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Entropy Region and Convolution
František Matúš and Lászlo Csirmaz

Abstract— The entropy region is constructed from vectors
of random variables by collecting Shannon entropies of all
subvectors. Its shape is studied here by means of polymatroidal
constructions, notably by convolution. The closure of the region
is decomposed into the direct sum of tight and modular parts,
reducing the study to the tight part. The relative interior
of the reduction belongs to the entropy region. Behavior of
the decomposition under self-adhesivity is clarified. Results are
specialized and extended to the region constructed from four
tuples of random variables. This and computer experiments help
to visualize approximations of a symmetrized part of the entropy
region. The four-atom conjecture on the minimal Ingleton score
is refuted.

Index Terms— Entropy region, entropy function,
information-theoretic inequality, non-Shannon inequality,
polymatroid, matroid, convolution, selfadhesivity, Ingleton
inequality, Zhang-Yeung inequality, four-atom conjecture,
Ingleton score.

I. INTRODUCTION

THE entropy function of a vector (ξi )i∈N of discrete ran-
dom variables, indexed by a finite set N , maps each

subset I of N to the Shannon entropy of the subvector (ξi )i∈I .
This function can be considered for a point of the Euclidean
space R

P(N) where P(N) is the power set of N , provided the
entropies are finite. Instead it is assumed throughout that the
vector takes finite number of values. The collection of such
points, over all vectors of discrete random variables, defines
the entropic region Hent

N . The closure cl(Hent
N ) of the region is

a convex cone [48, Th. 1] whose relative interior is contained
in Hent

N [37, Th. 1]. This work studies mostly the shape of
cl(Hent

N ).
Basic properties of the Shannon entropy imply that any

entropy function h from Hent
N is non-decreasing and sub-

modular, and thus the pair (N, h) is a polymatroid with the
ground set N and rank function h [17]. The polymatroidal
rank functions on N form the polyhedral cone HN which,
consequently, contains cl(Hent

N ). A polymatroid, or its rank
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function, is called entropic (almost entropic) if the rank
function belongs to Hent

N (cl(Hent
N )).

In this work, the entropy region and its closure are studied
by means of standard constructions on polymatroids, recalled
in Section II. The central working tool is the convolution
of two polymatroidal rank functions. The crucial property
is that cl(Hent

N ) is closed under convolution with modular
polymatroids [37, Th. 2]. This has consequences on principal
extensions and their contractions.

In Section III, the cone cl(Hent
N ) is decomposed into the

direct sum of two cones, see Corollary 3. The first one
consists of rank functions which give the same rank to N
and all subsets with one element less. We call them tight. The
second one is the cone of modular polymatroids, contained
in the entropy region. The decomposition reduces the study of
cl(Hent

N ) to a cone of lesser dimension. It is also closely related
to balanced information-theoretic inequalities [8]. The relative
interior of the first cone is exhausted by entropic points, see
Theorem 2 in Section IV.

Section V recalls the notion of selfadhesivity, that describes
amalgamation, or pasting, of copies of a polymatroid.
It is the main ingredient in the majority of proofs of non-
Shannon information-theoretic inequalities. The selfadhesivity
is compared with the decomposition into tight and modular
polymatroids. An alternative technique for proving inequalities
is briefly discussed and related to principal extensions and their
contractions.

Starting from Section VI the set N is assumed to have four
elements. The role of Ingleton inequality in the structure of
HN is recalled. To describe the cone cl(Hent

N ) it suffices to
pass to its subcone Li j , cut off by a reversed Ingleton inequal-
ity and tightness. Applying polymatroidal constructions, it is
shown that Li j is mapped by two linear maps to its face Fi j

of dimension 9, see Theorem 4.
Section VII investigates a symmetrization of Fi j . Its cross-

section Si j has dimension three. Various numerical optimiza-
tion techniques were employed to find an inner approximation
of Si j . An outer approximation is compiled from available
non-Shannon type information inequalities. The two approx-
imations are visualized, and it turns out that they are yet far
from each other. In Section VIII, the range of Ingleton score
is studied and related to the cross-section Si j , see Theorem 5.
In Example 2, a score is presented that refutes the four-atom
conjecture [11], [16].

The concept of entropy region matters for several mathe-
matical and engineering disciplines. The inequalities that hold
for the points of the region are called information-theoretic.
Those that do not follow from the polymatroid axioms on
a fixed ground set are frequently called non-Shannon type
information inequalities. Main breakthroughs include finding

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



6008 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

of the first non-Shannon linear inequality [50] and the relation
to group theory [7]. The cone cl(Hent

N ) is not polyhedral [38]
and the structure of non-Shannon inequalities seems to be
complex [12], [15], [16], [30], [47], [49]. Reviews are in [10]
and [37] and elsewhere.

In communications networks, the capacity region of multi-
source network coding can be expressed in terms of the
entropy region, the reader is referred to the thorough review
of the network coding in [2]. Non-Shannon inequalities have
a direct impact on converse theorems for multi-terminal prob-
lems of information theory, see [46]. In cryptography, the
inequalities can improve bounds on the information ratios in
secret sharing schemes [5], [6], [11].

In probability theory, the implication problem of condi-
tional independence among subvectors of a random vector
can be rephrased via the entropy region [45]. The guessing
numbers of games on directed graphs and entropies of the
graphs can be related to the network coding [19], [42],
where non-Shannon inequalities provide sharper bounds [1].
Information-theoretic inequalities are under investigation in
additive combinatorics [29] and in connection to entropy
power inequalities [31]. They started to matter in matroid the-
ory [39]. Last but not least, information-theoretic inequalities
are known to be related to Kolmogorov complexity [30], deter-
minantal inequalities and group-theoretic inequalities [10].

The above overview witnesses a broad scope of potential
applications of results on the entropy region and its closure.

II. PRELIMINARIES

This section recalls basic facts about polymatroids and
related operations. Auxiliary lemmas are worked out to be
used later. Introduction to entropy and the entropy region can
be found in the monographs [14], [46]; further material on
polymatroids is in [28].

