ∈ Bk ∩ L and xr = 1 for all r ∈ Bk ∩R, the payoff vector x solves (8).
Then

x(Bk) = qk − qk−1 = min{pk, qk} −min{pk−1, qk−1}
= v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1).

Consider any B ⊆ Bk and assume that B contains a players with left gloves
and b players with right gloves. Then

x(B) = b ≥ min{a+ pk−1 − qk−1, b} = min{a+ pk−1, b+ qk−1} − qk−1
= min{a+ pk−1, b+ qk−1} −min{pk−1, qk−1}
= v(B1 ∪ · · · ∪Bk−1 ∪B)− v(B1 ∪ · · · ∪Bk−1),

which concludes the proof. ut

We will prove the main theorem of this section. It says that every x ∈M(v)
can be generated via Theorem 1 by choosing coalitions B1, . . . , Bq+1 such that:
(i) B1, . . . , Bq are 2-player coalitions containing a pair of players each of which
owns one right and one left glove, respectively, (ii) the coalition Bq+1 contains
only the players possessing left gloves or Bq+1 = ∅ if p = q, that is, Bq+1 ⊆ L.

Theorem 4 Let x ∈ Rn. Then x ∈ M(v) if and only if there exists L̃ ⊆ L
with |L̃| = q and a bijection ρ : L̃→ R such that the following conditions are
satisfied:

xl + xρ(l) = 1 for all l ∈ L̃, (15a)

xl ≥ 0 for all l ∈ L̃, (15b)

xl = 0 for all l ∈ L \ L̃. (15c)

Proof Let x satisfy (15). We can enumerate the elements of L̃ as l1, . . . , lq and
define the coalitions

B1 = {l1, ρ(l1)}, . . . , Bq = {lq, ρ(lq)}, Bq+1 = L \ L̃.

Then it is easy to verify that x ∈ M(v) due to Theorem 1 and using the
partition above.

For the proof of the second inclusion, denote by pk the number of left gloves
owned by players B1 ∪ · · · ∪Bk and by qk the number of right gloves owned by
the same players. Put p0 = q0 = 0. To prove the statement, we will construct ρ
by a variant of finite induction. There are three possibilities: p1 = q1, p1 < q1
or p1 > q1.

If p1 = q1, then define two sets L1 := B1 ∩ L and R1 := B1 ∩R. Lemma 11
states that x is a solution to system (8) if and only if there exists λ ∈ [0, 1]
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such that xl = λ for all l ∈ L1 and xr = 1− λ for all r ∈ R1. Since |L1| = |R1|,
we can define a bijection ρ : L1 → R1. Now observe that

xl + xρ(l) = λ+ (1− λ) = 1

for every l ∈ L1. Hence, (15a)–(15b) holds true for L1.
If p1 > q1, then we deduce from Lemma 12 that there are two possibilities:

either there exists k > 0 such that p1 > q1, . . . , pk−1 > qk−1 with pk = qk or
p1 > q1, . . . , pK > qK . We will consider only the first possibility and return
to the second one at the end of the proof. Define L1 := (B1 ∪ · · · ∪ Bk) ∩ L
and R1 := (B1 ∪ · · · ∪ Bk) ∩ R. Due to Lemmas 10 and 12 this implies that
xl = 0 for all l ∈ L1 and xr = 1 for all r ∈ R1. But since pk − p0 = qk − q0,
there is a bijection ρ between L1 and R1 and, similarly as in the case p1 = q1,
we observe that xl + xρ(l) = 1 and xl ≥ 0 for all l ∈ L1.

If p1 < q1, we will proceed as in the case p1 > q1. Note that due to our
assumption that there are more left gloves than right gloves (pK > qK), it
cannot happen that p1 < q1, . . . , pK < qK .

