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Abstract. Iterative Proportional Fitting Procedure is commonly used
in probability theory for construction of a joint probability distribution
from a system of its marginals. A similar idea can be used in case of be-
lief functions thanks to special operators of composition defined in this
framework. In this paper, a formerly designed IPF procedure is further
studied. We propose a modification of composition operator (for the pur-
pose of the procedure), compare the behavior of the modified procedure
with the previous one and prove its convergence.

1 Introduction

The marginal problem, as one of the most challenging problem types in proba-
bility theory, addresses the question whether or not a common extension exists
for a given system of marginals. The challenges lie not only in a wide range of the
relevant theoretical problems, but also in its applicability to various problems
of statistics [2], computer tomography [9], relational databases [12] and artificial
intelligence [14]. In the last case, it is the problem how to obtain a global knowl-
edge (represented by a multidimensional probability distribution) from pieces of
local knowledge (represented by low-dimensional probability distributions).

To solve a discrete marginal problem, one can use Iterative Proportional
Fitting Procedure (IPFP), introduced by Deming and Stephan already in 1940
[6]. Its convergence was finally proven by Csiszár [7] in 1975. Note that both the
EM and the Newton-Raphson algorithms converge towards the same limit. How-
ever, in most cases, IPFP is preferred due to its computational speed, numerical
stability and algebraic simplicity [15]. A possibilistic version of this procedure
(parametrized by a continuous t-norm) was studied in [13].

A possible application of IPFP in the framework of belief functions was
studied in [3]. Knowing that the probabilistic IPFP can be easily (and elegantly)
expressed with the help of the so-called operator of composition [8], the same
idea was applied in this framework. Two different composition operators for
bpas were discussed in the above-mentioned paper: the first one has already been
introduced in [4], the second one was based on Dempster’s combination rule [10].
Let us note that the operator based Dempster’s rule appeared as inappropriate
for IPFP (for more details see [3]). That is why, in this paper, we focus on the
original operator only. We illustrate one undesirable aspect of its behavior and
suggest a possible modification to solve the problem.
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The paper is organized as follows. After a brief overview of necessary concepts
and notation (Section 2), in Section 3 we recall the concept of evidential IPF
procedure and present its modification. Section 4 is devoted to the discussion of
experimental results. The proof of convergence is given is Section 5.

2 Basic Concepts and Notation

In this section we will briefly recall basic concepts from evidence theory [10]
concerning sets and set functions as well as the concept of the operator of com-
position [5].

2.1 Set Projections and Joins

In this paper XN = X1 ×X2 × . . .×Xn denotes a finite multidimensional space,

and its subspaces (for all K ⊆ N) are denoted by XK =×i∈KXi. For a point
x = (x1, x2, . . . , xn) ∈ XN , its projection into subspace XK is denoted x↓K =
(xi)i∈K , and for A ⊆ XN A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}.

By a join of two sets A ⊆ XK and B ⊆ XL we understand a set A ./ B =
{x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}. Let us note that if K and L are disjoint,
then A ./ B = A×B, if K = L then A ./ B = A∩B. Generally, for C ⊆ XK∪L,
C is a subset of C↓K ./ C↓L, which may be proper.

2.2 Basic Assigments

A basic assignment (bpa) m on XK (K ⊆ N) is a real non-negative function on
power set of XK , for which

∑
∅6=A⊆XK

m(A) = 1. If m(A) > 0, then A is said to
be a focal element of m.

A bpa is called vacuous, if it contains only one focal element, namely XK .
In accordance with [3] we call a bpa uniform if m(A) = 1/(2|XK | − 1) for each
A ⊆ XK , A 6= ∅.

Considering two bpas m1,m2 on the same space XK , we say that m1 is
dominated by m2, if for all A ⊆ XK : m1(A) > 0 =⇒ m2(A) > 0.

Having a bpa m on XK one can consider its marginal assignments. On
XL (for L ⊆ K) it is defined (for each ∅ 6= B ⊆ XL) as follows m↓L(B) =∑
A⊆XK :A↓L=Bm(A).
Having two bpas m1 and m2 on XK and XL, respectively (K,L ⊆ N), we

say that these assignments are projective if m↓K∩L1 = m↓K∩L2 , which occurs if
and only if there exists a bpa m on XK∪L such that both m1 and m2 are its
marginal assignments.