The letter N always denotes a finite set and f, g, h real
functions on the power set P(N) of N , or points in the 2|N |-
dimensional Euclidean space R

P(N). Singletons and elements
of N are not distinguished and the union sign between subsets
of N is often omitted. For example, i J abbreviates {i} ∪ J
where i ∈ N and J ⊆ N .

For I ⊆ N let δI denote the point of R
P(N) having all

the coordinates equal to 0 but δI (I ) = 1. For I, J ⊆ N the
expression f (I )+ f (J )− f (I ∪ J )− f (I ∩ J ) is interpreted as
the standard scalar product of ΔI,J = δI + δJ − δI∪J − δI∩J

with f . An alternative notation for Δi L , j L is Δi j |L where
L ⊆ N and i, j ∈ N \ L.

A. Polymatroids

The pair (N, f ) is a polymatroid when f (∅) = 0, f is non-
decreasing, thus f (I ) � f (J ) for I⊆J⊆N , and submodular,
thus ΔI,J f � 0 for I, J⊆N . Here, N is the ground set, f (N)
is the rank and f is the rank function of the polymatroid.
The polymatroid is frequently identified with its rank function.
The collection of polymatroidal rank functions forms the
closed polyhedral cone HN in the nonnegative orthant of
R
P(N). Extreme rays of the cone are mostly unknown. For

a review of polymatroids the reader is referred to [28].

The polymatroid is a matroid [41] if f takes integer values
and f (I ) � |I |, I ⊆ N . For J ⊆ N and 0 � m � |N \ J |
integer let r J

m(I ) = min{m, |I \ J |}, I ⊆ N . Thus, r J
m is a

matroidal rank function with the set of loops J , r J
m(J ) = 0,

and rank m. When J = ∅ the superindex is sometimes omitted.
The polymatroid f is modular if ΔI,J f = 0 for any I and

J disjoint. This is equivalent to f (I ) = ∑
i∈I f (i), I ⊆ N ,

or to the single of this equalities with I = N . The modular
polymatroids form the polyhedral cone Hmod

N whose extreme
rays are generated by the matroids r1

N\i , i ∈ N .
A polymatroid (N, f ) is linear if there exist subspaces Ei ,

i ∈ N , of a linear space over a field F such that if I ⊆ N
then f (I ) equals the dimension of the sum of Ei over i ∈ I .
If F is finite then f ln |F| is entropic, thus is in Hent

N .
The contraction of a polymatroid (N, f ) along I ⊆ N sits

on N \ I and has the rank function J �→ f (J ∪ I ) − f (I ),
J ⊆ N \ I . (Poly)matroids are closed under contractions.
The following lemma is known, e.g. implicit in the proof
of [33, Lemma 2], but no reference to a proof seems to be
available.

Lemma 1: Almost entropic polymatroids are closed to con-
tractions.

Proof: It suffices to show that if f is equal to the entropy
function of a random vector (ξi )i∈N , then the contraction h of
f along I is almost entropic. If ξi takes values in a finite set
Xi then ξI = (ξi )i∈I ranges in the product of Xi , i ∈ I . For
every element xI of the product that is attained with a positive
probability, let ηxI be the random vector ξN\I conditioned on
the event that ξI = xI . The entropy function of ηxI is denoted
by gxI . By an easy calculation, the contraction h equals the
convex combination of the entropy functions gxI weighted by
the probabilities of the events ξI = xI . Since cl(Hent

N ) is
convex [48, Th. 1], h is almost entropic.

B. Convolution

When f and g are polymatroidal rank functions on the same
ground set N , their convolution f ∗g is defined as

f ∗g(I ) = min
J⊆I

{
f (J ) + g(I \ J )

}
, I ⊆ N,

see [28]. If both f and g are modular, then f ∗g is also mod-
ular, assigning the values min{ f (i), g(i)} to the singletons i
of N . By [28, Th. 2.5], (N, f ∗g) is a polymatroid whenever
g alone is modular. The following simple assertion may help
to build intuition for later proofs.

Lemma 2: Let f, g be two polymatroids on N where g is
modular, and i ∈ N . If f ( j) � g( j) for all j ∈ N \ i then

f ∗g (I ) = f (I ),

f ∗g (i I ) = min
{

f (I ) + g(i), f (i I )
}
, I ⊆ N \ i.

If, additionally, f (i) � g(i) then f ∗g = f .
Proof: By submodularity of f , for J ⊆ I ⊆ N \ i

f (I ) + g(∅) � f (J ) + f (I \ J )

� f (J ) + ∑
j∈I\J f ( j) � f (J ) + g(I \ J )

using that f ( j) � g( j), j ∈ N \ i , and modularity of g. This
proves that f ∗g (I ) equals f (I ). Similarly,

f (i I ) + g(∅) � f (i J ) + f (I \ J ) � f (i J ) + g(I \ J )
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and

f (I ) + g(i) � f (J ) + f (I \ J ) + g(i) � f (J ) + g(i I \ J ).

Hence, f ∗g (i I ) is equal to the smaller of the numbers f (i I )
and f (I ) + g(i).

In a notable instance of the convolution, the difference
between f ∗g and f is at most at a singleton. This will be
used in Theorem 4 to shift almost entropic points.

Corollary 1: Let (N, f ) be a polymatroid, i ∈ N , and

max
j∈N\i

[
f (i j) − f ( j)

]
� t � f (i).

Let (N, g) be a modular polymatroid such that g(i) = t and
f ( j) � g( j), j ∈ N \ i . Then f ∗g takes the same values as
f with the exception f ∗g(i) = t .

Proof: The assumption t � f (i) implies f ∗g(i) = t . By
Lemma 2, f ∗g is equal to f on the subsets of N \ i . Let
I ⊆ N \ i and I contain some j . By submodularity and the
lower bound on t ,

f (i I ) � f (I ) + f (i j) − f ( j) � f (I ) + t = f (I ) + g(i).

