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We consider parameter-dependent mathematical programs with constraints
governed by the generalized non-linear complementarity problem and with
additional non-equilibrial constraints. We study a local behaviour of stationarity
maps that assign the respective C- or M-stationarity points of the problem to the
parameter. Using generalized differential calculus rules, we provide criteria for
the isolated calmness and the Aubin properties of stationarity maps considered.
To this end, we derive and apply formulas of some particular objects of the third-
order variational analysis.

Keywords: parameter-dependent mathematical programs with generalized equi-
librium constraints; M-stationarity; C-stationarity; isolated calmness; Aubin
property

AMS Subject Classifications: 90C31; 90C33; 49K40

1. Introduction

A mathematical program with generalized complementarity constraints (MPCC for short)
is an optimization problem where a parameter-dependent generalized non-linear comple-
mentarity problem arises as part of constraints. MPCCs arise frequently in many fields
of applied mathematics, e.g. in mechanics (contact problems with friction, optimal design
problems, shape optimization) and robotics (motion planning models for robotic hands),
as well as in economic modelling (economic planning problems, sector analysis, electric-
ity/gas transmission problems, sparse portfolio optimization) and game theory (Stackelberg
problems, bilevel cooperative or non-cooperative games). We refer the reader to books [1–3]
for several other applications and theory of MPCCs and related class of bilevel programming
problems.

In the past two decades, a number of different numerical methods have been proposed
for the solution of MPCCs. These methods generally provide only a stationary point of
MPCC of a certain type. Many such stationarity concepts were formally introduced and
studied in [4]. Nowadays, S-, M- and C-stationarity concepts are frequently used in the
MPCC literature both in numerics and study of optimality conditions.

∗Corresponding author. Email: cervinka@utia.cas.cz
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1050 M. Červinka

In this paper, we consider parameter-dependent MPCCs, where both the objective and
the non-linear complementarity problem in the constraints are subject to perturbations in
the form of a joint parameter. The main goal of this paper is to analyse the local behaviour
of the multifunction that assigns stationarity points of some type to a parameter. Stability
analysis of MPCCs has already been topic of several papers, namely stability of a value
function, [5–7] stability of a feasible set, [8] stability of C-stationary points and associated
multipliers [4,9] based on Kojima’s result from [10], and stability of M-stationary points in
a special subclass of MPCCs [11].

In this paper, we extend the results on stability of M-stationary points in [11] to a
general MPCC and include corresponding results regarding stability of C-stationary points.
Analogously to, [11] our main workhorses are the particular objects of the third-order
variational analysis which enable us to state some useful stability statements.

The structure of the paper is as follows. In Section 2, we provide the formulation of the
problem and introduce two types (C- and M-) of stationarity maps. In Section 3, we apply
a technique to compute the tangent and limiting normal cones to the graphs of polyhedral
multifunction which are related to C- and M-stationarity maps. These results are applied
in Section 4, where we obtain, in particular, an upper approximations of the graphical
derivative and the limiting coderivative of both types of the stationarity maps and state
stability statements, illustrated by an academic example.

Our notation is basically standard. B denotes the unit ball. We use R+, R−, R++ and
R−− to denote non-negative, non-positive, positive and negative reals, respectively. For
x, y ∈ R

n , x ⊥ y stands for orthogonality of x and y, i.e. x�y = 0. For a set �, � denotes
its closure, and for a closed cone D with vertex at the origin, D◦ denotes its negative

polar cone. By x
�−→ x̄ , we mean that x → x̄ with x ∈ �. T�(x) signifies the contingent

(Bouligand–Severi, tangent) cone to � at x .
For the readers’ convenience, we now state the definitions of several basic notions from

modern variational analysis. For a set � and a point x̄ ∈ �, the regular (Fréchet) normal
cone to � at x̄ is defined by

N̂�(x̄) :=
⎧⎨⎩x∗ ∈ R

n

∣∣∣∣∣∣ limsup

x
�−→x̄

〈x∗, x − x̄〉
‖ x − x̄ ‖ ≤ 0

⎫⎬⎭ = (T�(x̄))◦ .

The limiting (Mordukhovich) normal cone to � at x̄ is given by

N�(x̄) = Lim sup

x
�−→x̄

N̂�(x),

where the ‘Lim sup’ stands for the Painlevé–Kuratowski upper (or outer) limit. This limit
is defined for a set-valued mapping M[Rn ⇒ R

m] at a point x̄ by

Lim sup
x→x̄

M(x) := {y ∈ R
m | ∃xk → x̄, ∃yk → y with yk ∈ M(xk)}.