2.3 Operator of Composition

Let us recall the definition of operator of composition . introduced in [4].
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Definition 1. Consider two arbitrary basic assignments m1 on XK and m2 on
XL (K 6= ∅ 6= L). A composition m1 . m2 is defined for each C ⊆ XK∪L by one
of the following expressions:

[a] if m↓K∩L2 (C↓K∩L) > 0 and C = C↓K ./ C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L2 (C↓K∩L)
;

[b] if m↓K∩L2 (C↓K∩L) = 0 and C = C↓K × XL\K then

(m1 . m2)(C) = m1(C↓K);

[c] in all other cases (m1 . m2)(C) = 0.

3 Iterative Proportional Fitting Procedure

Let us start this section by recalling the original design of evidential version of
IPF procedure [3].

3.1 Original Design

Assume a system of n low-dimensional bpasm1,m2, . . . ,mn defined on XK1
,XK2

,
. . . ,XKn

, respectively. During the computational process, an infinite sequence of
bpas µ0, µ1, µ2, µ3, . . . is computed, each of them defined on XK1∪...∪Kn . If this
sequence is convergent, its limit is the result of this process. For simplicity reason
let us suppose that K1 ∪K2 ∪ · · · ∪Kn = N .

Algorithm IPFP
Define the starting bpa µ0 on XK1∪K2∪...∪Kn

. Then compute sequence {µi}i∈1,2,3,...
in the following way:

µ1 = m1 . µ0

µ2 = m2 . µ1

...

µn = mn . µn−1

µn+1 = m1 . µn

µn+2 = m2 . µn+1

...

µ2n = mn . µ2n−1

µ2n+1 = m1 . µ2n

µ2n+2 = m2 . µ2n+1

...

µ3n = mn . µ3n−1

...

As already said in the Introduction, if this algorithm is applied to probability
distributions, it has nice and useful properties, most of which were proven by
Csiszár in his famous paper [7].

Based on the Csiszár’s results, two nice properties on convergence were proven
in [3].

Theorem 1. Consider a system of bpas m1,m2, . . . ,mn defined on XK1
,XK2

,
. . . ,XKn

and a basic assignment µ0 on XK1∪...∪Kn
. If there exists a bpa ν on

XK1∪...∪Kn such that ν is dominated by µ0, and ν is a common extension of all
m1,m2, . . . ,mn, then the sequence µ0, µ1, µ2, µ3, . . . computed by the Algorithm
IPFP with . converges.
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Theorem 2. If the sequence µ0, µ1, µ2, µ3, . . . computed by the Algorithm IPFP
converges then the bpa µ∗ = lim

i→+∞
µi is a common extension of all m1,m2, . . . ,mn,

i.e., (µ∗)↓Kj = mj for all j = 1, . . . , n.

In experiments performed in [3], the uniform bpa was chosen to be µ0. It
seems to correspond to the probabilistic framework, where the uniform distribu-
tion is also used as the starting distribution. Moreover, uniform bpa dominates
every other bpa on the same frame. Thus, if one starts the IPFP with uniform
basic assignment, Theorem 1 guarantees its convergence whenever the common
extension of the given assignments exists.

Nevertheless, there is a big difference between semantics of these two ap-
proaches. While in the probabilistic case uniform distribution is considered to
be the least specific, nothing similar holds in the evidential framework. Here the
vacuous bpa represents the least specific one. However, in this case the assump-
tion of dominance of µ0 is not valid, and the procedure need not converge (and
it does not, in most cases).

3.2 Modification

If the composition operator is applied on projective marginals, part [b] of Def-
inition 1 is never used. On the other hand, if it is not the case, then rule [b] is
adding just one focal element of a very specific form. It is, in fact, cylindrical
extension of the focal element on XK to XK∪L (in case of m1 on XK , m2 on XL,
and m1 Bm2).

This led us to the following consideration. Let us start the IPFP procedure
with vacuous bpa — reflecting total ignorance about the problem — and rewrite
part [b] of the operator of composition in a way to be able to add more focal
elements. We decided to add all focal elements that, being marginalized to XK
have a focal element in m1. The respective mass is uniformly distributed among
them. A lot of unnecessary focal elements may be (and really is) added, but they
are left for future removal by rules [a] and [c] of Definition 1 — which remain
unchanged.

Definition 2. Consider two arbitrary bpas m1 on XK and m2 on XL (K 6= ∅ 6=
L) an iterative composition m1 .