It follows by Lemma 2 that f ∗g(i I ) = f (i I ).
Since the operation ∗ is commutative and associative, the

convolution of a polymatroid f with a modular polymatroid g
can be computed iteratively by Lemma 2. It suffices to write g
as the multiple convolution of modular polymatroids gi , i ∈ N ,
such that gi(i) = g(i) and gi ( j) = r , j ∈ N \ i , where r is
larger than the values of f and g on all singletons.

C. Principal Extension

The last subsection of this section defines a one-element
parallel extension of a polymatroid. This turns into a principal
extension when modified by a convolution. Then, the added
element is contracted. The polymatroid obtained in these steps
is employed later in Sections V and VI.

Two points i, j ∈ N of a polymatroid (N, f ) are parallel
if f (i J ) = f ( j J ) for J ⊆ N . This happens if and only if
f (i) = f (i j) = f ( j). Given any i ∈ N , it is always possible
to extend f to R

P(0∪N), where 0 
∈ N , such that i and 0
are parallel in the extension. More generally, for L ⊆ N the
extension of f by 0 parallel to L is the polymatroid (0∪ N, h)
given by h(J ) = f (J ) and h(0 ∪ J ) = f (L ∪ J ) where
J ⊆ N . If f is the entropy function of (ξi )i∈N then h is
entropic as well, completing the random vector by the variable
ξ0 = (ξi )i∈L .

This parallel extension is convolved with the modular poly-
matroid (0 ∪ N, g) having g(0) = t � f (L) and g(i) � f (i),
i ∈ N , to arrive at the principal extension fL ,t of f on the
subset L with the value t [28]. By Lemma 2,

fL ,t (0 ∪ I ) = min
{

f (I ) + t, f (L ∪ I )
}
, I ⊆ N.

In turn, the principal extension fL ,t is contracted by 0 to get
the polymatroid on N with the rank function

f ∗
L ,t (I ) = min

{
f (I ), f (L ∪ I ) − t

}
, I ⊆ N. (1)

Lemma 3: If a polymatroid (N, f ) is almost entropic,
L⊆N and 0 � t � f (L) then so is (N, f ∗

L ,t ).

Proof: If f is entropic then fL ,t is almost entropic
since cl(Hent

N ) is closed under convolutions [37, Th. 2]. This
combined with Lemma 1 implies the assertion.

Under some assumptions, it is possible to find all minima
in (1). Recall that the f -closure cl(I ) of I ⊆ N consists of
those i ∈ N that satisfy f (i I ) = f (I ). By monotonicity and
submodularity, f (cl(I )) = f (I ).

Lemma 4: If (N, f ) is a polymatroid, L ⊆ N and t � f (L)
such that

0 � t � min
I⊆N, L 
⊆cl(I )

max
�∈L\cl(I )

[ f (� ∪ I ) − f (I )] (2)

then

f ∗
L ,t (I ) =

{
f (I ) − t, when L ⊆ cl(I ),

f (I ), otherwise,
I ⊆ N.

Proof: The inequalities 0�t� f (L) are needed to
derive (1). If L ⊆ cl(I ) then

f (L ∪ I ) � f (L ∪ cl(I )) = f (cl(I )) = f (I ).

Hence, the inequality is tight and the minimum in (1) equals
f (I )−t . Otherwise, by the assumption (2), t � f (�∪I )− f (I )
for some � ∈ L\cl(I ). Since f (L∪I )−t � f (�∪I )−t � f (I )
the minimum in (1) equals f (I ).

Remark 1: A special instance of Lemma 4 is used in the
proof of Theorem 4 to shift almost entropic points inside
cl(Hent

N ). There, L equals a singleton k contained in cl(N \k).
In such a case, (2) is a consequence of

t � min
j∈N\k

[ f (N \ j) − f (N \ jk)] (3)

because each maximal f (� ∪ I ) − f (I ) in (2) dominates the
right-hand side of (3) by submodularity.

In another special instance L = N of Lemma 4, the
polymatroid f ∗

L ,t is called the truncation of f by t , or
to f (N)−t . It was applied e.g. in [9] to investigate linear
polymatroids.

III. TIGHT AND MODULAR POLYMATROIDS

The cone HN of polymatroidal rank functions h decomposes
into the direct sum of the cone H ti

N of tight rank functions
and the cone Hmod

N of modular functions. Here, h is tight if
h(N) = h(N \ i), i ∈ N . The decomposition can be written
as h = hti + hm where

hti(I ) = h(I ) − ∑
i∈I [h(N) − h(N \ i)],

hm(I ) = ∑
i∈I [h(N) − h(N \ i)], I ⊆ N.

It is unique as the linear spaces H ti
N − H ti

N and Hmod
N − Hmod

N
intersect at the origin. In symbols, HN = H ti

N ⊕ Hmod
N .

Theorem 1: If (N, h) is a polymatroid then the tight com-
ponent hti can be constructed from h by parallel extensions,
convolution and contraction.

Proof: Let (N, h) be a polymatroid, N ′ be a disjoint copy
of N and i �→ i ′ a bijection between them. The polymatroid
(N, h) extends to (N ∪ N ′, f ) by

f (I ∪ J ′) = h(I ∪ J ), I, J ⊆ N,
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where J ′ = { j ′ : j ∈ J }. Thus, each i ′ is parallel to i . Let
(N ∪ N ′, g) be a modular polymatroid. Then, for I ⊆ N

f ∗g(I ∪ N ′)
= min

J⊆I, K⊆N

[
h(J ∪ K ) + g(I \ J ) + g(N ′ \ K ′)

]
.

By monotonicity of g, the bracket does not grow when K is
replaced by K ∪ J . Hence, the minimization can be restricted
to the situations when J = K ∩ I , and

f ∗g(I ∪ N ′) = min
K⊆N

[
h(K ) + g(I \ K ) + g(N ′ \ K ′)

]
.