For a convex set �, both normal cones N� and N̂� amount to the normal cone of convex
analysis, for which we use simply the notation N�.

Given a set-valued mapping M[Rn ⇒ R
m] and a point (x̄, ȳ) from its closed graph

Gph M := {(x, y) ∈ R
n × R

m |y ∈ M(x)},
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Optimization 1051

the graphical derivative DM(x̄, ȳ)[Rn ⇒ R
m] of M at (x̄, ȳ) is defined by

DM(x̄, ȳ)(h) := {k ∈ R
m |(h, k) ∈ TGphM (x̄, ȳ)},

the regular (Fréchet) coderivative D̂∗M(x̄, ȳ)[Rm ⇒ R
n] of M at (x̄, ȳ) is defined by

D̂∗M(x̄, ȳ)(y∗) := {x∗ ∈ R
n|(x∗,−y∗) ∈ N̂GphM (x̄, ȳ)},

and the limiting (Mordukhovich) coderivative D∗M(x̄, ȳ)[Rm ⇒ R
n] of M at (x̄, ȳ) is

defined by
D∗M(x̄, ȳ)(y∗) := {x∗ ∈ R

n|(x∗,−y∗) ∈ NGphM (x̄, ȳ)}.
Further, given x∗ ∈ D∗M(x̄, ȳ)(y∗), then the second order limiting coderivative of M at
(x̄, ȳ, y∗, x∗) is defined by [11, Definition 1]

D∗∗M(x̄, ȳ, y∗, x∗)(z∗) = {(u∗, v∗, w∗)|(u∗, v∗, w∗,−z∗) ∈ NGph D∗ M (x̄, ȳ, y∗, x∗)}.
Finally, throughout the paper we employ the notions ofAubin property, isolated calmness

and calmness.
A set-valued mapping M[Rn ⇒ R

m] is said to have the Aubin (pseudo-Lipschitz,
Lipschitz-like) property around (x̄, ȳ) ∈ Gph M with modulus � ≥ 0 if there are neighbour-
hoods U of x̄ and V of ȳ such that

M(x) ∩ V ⊂ M(u) + �||x − u||B
for all x, u ∈ U , where B is closed unit ball.

A multifunction M[Rn ⇒ R
m] is said to have the isolated calmness (local upper

Lipschitz, calmness on selections) property (to be isolatedly calm) at (x̄, ȳ) ∈ Gph M ,
provided there exist neighbourhoods U of x̄ and V of ȳ and a constant κ ≥ 0 such that

M(x) ∩ V ⊂ {ȳ} + κ||x − x̄ ||B when x ∈ U .

A set-valued mapping M[Rn ⇒ R
m] is said to be calm (pseudo upper Lipschitz) at

(x̄, ȳ) ∈ Gph M with modulus L ≥ 0 if there are neighbourhoods U of x̄ and V of ȳ such
that

M(x) ∩ V ⊂ M(x̄) + L‖x − x̄‖B for all x ∈ U .

Clearly, both the Aubin and the isolated calmness properties imply calmness, whereas
neither converse is true. There does not exist any direct relationship between calmness and
isolated calmness of a multifunction. In the sequel, calmness will be utilized as a suitable
qualification condition in the used rules of generalized differential calculus, cf. [12,13],
whereas the Aubin and the isolated calmness properties will be considered as valuable
stability concepts for the behaviour of stationary points with respect to the parameter.

2. Problem statement and preliminaries

Throughout the whole paper, we shall be concerned by the following parameter-dependent
MPCC:

minimize f (p, x, y)

subject to
0 ∈ F(p, x, y) + NR

m+(G(p, x, y))

x ∈ ω, y ∈ �

(1)
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1052 M. Červinka

where f [Rs × R
n × R

m → R], F[Rs × R
n × R

m → R
m] and G[Rs × R

n × R
m → R

m]
are at least twice continuously differentiable functions, ω and � closed sets.

Taking into consideration the geometry of the graph of NR
m+ , in fact, the generalized

equation in the constraints of (1) reads as parameter-dependent generalized non-linear
complementarity problem: for a given p ∈ R

s and x ∈ R
n find y ∈ R

m such that

0 ≤ F(p, x, y) ⊥ G(p, x, y) ≥ 0.