′ m2 is defined for each C ⊆ XK∪L by one of
the following expressions:

[a] if m↓K∩L2 (C↓K∩L) > 0 and C = C↓K ./ C↓L then

(m1 .
′ m2)(C) =

m1(C↓K) ·m2(C↓L)

m↓K∩L2 (C↓K∩L)
;

[b’] if m↓K∩L2 (C↓K∩L) = 0 then ∀D ∈ D = {D ∈ XK∪L : D↓K = C↓K}

(m1 .
′ m2)(D) =

m1(C↓K)

|D|
;
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[c] in all other cases (m1 .
′ m2)(C) = 0.

In other words, in [b’] instead of one focal element C = C↓K × XL\K , a

system of its subsets is added. The mass of m1(C↓K) is uniformly distributed
among them.

This approach has significant impact on the behavior of the IPFP procedure,
which seems to behave better (or in the same way, in the worst case) as the one
presented in [3] (cf. Section 4).

Now, let us summarize three observations concerning both original and mod-
ified IPFP, which will, hopefully, help the reader to understand not only the
difference between them, but later also the idea of the proof.

Observation 1 Note that in case of IPFP, K ⊆ L in the definition of the
operator of composition and therefore A = A↓K ./ A↓L = A↓K ./ A for every
A ⊆ XN .

Note that in case of IPFP, there is a close connection between the notion of
dominance and using of rule [b] in the definition of B:

Observation 2 If ν is dominated by µi, then ν is dominated by ν↓K B µi as
well, and rule [b] from Definition 1 is never used.

Proof. If it is not the case, then ∃A ⊆ XN such that ν(A) > 0 while (ν↓K B
µi)(A) = 0. Since µi(A) > 0 by dominance assumption, then, following Obser-
vation 1, rule [a] has to be used and therefore (ν↓K B µi)(A) > 0, which is a
contradiction.

Having Observation 2 in mind, one can conclude:

Observation 3 If ν is dominated by µi then ν↓K B µi = ν↓K B′ µi.

4 Experiments

Most experiments discussed in this section deal with cases of consistent bpas,
i.e. bpas representing marginals of a multidimensional bpa. We will start with
the original IPFP [3] to reveal the problems caused by its application.

4.1 Original Procedure

Let X,Y and Z be three binary variables with values in X = Y = Z = {0, 1}.
Joint basic assignment m on X× Y× Z = {0, 1}3 is defined in Table 1.

First, we calculate all three two-dimensional marginals of m — denoted by
m1 = m↓XY , m2 = m↓Y Z , and m3 = m↓XZ — and we apply them in this order
on uniform µ0 using IPFP. The computational process is illustrated by Table 2.

Notice, that the procedure converges to m′ which is not in contradiction with
results proven in [3] because both m′ and m have the same two-dimensional
marginals. This experiment has already been published in [3].
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(focal) elements m m′ mΩ m′Ω
{010, 100} 0.2 0.2 0.2 0.2
{001, 010} 0.3 0.3 0.3 0.3

{001, 011, 101, 110} 0.5 0.25 0.4 0.2
{001, 011, 101, 110, 111} 0 0.25 0 0.2

X 0 0 0.1 0.1

Table 1. Three-dimensional assignments

focal elements µ3 µ4 µ5 µ6 µ7 µ8 µ100 µ1000

{010, 100} 0.156 0.200 0.166 0.166 0.200 0.172 0.195 0.199
{000, 010, 100, 110} 0.043 0.040 0.033 0.033 0.031 0.027 0.004 4 · 10−4

{001, 010} 0.146 0.146 0.300 0.211 0.211 0.300 0.293 0.299
{001, 010, 011} 0.153 0.153 0.124 0.088 0.085 0.079 0.006 7 · 10−4

{001, 011, 101, 110} 0.250 0.230 0.187 0.250 0.234 0.210 0.250 0.250
{001, 011, 101, 110, 111} 0.250 0.230 0.187 0.250 0.234 0.210 0.250 0.250

Table 2. IPFP with ., two-dimensional marginals of m, and uniform µ0.