If g(i) + g(i ′) = h(i) for i ∈ N then f ∗g(I ∪ N ′) is equal to

min
K⊆N

[
h(K ) + ∑

i∈I\K h(i) + g(N ′ \ (I ′ ∪ K ′))
]
.

By submodularity of h, this minimization can be restricted to
K ⊇ I , thus

f ∗g(I ∪ N ′) = min
I⊆K⊆N

[
h(K ) + g(N ′ \ K ′)

]
, I ⊆ N. (4)

In the case when

g(i ′) = hm(i) = h(N) − h(N \ i) � h(i), i ∈ N,

h is decomposed to hti + hm and the minimum in (4) is equal
to hti(I ) + hm(N) which is attained at K = I . It follows that
hti(I ) = f ∗g(I ∪ N ′)− f ∗g(N ′). Hence, hti is the contraction
of f ∗g along N ′.

Corollary 2: If h ∈ cl(Hent
N ) then hti is almost entropic.

Proof: Keeping the notation of the previous proof, the
assumption implies that f is almost entropic. The convolution
theorem [37, Th. 2] implies that f ∗g ∈ cl(Hent

N ). By Lemma
1, hti ∈ cl(Hent

N ).
The closure of the entropic region decomposes analogously

to HN .
Corollary 3: cl(Hent

N ) = [cl(Hent
N ) ∩ H ti

N ] ⊕ Hmod
N .

Proof: Corollary 2 and HN = H ti
N ⊕ Hmod

N imply the
inclusion ⊆. The reverse one holds since cl(Hent

N ) is a convex
cone and Hmod

N ⊆ Hent
N [37, Lemma 2].

As a consequence, cl(Hent
N ) ∩ H ti

N equals

cl(Hent
N )ti = { f ti : f ∈ cl(Hent

N )}.
It is open whether Hent

N equals [Hent
N ∩ H ti

N ] ⊕ Hmod
N .

In the remaining part of the section it is shown that
Corollary 3 is equivalent to [8, Th. 1] on balanced inequalities.

Any nonempty closed convex cone K in a Euclidean space
is expressible as intersection of closed halfspaces. This is
reflected in the notion of the polar cone K ◦ of K that consists
of the outer normal vectors to K at the origin,

K ◦ = {
(ϑI )I⊆N ∈ R

P(N) : ∑
I⊆N ϑI h(I ) � 0 for h ∈ K

}
,

see [43, Sec. 14]. For example, the polar of Hmod
N can be

defined by the inequalities
∑

I�i ϑI � 0, i ∈ N ; substitut-
ing the matroids r1

N\i , i ∈ N , for h. The polars of Hent
N

and cl(Hent
N ) coincide and are defined by the very linear

information-theoretic inequalities.
By [43, Corollary 16.4.2], Corollary 3 is equivalent to

(Hent
N )◦ = (cl(Hent

N )ti)◦ ∩ (Hmod
N )◦. (5)

It was used tacitly also that (Hent
N )◦◦ coincides with cl(Hent

N ),
and that cl(Hent

N )ti, Hmod
N and their sum are closed. The

polar of cl(Hent
N )ti consists of the vectors (ϑI )I⊆N satisfying∑

I⊆N ϑI hti(I ) � 0 for h ∈ cl(Hent
N ). This rewrites to

∑
I⊆N ϑI h(I ) − ∑

i∈N [h(N) − h(N \ i)]∑I�iϑI � 0. (6)

In turn, eq. (5) can be rephrased as follows. Given (ϑI )I⊆N ,
the inequality

∑
I⊆N ϑI h(I ) � 0 holds for all h ∈ Hent

N if
and only if (6) is valid and

∑
I�i ϑI � 0, i ∈ N. This was

formulated earlier in [8, Th. 1].
Let τI = ϑI when |I |<|N | − 1, τN\i = ϑN\i + ∑

I�i ϑI

for i ∈ N , and τN = ϑN − ∑
I⊆N |I |ϑI . Then the inequality

(6) rewrites to
∑

I⊆N τI h(I ) � 0. This one is balanced in
the sense

∑
I�i τI = 0, i ∈ N . Thus, (6) expresses all the

balanced information-theoretic inequalities.

IV. ENTROPY REGION: REGULAR FACES OF cl(Hent
N )

As mentioned earlier, the relative interior of cl(Hent
N )

belongs to the entropy region Hent
N . Thus, Hent

N and cl(Hent
N )

differ only on the relative boundary of the latter. This section
proves a stronger relation between them, motivated by the
decomposition in Corollary 2.

Theorem 2: ri(cl(Hent
N )ti) ⊕ Hmod

N ⊆ Hent
N .

The proof presented below is based on an auxiliary lemma.
Lemma 5: The cone cl(Hent

N )ti contains a dense set of
entropic points.

A proof resorts to polymatroids constructed from groups.
Recall that a polymatroid (N, f ) is group-generated if there
exists a finite group G with subgroups Gi , i ∈ N , such
that f (I ) = ln |G|/|GI | for I ⊆ N . Here, GI abbreviates⋂

i∈I Gi . Such a polymatroid is always entropic. In fact, the
group G is endowed with the uniform probability measure and
the polymatroid equals the entropy function of (ξi )i∈N where
ξi is the factormapping of G on the family G/Gi of left cosets
of Gi . The divisions of the group-generated polymatroidal
rank functions by positive integers are dense incl(Hent

N )
[7, Th. 4.1].

Proof of Lemma 5: Let ||h||∞ � maxI⊆N |h(I )|. Given ε
positive and g ∈ cl(Hent

N )ti there exists a random vector whose
entropy function h satisfies ||hti −g||∞ < ε. By Corollary 2, hti

is almost entropic whence ||h − g||∞ � ε for some h entropic.
Since g is tight,

hm(N) = hm(N) − gm(N)

�
∑

i∈N |h(N) − g(N)| + |h(N \ i) − g(N \ i)|
� 2ε|N |.