For simplicity, we assume that a parameter p enters only the objective f and mappings
F and G in the generalized complementarity problem, but not the geometric constraints
x ∈ ω and y ∈ � as we do not impose any particular structure to sets ω and �.

There are various stationarity concepts for MPCCs (S-, M-, C-,A-, weak, etc.) and many
papers study their mutual relationships, applications in numerics etc., cf. e.g. [4,14,15]. In
this paper, we shall be concerned by the following two stationarity concepts.

The C-stationarity conditions to (1) [4] may be written down in the form

0 = ∇x f (p, x, y) + (∇x F(p, x, y))�ν + (∇x G(p, x, y))�μ + Nω(x)

0 = ∇y f (p, x, y) + (∇y F(p, x, y))�ν + (∇yG(p, x, y))�μ + N�(x)

(G(p, x, y),−F(p, x, y), ν, μ) ∈ Gph �. (2)

The mapping � in the above formula is defined componentwise such that (Gi (p, x, y),

−Fi (p, x, y), νi , μi ) ∈ �, i = 1, . . . , m, with � = �1 ∪ �2 ∪ �3 ∪ �4,

�1 = R+ × {0} × R × {0},
�2 = {0} × R− × {0} × R,

�3 = {0} × {0} × R− × R−,

�4 = {0} × {0} × R+ × R+.

The multipliers ν ∈ R
m and μ ∈ R

m are the so-called MPCC-multipliers.
The M-stationarity conditions of (1) may be written down as follows [16, Theorem 3.1]:

0 = ∇x f (p, x, y) + (∇x F(p, x, y))�ν + (∇x G(p, x, y))�μ + Nω(x)

0 = ∇y f (p, x, y) + (∇y F(p, x, y))�ν + (∇yG(p, x, y))�μ + N�(x)

μ ∈ D∗NR
m+(G(p, x, y),−F(p, x, y))(ν) (3)

Note that Gph D∗NR+ = �1 ∪ �2 ∪ �3.
Stationarity conditions in the form (3) originate from [17, Theorem 3.2]. The ter-

minology ‘C-stationarity’ and ‘M-stationarity’ come from the fact that these conditions
are obtained by means of application of generalized differential calculus of Clarke and
Mordukhovich, respectively. Similarly to [11], we do not address any constraint qualification
guaranteeing that, at a local minimum of (1), there exists MPCC-multipliers satisfying
these necessary optimality conditions. This has already been extensively discussed in the
literature, see e.g. [4,16,18]. Here, we are interested in analysis of local behaviour of
solutions to (2) and (3) around the reference point ( p̄, x̄, ȳ, ν̄, μ̄) and so the existence
of this reference point is implicitly assumed.
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Optimization 1053

Denoting

	(p, x, y, ν, μ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
−∇x f (p, x, y) − (∇x F(p, x, y))�ν − (∇x G(p, x, y))�μ

y
−∇y f (p, x, y) − (∇y F(p, x, y))�ν − (∇yG(p, x, y))�μ

G(p, x, y)

−F(p, x, y)

ν

μ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

we can rewrite (2) and (3) to (respectively)

	(p, x, y, ν, μ) ∈ Gph Nω × Gph N� × Gph �, (4)

	(p, x, y, ν, μ) ∈ Gph Nω × Gph N� × Gph D∗NR
m+ . (5)

We can associate (2) with a C-stationarity map SC

SC (p) = {(x, y, ν, μ)|	(p, x, y, ν, μ) ∈ Gph Nω × Gph N� × Gph �} .

and (3) with a M-stationarity map SM

SM (p) =
{
(x, y, ν, μ)|	(p, x, y, ν, μ) ∈ Gph Nω × Gph N� × Gph D∗NR

m+

}
.

Example 1 [11] Let p, x, y ∈ R and consider the following parameter-dependent gener-
alized MPCC

minimize − x − (y + p)2

subject to

0 ∈ x − p + NR+(y − p).

The corresponding C-stationarity conditions (2)

0 = −1 + ν

0 = −2y − 2p + μ

(y − p,−x + p, ν, μ) ∈ �,

have a unique solution (x̄, ȳ) = ( p̄,− p̄), with multipliers ν̄ = 1, μ̄ = 0 for p̄ ≤ 0; and
(x̄, ȳ) = ( p̄, p̄), with multipliers ν̄ = 1, μ̄ = 4 p̄ for p̄ ≥ 0.