Applying this procedure multiple times, we have managed to find an index k,
sets L̂ and R̂ and a bijection ρ : L̂→ R̂ such that the following properties are
satisfied:

1. pk = qk and pk+1 > qk+1, . . . , pK > qK ,
2. xl + xρ(l) = 1 and xl ≥ 0 for all l ∈ L̂,

3. L̂ ∪ R̂ = B1 ∪ · · · ∪Bk and |L̂| = |R̂| = pk.

The rest of the proof is straightforward. From Lemma 10 we obtain that xl = 0
for all l ∈ L \ L̂ and xr = 1 for all r ∈ R \ R̂. Find any L′ ⊆ L \ L̂ such that
|L′| = |R \ R̂|, define L̃ := L̂∪L′ and extend bijection ρ : L̂→ R̂ to a bijection
ρ : L̃→ R. Then any such L̃ and ρ satisfy (15), which completes the proof. ut

The intermediate set M(v) is a finite union of convex polytopes. We will
now compute these polytopes for the case p > q. Denote by x̂ the unique vector
in C(v), thus x̂l = 0 for all l ∈ L and x̂r = 1 for all r ∈ R, and define the
following set of bijections:

Ψ := {ρ : L̃ρ → R| L̃ρ ⊆ L, ρ is a bijection}.

For every ρ ∈ Ψ introduce q vectors as follows: given l ∈ L̃ρ, put xρ,l to be
equal to x̂ except two coordinates, specifically xρ,ll = 1 and xρ,lρ(l) = 0. Finally,
set

Bρ := conv

x̂,
⋃
l∈L̃ρ

xρ,l

 .

Corollary 2 Using the notation above, assume that p > q. Then

M(v) =
⋃
ρ∈Ψ

Bρ.
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Proof Fix ρ ∈ Ψ and observe that x ∈ Bρ is equivalent to the existence of
λl ≥ 0 for l ∈ L̃ρ with

∑
l∈L̃ρ λl ≤ 1 such that

x =

1−
∑
l∈L̃ρ

λl

 x̂ +
∑
l∈L̃ρ

λlx
ρ,l.

But this is equivalent to our claim by Theorem 4. ut

Example 6 Consider the glove game with N = {1, . . . , 7}, L = {1, . . . , 4} and
R = N \ L. Let λ1, λ2, λ3 ∈ [0, 1] and put

x := (0, λ1, λ2, λ3, 1− λ1, 1− λ2, 1− λ3),

x̂ := (0, 0, 0, 0, 1, 1, 1),

x1 := (0, 1, 0, 0, 0, 1, 1),

x2 := (0, 0, 1, 0, 1, 0, 1),

x3 := (0, 0, 0, 1, 1, 1, 0).

Lemma 10 gives C(v) = {x̂}. Using Theorem 4 we can show that x ∈ M(v).
Moreover, Corollary 2 implies that

x = (1− λ1 − λ2 − λ3)x̂ + λ1x1 + λ2x2 + λ3x3.

We have shown that conv{x̂,x1,x2,x3} is one of the polyhedral components
of M(v).

6 Conclusions

We have inserted a new solution concept—the intermediate set—in-between
the core and the Weber set. While computing the limiting superdifferential
may be a daunting task in general, we were able to arrive at the formula in
Theorem 1, which is the main computational tool in this paper. The achieved
characterization by ordered partitions of the player set makes it possible to
interpret the payoffs in the intermediate set as marginal coalitional contributions
determined by some order of coalition blocks and satisfying the conditions (8b).

We will outline some ideas for the future research on this topic.

1. The family P of all ordered partitions P of the player set N (or, equivalently,
the family of all the strict weak orders on N) is in one-to-one correspondence
with the set of all nonempty faces of the permutohedron of order n; see [24].
The algebraic structure of the corresponding face lattice determines the
geometric composition of the convex componentsMP (v) of the intermediate
setM(v). NamelyM(v) can be viewed as a polyhedral complex whose cells
are all MP (v) with P ∈ P. This observation could be vital for studying
the following problem, which is motivated by the examples and results
presented in the paper, cf. Example 1, Example 3 and Theorem 2: When
the core of a coalition game is an intersection of (selected) components
MP (v)?
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2. Many solution concepts (the core, the Shapley value etc.) can be axiomatized
on various classes of games. Is there an axiomatization of the intermediate
set on a suitable class of coalition games?

3. The coincidence of the core with the Weber set is essential for the charac-
terization of extreme rays of the cone of supermodular games presented
in [20]. There can be a large gap between the core and the Weber set
outside the family of supermodular games. Thus the intermediate set may
be a useful tool for describing the properties of games in cones including
the supermodular cone such as the cone of exact games or the cone of
superadditive games.