It can be assumed that the random vector sits on a
finite set endowed with the uniform probability measure.
By [37, Remark 11], there exists a group G, a group-generated
polymatroid f and an integer � � 1 such that || 1

� f −h||∞ � ε.
Therefore,

1
� f m(N) � | 1

� f m(N) − hm(N)| + hm(N) � 4ε|N |.
Let (ξi )i∈N be the corresponding random vector of factor-
mappings of G onto G/Gi whose entropy function equals f .
If I ⊆ N then ξI � (ξi )i∈I takes |G/GI | values, each one
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with the same probability and f (I ) = ln |G/GI |. Therefore,
for every j ∈ N there exists a random variable η j defined
on G such that it is constant on each coset of G/GN ,
takes |GN\ j /GN | values and (ξN\ j , η j ) takes |G/GN | =
|G/GN\ j ||GN\ j /GN | values. Necessarily, η j is a function
of ξN , its entropy is ln |GN\ j /GN |, η j is stochastically
independent of ξN\ j , and they together determine ξN . Let h′
denote the entropy function of (ζi )i∈N where ζi = (ξi , ηN )
and ηN = (η j ) j∈N . By construction, h′(N \ i) is the entropy
of (ξN\i , ηN ), i ∈ N , and h′(N) is the entropy of (ξN , ηN ).
Hence, h′ is a tight entropy function. For I ⊆ N

f (I ) � h′(I ) � f (I ) + ∑
j∈N ln |GN\ j /GN |

= f (I ) + f m(N).

It follows that || 1
� h′ − 1

� f ||∞ � 1
� f m(N) � 4ε|N |. Hence,

|| 1
� h′ − g||∞ � || 1

� h′ − 1
� f ||∞ + || 1

� f − h||∞ + ||h − g||∞
� 4ε|N | + 2ε.

By [37, Lemma 4], the tight polymatroid 1
� h′ +δr1 is entropic

for any δ > 0. Thus, ||( 1
� h′ + εr1) − g||∞ � 4ε|N | + 3ε where

ε can be arbitrarily small. �
Remark 2: It is of some interest that cl(Hent

N )ti contains a
dense set of points in the form 1

m h′′ where m is integer and h′′
is group-generated. In fact, the tight entropy function h′ from
the previous proof need not be group-generated but arises from
random variables defined on G with the uniform probability
measure. Then, by [37, Remark 11], h′ can be arbitrarily well
approximated by 1

m h′′ with h′′ group-generated. Since h′ is
tight the construction of that remark provides h′′ tight as well.
Thus, to a given g ∈ cl(Hent

N )ti it is possible to construct 1
�m h′′

arbitrarily close, as in the above proof.
Proof of Theorem 2: Since, the cone Hmod

N is contained in
Hent

N [37, Lemma 2] and Hent
N is closed to sums, it suffices

to prove that ri(cl(Hent
N )ti) ⊆ Hent

N . The argumentation is
analogous to that in the proof of [37, Th. 1]. By [37,
Lemma 3], the matroidal rank functions r J

1 with J ⊆ N and
|J | < |N | − 1 are linearly independent. Since they are tight
and their nonnegative combinations are entropic they span a
polyhedral cone contained in H ti

N ∩ Hent
N whose dimension

2|N | − |N | − 1 is the same as that of cl(Hent
N )ti. Therefore,

if ε > 0 then the set Bε of polymatroids
∑

J : |J |<|N |−1 αJ r J
1 ,

where 0 < αJ < ε, is open in the linear space H ti
N − H ti

N and
the shifts of these sets provide a base for the relative topology.

Hence, if g belongs to the relative interior of cl(Hent
N )ti then

it belongs to such a shift contained in the relative interior. It
follows that g− Bε is a subset of the relative interior for ε > 0
sufficiently small. Since g − Bε is a relatively open subset of
cl(Hent

N )ti it contains an entropic polymatroid h, by Lemma 5.
This implies that g can be written as h + ∑

J : |J |<|N |−1 αJ r J
1

where all αJ are nonnegative, and thus is entropic. �
A convex subset F of a convex set K is a face if every line

segment in K with an interior point in F belongs to F . A face
of a convex cone is a convex cone.

Let us call a face F of cl(Hent
N ) regular if all relative

interior points of F are entropic, thus ri(F) ⊆ Hent
N . The

trivial face F = cl(Hent
N ) is regular. Since the cones cl(Hent

N )ti

and Hmod
N are defined by imposing certain equalities in

monotonicity and submodularity, they are faces of cl(Hent
N ).

Each face of Hmod
N is a face of cl(Hent

N ), and is regular
because Hmod

N ⊆ Hent
N . By Theorem 2, the face F =

cl(Hent
N )ti is regular.

V. SELFADHESIVITY AND TIGHTNESS

This section recalls the notion of selfadhesivity and explores
its relation to the decomposition h = hti + hm of polyma-
troids. Then the role of selfadhesivity in proving information-
theoretic inequalities is briefly discussed and compared to an
alternative technique from [30].

Two polymatroids (N, h) and (M, g) are adhesive [36], or
adhere, if there exists a polymatroid (N ∪ M, f ) such that
f (I ) = h(I ) for I ⊆ N , f (J ) = g(J ) for J ⊆ M , and

f (N) + f (M) = f (N ∪ M) + f (N ∩ M).

Thus, the rank function f is a common extension of h and g,
and the last equality expresses the adherence.

A polymatroid (N, h) is selfadhesive at O ⊆ N if it adheres
with a π-copy (π(N), hπ ) of itself. This is defined by a
bijection π : N → π(N) such that such that O = N ∩ π(N),
π(i) = i for i ∈ O, and hπ(π(I )) = h(I ) for I ⊆ N .
A polymatroid is selfadhesive if it is selfadhesive at each
O ⊆ N .

The rank functions of selfadhesive polymatroids on N form
the polyhedral cone Hsa

N [36]. This cone decomposes similarly
to HN = H ti

N ⊕ Hmod
N .