Similarly, the M-stationarity conditions (3)

0 = −1 + ν

0 = −2y − 2p + μ

(y − p,−x + p, ν, μ) ∈ Gph D∗NR+ ,

have a unique solution (x̄, ȳ) = ( p̄,− p̄) with multipliers ν̄ = 1, μ̄ = 0 for p̄ ≤ 0, while
there is no solution for p̄ > 0.
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1054 M. Červinka

3. Generalized derivatives of � and D∗NR
m+

The formulation of the problem (1) contains first-order variational problem, both (first-order)
stationarity conditions (2) and (3) involve objects that can be considered of the second-
order variational analysis. Clearly, in order to analyse local behaviour of SC and SM via
generalized derivatives, one needs to introduce the corresponding third-order variational
objects.

In particular, to analyse graphical derivative and coderivative of SC , we will use in the
sequel formulas of Gph TGph � and of Gph NGph �.Analogously, for generalized derivatives
of SM , we need formulas of Gph TGph D∗ N

R
m+

and Gph NGph D∗ N
R

m+
. Formulas of the latter

two objects were already derived in [11]. We shall derive here formulas of the other two
objects using the same technique developed in [11, Section 3].

Using [11, Lemma 1], we first partition � = ∪4
i=1�i to sets

�I =
(⋂

i∈I

�i

)
\
⎛⎝ ⋃

i∈{1,...,4}\I

�i

⎞⎠ ,∅ �= I ⊂ {1, . . . , 4}.

In our case, one obtains the following sets

�{1} = R++ × {0} × R × {0},
�{2} = {0} × R−− × {0} × R,

�{3} = {0} × {0} × R−− × R−−,

�{4} = {0} × {0} × R++ × R++,

�{13} = {0} × {0} × R−− × {0},
�{14} = {0} × {0} × R++ × {0},
�{23} = {0} × {0} × {0} × R−−,

�{24} = {0} × {0} × {0} × R++,

�{1234} = {0} × {0} × {0} × {0},
�{12} = ∅, �{34} = ∅,

�{123} = ∅, �{124} = ∅,

�{134} = ∅, �{234} = ∅.

By application of [11, Theorem 1], we can derive formulas of Gph T� and Gph N�. In
order to derive formulas for the general case of Gph TGph� and of Gph NGph�, let us associate
with each pair (G(p, x, y),−F(p, x, y)) ∈ Gph NR

m+ the index sets (of inactive, strongly
active and weakly active/biactive inequalities) related to the complementarity constraints
in (1)

L(p, x, y, ν, μ) := {i ∈ {1, . . . , m}|(Gi (p, x, y),−Fi (p, x, y)) ∈ R++ × {0}}
I+(p, x, y, ν, μ) := {i ∈ {1, . . . , m}|(Gi (p, x, y),−Fi (p, x, y)) ∈ {0} × R−−}
I0(p, x, y, ν, μ) := {i ∈ {1, . . . , m}|(Gi (p, x, y),−Fi (p, x, y)) ∈ {0} × {0}}.

Similarly, we shall introduce the disjunct decomposition of the set of indices of weakly
active inequalities associated with quadruple (G(p, x, y),−F(p, x, y), ν, μ) ∈ Gph �

I −−
0 (p, x, y, ν, μ) := {i ∈ I0(p, x, y, ν, μ)|(νi , μi ) ∈ R−− × R−−}
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Optimization 1055

I ++
0 (p, x, y, ν, μ) := {i ∈ I0(p, x, y, ν, μ)|(νi , μi ) ∈ R++ × R++}
I −0
0 (p, x, y, ν, μ) := {i ∈ I0(p, x, y, ν, μ)|(νi , μi ) ∈ R−− × {0}}

I 0−
0 (p, x, y, ν, μ) := {i ∈ I0(p, x, y, ν, μ)|(νi , μi ) ∈ {0} × R−−}

I +0
0 (p, x, y, ν, μ) := {i ∈ I0(p, x, y, ν, μ)|(νi , μi ) ∈ R++ × {0}}

I 0+
0 (p, x, y, ν, μ) := {i ∈ I0(p, x, y, ν, μ)|(νi , μi ) ∈ {0} × R++}
I 00
0 (p, x, y, ν, μ) := {i ∈ I0(p, x, y, ν, μ)|(νi , μi ) ∈ {0} × {0}}.

Note that these sets cover all possibilities for values of (G(p, x, y),−F(p, x, y), ν, μ) with
respect to Gph �. We shall omit the arguments of these sets whenever it cannot cause any
confusion.