Appendix

A Superdifferentials

In this section we will define the selected concepts of variational (nonsmooth) analysis,
mainly various superdifferentials which generalize the superdifferential of convex functions.
Since these superdifferentials will be computed only for the Lovász extension, which is
piecewise linear, we will confine to defining superdifferentials only for such functions. Even
though the computation of these objects may be rather a challenging task, see e.g. [1,7], the
presented framework allows for a significant simplification. For the general approach based
on upper semicontinuous functions, we refer the reader to [15], where a normal cone to a set
is constructed and a superdifferential is defined based on it.

The standard monographs on variational analysis [10,14,15] follow the approach usual
in convex analysis by dealing with subdifferentials instead of superdifferentials. However,
most of the results can be easily transformed to the setting of superdifferentials, usually by
reversing inequalities only.

Definition 4 Let f : Rn → R be a piecewise affine function and x̄ ∈ Rn. We say that
x∗ ∈ Rn is a

– Fréchet supergradient of f at x̄ if there exists neighborhood X of x̄ such that for all
x ∈ X we have

f(x)− f(x̄) ≤ 〈x∗,x− x̄〉;

– limiting supergradient of f at x̄ if for every neighborhood X of x̄ there exists x ∈ X
such that x∗ is a Fréchet supergradient of f at x;

– Clarke supergradient of f at x̄ if

x∗ ∈ conv{y| ∀ neighborhood X of x̄ ∃x ∈ X ∩D with y = ∇f(x)},

where

D := {x ∈ Rn| f is differentiable at x}.

The collection of all (Fréchet, limiting, Clarke) supergradients of f at x̄ is called (Fréchet,

limiting, Clarke) superdifferential and it is denoted by ∂̂f(x̄), ∂f(x̄) and ∂f(x̄), respectively.

Remark 6 The previous definition can be found e.g. in [15, Definition 8.3]. Note that in the
original definition term o(‖x− x̄‖) is added. Because we work with piecewise affine functions,
this term is superfluous. This also means that the Fréchet superdifferential coincides with the
standard superdifferential for convex functions. Similarly, the limiting procedure is simplified
for the case of limiting superdifferential.
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From the definition it can be seen that

∂̂f(x̄) ⊆ ∂f(x̄) ⊆ ∂f(x̄), x̄ ∈ Rn,

where all the inequalities may be strict. According to [15, Theorem 8.49] we have the
following relation between the limiting and the Clarke superdifferential for every piecewise
affine function f :

∂f(x̄) = conv ∂f(x̄).

We will show the differences among the three discussed superdifferentials.

Example 7 Let f : R→ R be defined by

f(x) =


x if x ∈ (−∞, 0],

0 if x ∈ [0, 1],

x− 1 if x ∈ [1,∞).

This function is depicted in Figure 3. Consider points x̄ = 0 and ȳ = 1. The locally supporting

x̄ ȳ

Fig. 3: Supergradients for a piecewise affine function f

hyperplanes from the definition of Fréchet superdifferential at x̄ are depicted in the figure.
Note that there are no affine majorants for f at ȳ and thus the Fréchet superdifferential is
empty at this point. Altogether, we obtain

∂̂f(x̄) = [0, 1], ∂̂f(ȳ) = ∅,
∂f(x̄) = [0, 1], ∂f(ȳ) = {0, 1},

∂f(x̄) = [0, 1], ∂f(ȳ) = [0, 1].

Thus all the superdifferentials coincide at x̄, but they differ to a great extent at ȳ.

B Proof of Theorem 1

To prove Theorem 1, consider first a game v ∈ Γ (N), fix x̄ ∈ Rn and choose any π ∈ Π(x̄).
Then there are necessarily unique integers

0 = L0 < L1 < · · · < LK = n

such that Lk −Lk−1 is the number of coordinates of x̄ which have the k–th greatest distinct
value in the order given by π:

x̄π(1) = · · · = x̄π(L1) > x̄π(L1+1) = · · · = x̄π(L2) > · · · > x̄π(LK−1+1) = · · · = x̄π(LK).
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Define
Bk := {π(Lk−1 + 1), . . . , π(Lk)}

and observe that Bk is independent of the choice of π ∈ Π(x̄). Take any x sufficiently close
to x̄ and select some ρ ∈ Π(x). Then ρ ∈ Π(x̄) and

V ρi (x) ⊆ V ρi (x̄), i = 1, . . . , n,

V ρLk
(x) = V ρLk

(x̄) = B1 ∪ · · · ∪Bk, k = 1, . . . ,K.