Theorem 3: If h ∈ Hsa
N then hti is selfadhesive.

Proof: Let a polymatroid (N, h) adhere with a π-copy at
O = N ∩ π(N) and N̂ = N ∪ π(N). Thus, there exists an
adhesive extension (N̂ , ĥ). This extension is further extended
to (N̂ ∪ N̂ ′, f ), doubling each element of N̂ by a parallel one
in N̂ ′, disjoint with N̂ . Similarly to the proof of Theorem 1,
a modular polymatroid (N̂ ∪ N̂ ′, g) is constructed below such
that the contraction of f ∗g along N̂ ′ witnesses that (N, hti)
is selfadhesive at O.

The modular rank function g is defined by

g(i) = g(π(i)) = h(i) + h(N \ i) − h(N),

g(i ′) = g(π(i)′) = h(N) − h(N \ i), i ∈ N.

Since

g(i) + g(i ′) = ĥ(i) and g(π(i)) + g(π(i)′) = ĥ(π(i)),

an analogue of (4) takes the form

f ∗g(I ∪ N̂ ′) = min
I⊆K⊆N̂

[
ĥ(K ) + g(N̂ ′ \ K ′)

]
, I ⊆ N̂ ,

(7)

arguing as in the proof of Theorem 1.
If i ∈ N \ O then

ĥm(i) = ĥ(N̂) − ĥ(N̂ \ i)

= 2h(N) − h(O) − [h(N \ i) + h(N) − h(O)]
= h(N) − h(N \ i) = hm(i) = g(i ′)
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because ĥ is an adhesive extension of h and hπ . Analogously,
if i ∈ N \ O then ĥm(π(i)) = hm(i) = g(π(i)′). Therefore,
the bracket in (7) rewrites to

ĥti(K ) + ĥm(K ) + ĥm(N̂ \ (O ∪ K )) + g(O ′ \ K ′)
= ĥti(K ) + ĥm(N̂ \ (O \ K )) + hm(O \ K ).

Hence, the minimization in (7) can be further restricted to
K ⊆ I ∪ O, and if I ⊆ N̂ then f ∗g(I ∪ N̂ ′) is equal to

ĥm(N̂ \ (I ∪ O)) + min
I⊆K⊆I∪O

[
ĥ(K ) + hm(O \ K )

]
.

The above minimum can be found in special cases. First,

f ∗g(N̂ ∪ N̂ ′) = ĥ(N̂ ) = 2h(N) − h(O)

using that ĥ extends adhesively h and its π-copy. Second,

f ∗g(I ∪ N̂ ′) = hti(I ) + hm(N) + hm(N \ O), I ⊆ N,

using that ĥ(K ) + hm(O \ K ) = hti(K ) + hm(I ∪ O). Third,

f ∗g(π(I ) ∪ N̂ ′) = hti(I ) + hm(N) + hm(N \ O), I ⊆ N,

by symmetry. It follows that the contraction of f ∗g along N̂ ′
extends hti and its π-copy. The rank of the contraction is

[2h(N) − h(O)] − [hm(N) + hm(N \ O)]
= 2hti(N) − hti(O)

whence the extension is selfadhesive.
Corollary 4: Hsa

N = [Hsa
N ∩ H ti

N ] ⊕ Hmod
N .

Proof: The inclusion ⊆ follows from Theorem 3. Since the
modular polymatroids have selfadhesive modular extensions
and Hsa

N is a convex cone, the opposite inclusion holds as
well.

The convex cone cl(Hent
N ) is not polyhedral [38], thus its

polar cone is not finitely generated. There are infinite sets
of linear information- theoretic inequalities [12], [15], [16],
[30], [49]. Hundreds of them have been generated in computer
experiments based on the fact that the entropic polymatroids
are selfadhesive, Hent

N ⊆ Hsa
N , and iterations of the idea.

None of the experiments seems to have taken into account the
possible reduction by imposing the tightness, cf. Corollary 4.

A linear information-theoretic inequality
∑

I⊆N ϑI h(I ) � 0 for all h ∈ Hent
N

is of non-Shannon type if (ϑI )I⊆N ∈ (Hent
N )◦ is not in

H◦
N . There are two techniques for proving non-Shannon-type

inequalities: either by selfadhesivity, as implicit in the original
proof of Zhang-Yeung inequality [48], or alternatively by
a lemma of Csiszar and Körner [14], as proposed in [30].
Recently it was found that the two techniques have the same
power [24]. Actually, the original lemma from [14] is not
needed and only the following version on extensions suffices
for proofs of [24] and [30].

Lemma 6: If (N, h) is almost entropic, i ∈ N and i ′ 
∈ N
then the polymatroid has an extension (i ′∪N, g) that is almost
entropic and satisfies

g(i ′ ∪ N \ i) = g(N \ i),

g(i ′ ∪ I ) − g(i ′) = g(i ∪ I ) − g(i), I ⊆ N \ i.

Proof: The assumption implies that there exists an almost
entropic and adhesive extension (i ′ ∪ N, f ) of (N, h) and its
copy at N \i . Let g denote the contraction f ∗

L ,t of the principal
extension fL ,t of f on the singleton L = i ′ with the value
t = h(N) − h(N \ i). By Lemma 3, g is almost entropic. The
value t is at most h(i) = f (L) whence (1) applies and takes
the form

g(I ) = min
{

f (I ), f (i ′ ∪ I ) − h(N) + h(N \ i)
}
,

I ⊆ i ′ ∪ N.

If I ⊆ N \ i then, using the properties of f and
submodularity,

g(I ) = min{h(I ), h(i ∪ I ) − h(N) + h(N \ i)} = h(I ),

g(i ∪ I ) = min{h(i ∪ I ), f (i ′ ∪ i ∪ I ) − f (i ′ ∪ N) + f (N)}
= h(i ∪ I ),

g(i ′ ∪ I ) = h(i ∪ I ) − h(N) + h(N \ i).