Thus, application of [11, Theorem 1] yields the following desired formulas. Consider
(α, β, γ, δ) ∈ TGph �(y,−F(p, x, y), ν, μ) and (u∗, v∗, w∗,−z∗) ∈ NGph �(y,
−F(p, x, y), ν, μ); then for each i ∈ {1. . . . , m}
for i ∈ L αi ∈ R, βi = 0, γi ∈ R, δi = 0 u∗

i = 0, v∗
i ∈ R, w∗

i = 0, z∗
i ∈ R

for i ∈ I+ αi = 0, βi ∈ R, γi = 0, δi ∈ R u∗
i ∈ R, v∗

i = 0, w∗
i ∈ R, z∗

i = 0

for i ∈ I−−
0 αi = 0, βi = 0, γi ∈ R, δi ∈ R u∗

i ∈ R, v∗
i ∈ R, w∗

i = 0, z∗
i = 0

for i ∈ I++
0 αi = 0, βi = 0, γi ∈ R, δi ∈ R u∗

i ∈ R, v∗
i ∈ R, w∗

i = 0, z∗
i = 0

for i ∈ I−0
0

{
αi = 0, βi = 0, γi ∈ R, δi ∈ R− or

αi ∈ R+, βi = 0, γi ∈ R, δi = 0

⎧⎪⎨⎪⎩
u∗

i = 0, v∗
i ∈ R, w∗

i = 0, z∗
i ∈ R or

u∗
i ∈ R, v∗

i ∈ R, w∗
i = 0, z∗

i = 0 or

u∗
i ∈ R−, v∗

i ∈ R, w∗
i = 0, z∗

i ∈ R−

for i ∈ I 0−
0

{
αi = 0, βi = 0, γi ∈ R−, δi ∈ R or

αi = 0, βi ∈ R−, γi = 0, δi ∈ R

⎧⎪⎨⎪⎩
u∗

i ∈ R, v∗
i = 0, w∗

i ∈ R, z∗
i = 0 or

u∗
i ∈ R, v∗

i ∈ R, w∗
i = 0, z∗

i = 0 or

u∗
i ∈ R, v∗

i ∈ R+, w∗
i ∈ R+, z∗

i = 0

for i ∈ I+0
0

{
αi = 0, βi = 0, γi ∈ R, δi ∈ R+ or

αi ∈ R+, βi = 0, γi ∈ R, δi = 0

⎧⎪⎨⎪⎩
u∗

i = 0, v∗
i ∈ R, w∗

i = 0, z∗
i ∈ R or

u∗
i ∈ R, v∗

i ∈ R, w∗
i = 0, z∗

i = 0 or

u∗
i ∈ R−, v∗

i ∈ R, w∗
i = 0, z∗

i ∈ R+

for i ∈ I 0+
0

{
αi = 0, βi = 0, γi ∈ R+, δi ∈ R or

αi = 0, βi ∈ R−, γi = 0, δi ∈ R

⎧⎪⎨⎪⎩
u∗

i ∈ R, v∗
i = 0, w∗

i ∈ R, z∗
i = 0 or

u∗
i ∈ R, v∗

i ∈ R, w∗
i = 0, z∗

i = 0 or

u∗
i ∈ R, v∗

i ∈ R+, w∗
i ∈ R−, z∗

i = 0

for i ∈ I 00
0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αi = 0, βi = 0, γi ∈ R−, δi ∈ R− or

αi = 0, βi = 0, γi ∈ R+, δi ∈ R+ or

αi ∈ R+, βi = 0, γi ∈ R, δi = 0 or

αi = 0, βi ∈ R−, γi = 0, δi ∈ R

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗
i = 0, v∗

i ∈ R, w∗
i = 0, z∗

i ∈ R, or

u∗
i ∈ R, v∗

i = 0, w∗
i ∈ R, z∗

i = 0 or

u∗
i ∈ R, v∗

i ∈ R, w∗
i = 0, z∗

i = 0 or

u∗
i ∈ R−, v∗

i ∈ R, w∗
i = 0, z∗

i ∈ R, or

u∗
i ∈ R, v∗

i ∈ R+, w∗
i ∈ R, z∗

i = 0, or

u∗
i ∈ R−, v∗

i ∈ R+, w∗
i = 0, z∗

i = 0

(6)