A problem appears if mΩ is taken into account instead of m (in case of
mΩ — a non-zero mass has been put on the whole frame of discernment —
mΩ(X) = 0.1.) The computational process with respective marginals m1 =

m↓XYΩ , m2 = m↓Y ZΩ , and m3 = m↓XZΩ is illustrated by Table 3.

focal elements µ3 µ4 µ5 µ6 µ100 µ1000 µ10000

{010, 100} 0.156 0.195 0.166 0.166 0.188 0.188 0.188
{000, 010, 100, 110} 0.043 0.040 0.034 0.034 0.011 0.011 0.011
{001, 010} 0.158 0.158 0.272 0.211 0.257 0.257 0.257
{001, 010, 011} 0.132 0.132 0.104 0.080 0.038 0.038 0.038
{001, 011, 101, 110} 0.181 0.167 0.132 0.172 0.170 0.170 0.170
{001, 011, 101, 110, 111} 0.181 0.167 0.132 0.172 0.170 0.170 0.170

X 0.001 0.0009 0.001 0.001 0.0007 0.0007 0.0007
and 43 other elements . . . . . . . . . . . . . . . . . . . . .

Table 3. IPFP with ., two-dimensional marginals of mΩ , and uniform µ0.

IPF procedure does not perform very well in this case. A stabilized state is
achieved approximately in µ800 and it is far away from mΩ , with 50 focal ele-
ments, although, according to Theorem 1, its two-dimensional marginals coincide
with those of mΩ .

It seems, that the problem consists in the fact that we start with too many
focal elements in µ0. It would be of a special interest to have a procedure that
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starts with vacuous µ0. Because the ability of operator . to add new focal ele-
ments is limited, operator .′ will be used instead.

4.2 Modified Procedure

operator assignment IPFP ordering µ0 µ1 µ2 µ3 µ4 µ5 µ6

.

m
m1;m2;m3; 255 99 15 6 6 6 6
m2;m1;m3; 255 45 15 6 6 6 6
m3;m1;m2; 255 45 17 6 6 6 6

mΩ

m1;m2;m3 255 99 66 50 50 50 50
m2;m1;m3 255 126 66 50 50 50 50
m3;m1;m2 255 126 82 50 50 50 50

.′

m
m1;m2;m3 1 19 6 30 11 5 5
m1;m3;m2 1 19 9 3 84 11 6
m2;m1;m3 1 45 15 6 6 6 6

mΩ

m1;m2;m3 1 19 9 33 14 11 11
m2;m1;m3 1 46 16 11 11 11 11
m3;m1;m2 1 46 18 11 11 11 11

Table 4. Number of focal elements during IPFP

Note that in case of IPFP with .′ and vacuous µ0, only eleven focal elements
are taken into the account. Respective elements are depicted in Table 5. Note
that the sequence {µi}i→∞ tends to m′Ω from Table 1 which is not in conflict,
because it has the same two-dimensional marginals as mΩ .

Starting with vacuous assignment, potentially necessary focal elements have
to be added. Operator .′ seems to be a reasonable choice. See Table 4 to compare
the development of the number of focal elements for both operators . and .′.
Note that for ., the uniform assignment is solely used as µ0 in respective IPFP.
Similarly, .′ is associated with vacuous assignment as its starting point. This is
highlighted in Table 4 — in the number of focal elements in column correspond-
ing to µ0. The number of focal elements stabilizes in µi for i ≥ 6 in this case
(some of them may disappear later by having mass converging to zero).

4.3 Inconsistent Marginals

In case of inconsistent marginals and IPFP based on .′ and vacuous µ0, we
observe the same behavior as for . and uniform µ0: After several cycles, the
iteration process goes through cyclical changes. The length of the cycle corre-
sponds to the number of basic assignments entering the computational process.
The subsequences converge.
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focal elements µ5 µ100 µ1000 µ10000

{010, 100} 0.200 0.199 0.199 0.199
{001, 010} 0.155 0.292 0.299 0.299
{001, 010, 011} 0.143 0.007 10−4 10−5

{001, 011, 101, 110} 0.159 0.198 0.199 0.199
{001, 011, 101, 110, 111} 0.159 0.198 0.199 0.199
{010, 011, 100, 101} 0.001 0.001 10−4 10−6

{000, 001, 010, 011} 0.001 10−6 10−9 10−10

{001, 011, 100, 101, 110} 0.026 0.001 10−4 10−6

{001, 011, 100, 110, 111} 0.026 0.001 10−4 10−6

{001, 011, 100, 101, 110, 111} 0.026 0.001 10−4 10−6

X 0.098 0.099 0.099 0.099

Table 5. IPFP with .′, two-dimensional marginals of mΩ , and vacuous µ0.