The first and second equation show that g is an extension
of h. This and the last one imply g(i ′ ∪ N \ i) = g(N \ i) and
g(i ′ ∪ I ) − g(i ′) = g(i ∪ I ) − g(i).

The main ingredient in the above proof is a contraction
of a principal extension, which relies on convolution. This
indicates that selfadhesivity, convolution and other construc-
tions on polymatroids seem to be powerful enough to rephrase
all existing approaches to proofs of the linear information-
theoretic inequalities.

VI. ENTROPY REGION OF FOUR VARIABLES

This section presents applications of polymatroidal con-
structions and consequences of above results in the situation
when the ground set N has four elements. It partially describes
shape of the cone cl(Hent

N ) which is used later when mini-
mizing Ingleton score. It is assumed that the four elements
i, j, k, l of N are always different. In the notation for cones,
the subscript N is omitted, for example H = HN .

When studying the entropic functions of four variables the
crucial role is played by the expression

h(ik) + h( jk) + h(i l) + h( j l) + h(kl)

− h(i j) − h(k) − h(l) − h(ikl) − h( jkl).

It is interpreted also as the scalar product �i j h of

�i j = δik + δi� + δ j k + δ j� + δk� − δi j

− δk − δ� − δik� − δ j k�

with h. The inequality �i j h � 0 holds when h is linear, see
the works of Ingleton [22], [23]. Let H� denote the polyhedral
cone of the functions h ∈ H that satisfy the six instances of
the Ingleton inequality obtained by the permutation symmetry.
By [40, Lemma 3], H� has dimension 15 and is generated by
linear polymatroidal rank functions. Therefore, the functions
from ri(H�) are entropic due to [37, Th. 1].

By [40, Lemma 4], any h ∈ H \ H� violates exactly one
of the six Ingleton inequalities. Let H�

(i j ) denote the cone of
functions h ∈ H with �i j h � 0. It follows that H is union
of H� with the six cones H�

(i j ), . . . , H�
(kl). Focusing primarily
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on the cone cl(Hent), it contains H� and is contained in the
union. By symmetry, it remains to study a single intersection,
say cl(Hent) ∩ H�

(i j ).

Let Li j denote the cone cl(Hent)ti∩H�
(i j ) of tight and almost

entropic polymatroids h that satisfy the reversed Ingleton
inequality �i j h � 0.

Corollary 5: cl(Hent) ∩ H�
(i j ) = Li j ⊕ Hmod.

Proof: Since the expression �i j h is balanced, �i j h equals
�i j hti and Hmod is contained in H�

(i j ). These observations and
Corollary 3 imply the decomposition.

The study of cl(Hent) thus reduces to that of Li j . This cone
is contained in H�

(i j ) ∩ H ti which is known to be the conic
hull of 11 linearly independent polymatroidal rank functions
[40, Lemma 6.1]. The most notable one

r̄i j (K ) =
{

3, K ∈ {ik, jk, il, jl, kl},
min{4, 2|K |}, otherwise

(8)

is not almost entropic by Zhang-Yeung inequality [48]. The
remaining ten rank functions are matroidal

r∅
1 , r∅

3 , r i
1, r j

1 , rk
2 , r l

2, r ik
1 , r jk

1 , r il
1 , r j l

1 (9)

where all the matroids are uniform up to loops. Recall that the
subindex denotes the rank and the superindex the set of loops.
By the proof of [40, Lemma 6.1], every g ∈ H�

(i j ) ∩ H ti can
be written uniquely as

g = −(�i j g)r̄i j + (Δi j |∅ g)r1 + (Δkl|i j g)r3

+ (Δkl|i g)r i
1 + (Δkl| j g)r j

1

+ (Δi j |k g)r l
2 + (Δi j |l g)rk

2

+ (Δ j l|k g)r ik
1 + (Δil|k g)r jk

1

+ (Δ j k|l g)r il
1 + (Δik|l g)r j l

1 . (10)

This is a conic combination of the rank functions
from (8) and (9), identifying explicitly the coordinate
functionals.

Since the matroids in (9) are linear and there exists an
entropic point violating Ingleton inequality, the dimension
of Li j is 11, the same as that of cl(Hent)ti or H�

(i j ) ∩ H ti.
Theorem 2 has the following consequence.

Corollary 6: ri(Li j ) ⊆ Hent.
The remaining part of this section focuses on some faces

of the cone Li j . Let Fi j be the face given by the equalities
Δi j |∅ g = 0 and Δkl|i j g = 0. It plays a special role later, in
particular when optimizing Ingleton score.

Let Ai, j and Bij,k be the linear mappings defined by

Ai, j g = g + (Δi j |∅ g)(r i
1 − r1)

Bij,k g = g + (Δkl|i j g)(rk
2 − r3)

where g ∈ R
P(N).

Lemma 7: The mappings Ai, j and Bij,k commute. They
leave invariant the hyperplanes given by Δi j |∅ g = 0 and
Δkl|i j g = 0. In addition, Ai, j maps onto the first hyperplane,
Bij,k onto the second one, and

�i j g = �i j (Ai, j g) = �i j (Bij,k g), g ∈ R
P(N).

A simple proof is omitted, up to the computation

Ai, j Bi j,k g = Bij,k Ai, j g

= g + (Δi j |∅ g)(r i
1 − r1)

+ (Δkl|i j g)(rk
2 − r3) (11)

that is needed below. Both Ai, j and Bij,k change at most two
coordinates in the conic combination (10).

Theorem 4: Ai, j Bi j,k Li j = Fi j .
Proof: The hyperplanes given by Δi j |∅ g = 0 and

Δkl|i j g = 0 peal out two facets of H�
(i j ) ∩ H ti, due to (10).

By Lemma 7, Ai, j Bi j,k maps H�
(i j ) ∩ H ti onto the intersection

of the two facets. Since Li j is equal to H�
(i j ) ∩ H ti ∩ cl(Hent)

it suffices to prove that both Ai, j and Bij,k map Li j into
cl(Hent).