Remark 1 Non-empty sets �I ,∅ �= I ⊂ {1, . . . , 4} above form a so-called normally
admissible stratification of �, cf. [19, Definition 2] for the definition. Alternatively to a
technique proposed in [11], one can apply [19, Theorem 2] to obtain the desired formula of
the graph of NGph �.
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1056 M. Červinka

For the sake of completeness, we present here also the formulas of Gph TGph D∗ N
R

m+
and

Gph NGph D∗ N
R

m+
. Consider (α, β, γ, δ) ∈ TGph D∗ N

R
m+
(y,−F(p, x, y), ν, μ) and

(u∗, v∗, w∗,−z∗) ∈ NGph D∗ N
R

m+
(y,−F(p, x, y), ν, μ); then for each i ∈ {1. . . . , m}

for i ∈ L αi ∈ R, βi = 0, γi ∈ R, δi = 0 u∗
i = 0, v∗

i ∈ R, w∗
i = 0, z∗

i ∈ R

for i ∈ I+ αi = 0, βi ∈ R, γi = 0, δi ∈ R u∗
i ∈ R, v∗

i = 0, w∗
i ∈ R, z∗

i = 0

for i ∈ I−−
0 αi = 0, βi = 0, γi ∈ R, δi ∈ R u∗

i ∈ R, v∗
i ∈ R, w∗

i = 0, z∗
i = 0

for i ∈ I−0
0

{
αi = 0, βi = 0, γi ∈ R, δi ∈ R− or

αi ∈ R+, βi = 0, γi ∈ R, δi = 0

⎧⎪⎨⎪⎩
u∗

i = 0, v∗
i ∈ R, w∗

i = 0, z∗
i ∈ R or

u∗
i ∈ R, v∗

i ∈ R, w∗
i = 0, z∗

i = 0 or

u∗
i ∈ R−, v∗

i ∈ R, w∗
i = 0, z∗

i ∈ R−

for i ∈ I 0−
0

{
αi = 0, βi = 0, γi ∈ R−, δi ∈ R or

αi = 0, βi ∈ R−, γi = 0, δi ∈ R

⎧⎪⎨⎪⎩
u∗

i ∈ R, v∗
i = 0, w∗

i ∈ R, z∗
i = 0 or

u∗
i ∈ R, v∗

i ∈ R, w∗
i = 0, z∗

i = 0 or

u∗
i ∈ R, v∗

i ∈ R+, w∗
i ∈ R+, z∗

i = 0

for i ∈ I+0
0 αi ∈ R+, βi = 0, γi ∈ R, δi = 0

{
u∗

i = 0, v∗
i ∈ R, w∗

i = 0, z∗
i ∈ R or

u∗
i ∈ R−, v∗

i ∈ R, w∗
i = 0, z∗

i ∈ R

for i ∈ I 0+
0 αi = 0, βi ∈ R−, γi = 0, δi ∈ R

{
u∗

i ∈ R, v∗
i = 0, w∗

i ∈ R, z∗
i = 0 or

u∗
i ∈ R, v∗

i ∈ R+, w∗
i ∈ R, z∗

i = 0

for i ∈ I 00
0

⎧⎪⎨⎪⎩
αi = 0, βi = 0, γi ∈ R−, δi ∈ R− or

αi ∈ R+, βi = 0, γi ∈ R, δi = 0 or

αi = 0, βi ∈ R−, γi = 0, δi ∈ R

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗
i = 0, v∗

i ∈ R, w∗
i = 0, z∗

i ∈ R, or

u∗
i ∈ R, v∗

i = 0, w∗
i ∈ R, z∗

i = 0 or

u∗
i ∈ R, v∗

i ∈ R, w∗
i = 0, z∗

i = 0 or

u∗
i ∈ R−, v∗

i ∈ R, w∗
i = 0, z∗

i ∈ R, or

u∗
i ∈ R, v∗

i ∈ R+, w∗
i ∈ R, z∗

i = 0, or

u∗
i ∈ R−, v∗

i ∈ R+, w∗
i = 0, z∗

i = 0

(7)

4. Generalized derivatives and qualitative stability of stationarity maps

In this section, by using the standard rules of the generalized differential calculus, we
compute upper approximations of the graphical derivative and limiting coderivative of the
stationarity maps SC and SM , respectively. These upper approximations can be found useful
in deriving sufficient (and sometimes also necessary) conditions for isolated calmness and
Aubin property for both types of stationarity maps. Let us first introduce the perturbation
mappings