5 Proof of convergence

To prove the convergence of the IPFP starting with vacuous bpa and using
operator B′ from Definition 2 it is enough to show that the sequence µ0, µ1, µ2, . . .
can be divided into two parts. In the first part, a bpa µk dominating ν (a common
extension of given system of marginals) is found. Then, the second part converges
because of Theorem 1 and Observations 2 and 3.

We work in a discrete space, therefore the number of focal elements is finite.
We cope with a system of marginals m1,m2, . . . ,mn (of a joint (unknown) bpa
on XN = XK1∪...∪Kn

) defined on XK1
,XK2

, . . . ,XKn
, respectively, and an infinite

sequence of bpas µ0, µ1, µ2, µ3, . . . computed using IPFP algorithm and operator
B′ from Definition 2, where µ0 is vacuous bpa on XN .

Lemma 1. Having a bpa on XN and a system of its marginals {mj}nj=1, create
sequence µ0, µ1, µ2, . . . using IPFP starting with vacuous µ0 and using B′. Let
A ⊆ XN be a focal element of µi such that A↓Kj is a focal element of mj ∀j =
1, . . . , n, respectively. Then ∀k ≥ i, A is a focal element in µk .

Proof. Take an arbitrary j = 1, . . . , n. Let µi+1 = mjB′µi. To prove the lemma,
one has to realize that in case of IPFP, K ⊆ L in the definition of the operator
of composition and A = A↓Kj ./ A for every A (Observation 1). Then, using
lemma assumption, rule [a] from the definition of the composition operator is
used in case of A. Because A↓Kj is a focal element in mj , then we multiply
non-zero numbers and A is a focal element in µi+1 as well. This reasoning can
be iteratively repeated which finishes the proof.

Observation 4 Let Kj ⊂ N , A ⊆ XKj and B = {B ⊆ XN |B↓Kj = A}. If none
B ∈ B is a focal element of µi and A is a focal element of mj then B is a subset
of focal elements of µi+1 = mj B′ µi.

Indeed, rule [b’] from Definition 2 is used in this case.
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Theorem 3. Consider a system of bpas m1,m2, . . . ,mn defined on XK1 ,XK2 ,
. . . ,XKn

, respectively, and a vacuous bpa µ0 on XK1∪...∪Kn
. If a common exten-

sion of {mj}nj=1 exists then the sequence µ0, µ1, µ2, µ3, . . . computed using IPFP
with .′ converges to one of them.

Proof. First, let us prove that in a finite number of steps we get bpa µi that
dominates a common extension of {mj}nj=1. To prove that, is is sufficient to
realize three simple facts:

(i) following Lemma 1, once a focal element of a common extension is added, it
cannot be removed,

(ii) focal elements are added if necessary (Observation 4) — note that at least
of them has to be a focal element of a common extension and therefore it
cannot be removed by Lemma 1, and

(iii) there is a finite number of focal elements.

Once a µi dominating a common extension is obtained, then, using Observa-
tion 3, Theorem 1 can be applied and such a sequence converges. Moreover, it
converges to a common extension by Theorem 2 (using Observation 3, again).

6 Conclusions and Future Work

We studied recently designed IPF procedure for bpas based on the evidential
composition operator in more detail and realized that its behavior is not satis-
factory, especially in case of partial ignorance. Deeper study revealed the fact,
that although starting from uniform distribution allows an elegant proof of con-
vergence, the procedure produces a great number of focal elements.

We suggested an alternative approach starting with vacuous basic assignment
and consisting in adding of potentially interesting focal elements and subsequent
removing of the unimportant ones. Several experiments showed that this proce-
dure behaves much better than the previous one.

Following Table 5, the computational complexity of the new approach seems
to be lower. This is caused not only by the fact that the new approach is pro-
ducing bpas with generally less focal elements, but also by the fact that it does
not start with all possible focal elements in µ0. This could be further improved
by excluding the first part of the IPFP responsible for finding dominating bpa.
Note that we are not interested in “probability” masses laid on focal elements
in this part, but on the shape of focal elements only. This is a topic of further
research.
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2. M. Janžura, Marginal problem, statistical estimation, and Möbius formula, Kyber-
netika 43 (2007), pp. 619–631.
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4. R. Jiroušek, J. Vejnarová and M. Daniel. Compositional models of belief functions.
In Proc. of the 5th Symp. on Imprecise Probabilities and Their Applications, G. de
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