This allows us to write v̂ in a separable structure

v̂(x) =

K∑
k=1

v̂k(xBk ), (16)

where xBk is the restriction of x to components Bk and v̂k : R|Bk| → R is defined as

v̂k(y) =

|Bk|∑
i=1

yϕ(i)

[
v(B1 ∪ · · · ∪Bk−1 ∪ V ϕi (y))− v(B1 ∪ · · · ∪Bk−1 ∪ V ϕi−1(y))

]
,

where ϕ ∈ Π(y). Then we can employ a slightly modified version of [5, Proposition 3] to
obtain the following result.

Lemma 13 For any k ∈ {1, . . . ,K}:

∂̂v̂k(x̄Bk ) =

{
x∗

∣∣∣∣∣ x∗(Bk) = v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1),

x∗(B) ≥ v(B1 ∪ · · · ∪Bk−1 ∪B)− v(B1 ∪ · · · ∪Bk−1) for all B ⊆ Bk

}
.

Proof The definition of Fréchet superdifferential and the piecewise affinity of v̂k give

∂̂v̂k(x̄Bk ) = {x∗| v̂k(y)− v̂k(x̄Bk ) ≤ 〈x∗,y − x̄Bk 〉 for all y close to x̄Bk}.

Consider now any x∗ ∈ ∂̂v̂k(x̄Bk ), any B ⊆ Bk and put y = x̄ + cχB , where c > 0 is
sufficiently small. Denoting a to be the common value of x̄ on Bk, we obtain

v̂k(x̄Bk ) = a [(v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1)] ,

v̂k(yBk ) = a [(v(B1 ∪ · · · ∪Bk−1 ∪Bk)− v(B1 ∪ · · · ∪Bk−1 ∪B)]

+ (a+ c) [(v(B1 ∪ · · · ∪Bk−1 ∪B)− v(B1 ∪ · · · ∪Bk−1)] ,

so that

v̂k(yBk )− v̂k(x̄Bk ) = c [(v(B1 ∪ · · · ∪Bk−1 ∪B)− v(B1 ∪ · · · ∪Bk−1)] ,

By realizing that 〈x∗,yBk − x̄Bk 〉 = cx∗(B) and combining all the previous relations, it
follows that

x∗(B) ≥ v(B1 ∪ · · · ∪Bk−1 ∪B)− v(B1 ∪ · · · ∪Bk−1).

Performing the similar procedure for y = x̄− cχBk , we obtain the first inclusion.
Consider now any x∗ from the right–hand side of the formula in Lemma 13. First, we

realize that since v̂ is piecewise linear, we need only show that

v̂k(y)− v̂k(x̄Bk ) ≤ 〈x∗,y − x̄Bk 〉 (17)

for those y ≥ x̄Bk sufficiently close to x̄Bk . Moreover, from the previous paragraph we know
that we have already shown this formula for all y = (x̄ + cχB)Bk , where c > 0 is small. Fix
now any y ≥ x̄Bk sufficiently close to x̄Bk and take any ϕ ∈ Π(y). Then

y ∈ C := conv
{
x̄Bk , x̄Bk + cχ{ϕ(1)}, . . . , x̄Bk + cχ{ϕ(1),...,ϕ(|Bk|)}

}
.

Since v̂k is linear on C and since formula (17) holds for all the extreme points of C, it must
be true for y as well. This finishes the proof. ut

The decomposition (16) together with Lemma 13 imply immediately that Theorem 1
holds true.
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games. Cahiers du Centre d‘Études de Researche Opérationelle, 24:27–37, 1982.

22. L. Gerard-Varet and S. Zamir. Remarks on the reasonable set of outcomes in a general
coalition function form game. International Journal of Game Theory, 16(2):123–143, 1987.

23. R. J. Weber. Probabilistic values for games. In A. E. Roth, editor, The Shapley Value.
Essays in Honor of Lloyd S. Shapley, pages 101–120. Cambridge University Press, 1988.

24. G. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995.