MC (z) := {(p, x, y, ν, μ)|	(p, x, y, ν, μ) + z ∈ Gph Nω × Gph N� × Gph �};
MM (z) := {(p, x, y, ν, μ)|	(p, x, y, ν, μ) + z ∈ Gph Nω × Gph N� × Gph D∗NR

m+}.
To unburden the notation in the following formulas, let us introduce

Hx (p, x, y, ν, μ) := ∇x f (p, x, y) + (∇x F(p, x, y))�ν + (∇x G(p, x, y))�μ,

Hy(p, x, y, ν, μ) := ∇y f (p, x, y) + (∇y F(p, x, y))�ν + (∇yG(p, x, y))�μ,

and
h := (h p, hx , hy, hν, hμ).
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Optimization 1057

For simplicity, whenever it cannot cause any confusion, we do not state the arguments of
maps in formulas.

Theorem 1

(i) Let (x̄, ȳ) be the C-stationary pair of (1) with a corresponding MPCC-multipliers
(ν̄, μ̄). Then

DSC ( p̄, x̄, ȳ, ν̄, μ̄)(h p) ⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(hx , hy , hν, hμ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
hx

−(∇ Hx )h

)
∈ TGph Nω

(x̄, −Hx )(
hy

−(∇ Hy)h

)
∈ TGph N�

(ȳ, −Hy)⎛⎜⎜⎝
(∇G)h

−(∇F)h
hν

hμ

⎞⎟⎟⎠ ∈ TGph �(G, −F, ν̄, μ̄)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(8)
(ii) Let (x̄, ȳ) be the M-stationary pair of (1) with a corresponding MPCC-multiplier

(ν̄, μ̄). Then

DSM ( p̄, x̄, ȳ, ν̄, μ̄)(h p)

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(hx , hy , hν, hμ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
hx

−(∇ Hx )h

)
∈ TGph Nω

(x̄, −Hx )(
hy

−(∇ Hy)h

)
∈ TGph N�

(ȳ, −Hy)⎛⎜⎜⎝
(∇G)h

−(∇F)h
hν

hμ

⎞⎟⎟⎠ ∈ TGph D∗ N
R

m+
(G, −F, ν̄, μ̄)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (9)

Proof 1 Both statements follow directly from [20, Theorem 6.31]. �

Theorem 2

(i) Let (x̄, ȳ) be the C-stationary pair of (1) with a corresponding MPCC-multipliers
(ν̄, μ̄). Further, let MC be calm at (0, p̄, x̄, ȳ, ν̄, μ̄). Then

D∗SC ( p̄, x̄, ȳ, ν̄, μ̄)(x∗, y∗, ν∗, μ∗)

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
p∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p∗ = (∇p Hx )� f ∗ + (∇p Hy)�h∗ + (∇pG)�u∗ − (∇p F)�v∗
−x∗ = e∗ + (∇x Hx )� f ∗ + (∇x Hy)�h∗ + (∇x G)�u∗ − (∇x F)�v∗
−y∗ = (∇y Hx )� f ∗ + g∗ + (∇y Hy)�h∗ + (∇y G)�u∗ − (∇y F)�v∗
−ν∗ = (∇ν Hx )� f ∗ + (∇ν Hy)�h∗ + w∗
−μ∗ = (∇μHx )� f ∗ + (∇μHy)�h∗ − z∗
e∗ ∈ D∗Nω(x̄, −Hx )( f ∗)

g∗ ∈ D∗N�(ȳ, −Hy)(h∗)

(u∗, v∗, w∗) ∈ D∗�(G, −F, ν̄, μ̄)(z∗)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(10)
(ii) Let (x̄, ȳ) be the M-stationary pair of (1) with a corresponding MPCC-multipliers

(ν̄, μ̄). Further, let MM be calm at (0, p̄, x̄, ȳ, ν̄, μ̄). Then
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1058 M. Červinka

D∗SM ( p̄, x̄, ȳ, ν̄, μ̄)(x∗, y∗, ν∗, μ∗)

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
p∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

p∗ = (∇p Hx )� f ∗ + (∇p Hy)�h∗ + (∇pG)�u∗ − (∇p F)�v∗
−x∗ = e∗ + (∇x Hx )� f ∗ + (∇x Hy)�h∗ + (∇x G)�u∗ − (∇x F)�v∗
−y∗ = (∇y Hx )� f ∗ + g∗ + (∇y Hy)�h∗ + (∇y G)�u∗ − (∇y F)�v∗
−ν∗ = (∇ν Hx )� f ∗ + (∇ν Hy)�h∗ + w∗
−μ∗ = (∇μHx )� f ∗ + (∇μHy)�h∗ − z∗
e∗ ∈ D∗Nω(x̄, −Hx )( f ∗)

g∗ ∈ D∗N�(ȳ, −Hy)(h∗)

(u∗, v∗, w∗) ∈ D∗∗NR
m+(G, −F, ν̄, μ̄)(z∗)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(11)

Proof 2 Both statements follow directly from [12, Theorem 4.1]. �

Moreover, (8)–(11) become equalities, whenever ∇	 is surjective at ( p̄, x̄, ȳ, ν̄, μ̄), cf.
[20, Exercise 6.7]. Note, that e.g. forω = R

n , for any p̄, x̄, ȳ, ν̄, μ̄, one has TGph Nω
(x̄,−Hx )

= R
n × {0}, while e∗ = 0 and f ∗ ∈ R

n . Similarly for �.
Verification of calmness conditions stated in Theorem 2 can be a difficult task. Whenever

the perturbation mapping has the Aubin property around the reference point, the calmness
condition is also satisfied. Verification of calmness condition via Aubin property can be
useful in some special cases of MPCC, see e.g. [11, Example 1]. However, even verification
of conditions that implies the Aubin property of the perturbation mapping may fail.

The above results can be easily applied to obtain sufficient conditions for isolated
calmness and Aubin property of stationarity maps. Stationarity map SC possesses the
isolated calmness property at ( p̄, x̄, ȳ, ν̄, μ̄) if and only if

DSC ( p̄, x̄, ȳ, ν̄, μ̄)(0) = {0, 0, 0, 0}, (12)

see, e.g. [21, Theorem 4C.1]). The Mordukhovich criterion [22] provides a characterization
of the Aubin property through knowledge of the respective coderivative: a set-valued
mapping SC has Aubin property around ( p̄, x̄, ȳ, ν̄, μ̄) if and only if

D∗SC ( p̄, x̄, ȳ, ν̄, μ̄)(0, 0, 0, 0) = {0}.
Analogously for SM . These criteria become both sufficient and necessary whenever ∇	 is
surjective at ( p̄, x̄, ȳ, ν̄, μ̄).

We conclude with continuation of Example 1 and show effectiveness of the our condition
for the isolated calmness property of both C- and M-stationarity mapping at p = 0.

Example 1 (continued) Consider the C-stationary point ( p̄, x̄, ȳ) = (0, 0, 0) with multi-
pliers (ν̄, μ̄) = (1, 0). From (8), we get the following upper approximation of the graphical
derivative of the stationarity map
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Optimization 1059

DSC (0, 0, 0, 1, 0)(h p)

⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(hx , hy, hν, hμ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hx ∈ R

hν = 0
hy ∈ R

−2h p − 2hy + hμ = 0
−h p + hy ≥ 0

h p − hx = 0
hν ∈ R

hμ = 0

or

hx ∈ R

hν = 0
hy ∈ R

−2h p − 2hy + hμ = 0
−h p + hy = 0

h p − hx = 0
hν ∈ R

hμ ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
{

{(h p,−h p, 0, 0)} if h p ≤ 0,

{(h p, h p, 0, 4h p)} if h p > 0.

By the means of (12), the C-stationarity map is isolatedly calm at (0, 0, 0, 1, 0). And thus
it is also calm at (0, 0, 0, 1, 0). Note that the formula above gives the upper approximation
of the graphical derivative of mapping SC both for the directions h p ≥ 0 and h p ≤ 0 and
recovers both parts of the C-stationary solutions around the reference point.

Consider the same, M-stationary point ( p̄, x̄, ȳ) = (0, 0, 0) with multipliers (ν̄, μ̄) =
(1, 0). This time, (9) yields the following upper approximation of the graphical derivative
of the stationarity map

DSM (0, 0, 0, 1, 0)(h p) ⊂

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(hx , hy, hν, hμ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hx ∈ R

hν = 0
hy ∈ R

−2h p − 2hy + hμ = 0
−h p + hy ≥ 0

h p − hx = 0
hν ∈ R

hμ = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
{

{(h p,−h p, 0, 0)} if h p ≤ 0,

∅ if h p > 0.

By the means of (12), also the M-stationarity map is isolatedly calm (and calm) at
(0, 0, 0, 1, 0).
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