By the identity

�i j = Δi j |k + Δik|l + Δkl| j − Δik| j ,

if f ∈ H�
(i j ) then Δik| j f � Δi j |k f , thus f (i j) − f ( j) �

f (ik) − f (k). By symmetry, f (i j) − f ( j) � f (il) − f (l).
In turn, Corollary 1 can be applied to t = f (i j) − f ( j), and
provides h ∈ H that coincides with f except at i where h(i) =
f (i j) − f ( j). Similarly, the rank functions r i

1 and r1 differ
only at i and r i

1(i) − r1(i) = −1. It follows that h = Ai, j f .
If additionally f ∈ cl(Hent) then h, being the convolution of
f with a modular polymatroid, is almost entropic. Therefore,
f ∈ Li j implies Ai, j f ∈ cl(Hent).

By the identity

�i j = Δi j |k + Δik|l + Δkl|i j − Δik| j l ,

if f ∈ H�
(i j ) then Δik| j l f � Δkl|i j f . Additionally, if f is

tight this inequality rewrites to f (i j) � f ( j l). By symmetry,
f (i j) � f (i l). It follows that (3) is valid for t = f (N) −
f (i j). By Remark 1 and t � f (k), Lemma 4 is applied with
L = k and provides h = f ∗

k,t . This rank function differs from
f by t on the sets I ⊆ N with k ∈ cl(I ). By the identity

�i j = Δi j |k + Δi j |l + Δkl|i j − Δi j |kl ,

Δi j |kl f � Δkl|i j f . Since f is tight the inequality rewrites
to f (i j) � f (kl). By symmetry, f (i j) is maximal among all
f (J ) with |J | = 2. Therefore, if t > 0 then k ∈ cl(I ) is
equivalent to I � k or I = N \ k. These are exactly the cases
when rk

2 and r3 differ, and rk
2 (I )−r3(I ) = −1. It follows from

t = Δkl|i j f that h = Bij,k f . If, additionally, f ∈ cl(Hent)
then h is almost entropic. Therefore, f ∈ Li j implies Bij,k f ∈
Li j .

Remark 3: Let Ei j be the face of Li j given by the equalities

Δi j |k g = 0, Δi j |l g = 0, Δkl|i g = 0,

Δkl| j g = 0 and Δkl|i j g = 0.

In [34, Example 2], four random variables are constructed
such that their entropy function g satisfies the above five
constraints, �i j g < 0, each of Δi j |∅ g, Δ j l|k g, Δil|k g, Δ j k|l g
and Δik|l g is positive, and g is not tight. The lack of tightness
makes g to be outside Li j . Nevertheless, Corollary 2 implies
that gti is almost entropic whence it belongs to the face
Ei j . Even more, it belongs to its relative interior. At the



6014 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

Fig. 1. Inner and outer approximations of Si j .

same time, [35, Th. 4.1] implies that no point of ri(Ei j ) is
entropic. This phenomenon can be equivalently rephrased in
terms of conditional information inequalities, studied recently
in [25]–[27].

VII. SYMMETRIZATION OF Fi j

In the previous section, assuming N = {i, j, k, l}, the study
of the cone cl(Hent

N ) was reduced to that of Li j , and a particu-
lar face Fi j of the latter was identified. Here, a symmetrization
of Fi j is described and its cross-section visualized, resorting
to computer assistance.

The expression �i j and the cones Li j and Fi j enjoy natural
symmetries. Namely, if a permutation π on N stabilizes the
two-element set i j then �i j h = �i j hπ , h ∈ H . Hence Li j

and Fi j are closed to the action h �→ hπ .
Let Cij be the linear mapping on R

P(N) given by

Cij h � |Gij |−1 ∑
π∈Gij

hπ

where Gij denotes the stabilizer of i j , consisting of four
permutations. By the decomposition (10), for h ∈ H�

(i j ) ∩ H ti

Cij h = −(�i j h)r̄i j + (Δi j |∅ h)r∅
1 + (Δkl|i j h)r∅

3

+ 1
2

[
Δkl|i h + Δkl| j h

][r j
1 + r i

1]
+ 1

2

[
Δi j |k h + Δi j |l h

][r l
2 + rk

2 ]
+ 1

4

[
Δ j l|k h + Δil|k h + Δ j k|l h + Δik|l h

]

× [r ik
1 + r jk

1 + r il
1 + r j l

1 ].
It follows that Cij Li j has dimension 6 and Cij Fi j is a face
of dimension 4. The cross-section

Si j � {h ∈ Cij Fi j : h(N) = 1}
is three-dimensional. By (10), for h ∈ Si j

1 = h(N) = [ − 4�i j h
] + [

Δkl|i h + Δkl| j h
]

+ [
2Δi j |k h + 2Δi j |l h

]

+ [
Δ j l|k h + Δil|k h + Δ j k|l h + Δik|l h

]
.

Let ᾱh , β̄h , γ̄h and δ̄h denote the above brackets, respectively.
They are nonnegative and sum to one. Any function h ∈ Si j

can be written as

h = ᾱh
1
4 r̄i j + β̄h

1
2 [r j

1 + r i
1]

+ γ̄h
1
4 [r l

2 + rk
2 ] + δ̄h

1
4 [r ik

1 + r jk
1 + r il

1 + r j l
1 ]

Fig. 2. Extreme points of the dark gray region, projected to βγ δ.

which is a convex combination of the linearly independent
polymatroidal rank functions

α = 1
4 r̄i j β = 1

2 [r j
1 + r i

1]
γ = 1

4 [r l
2 + rk

2 ] δ = 1
4 [r ik

1 + r jk
1 + r il

1 + r j l
1 ].

It follows that Si j is a closed convex subset of the three-
dimensional tetrahedron in R

4 with the vertices α, β, γ and δ.
Since the points h having ᾱh = 0 are almost entropic and r̄i j

is not, Si j contains the triangle βγ δ, but not the vertex α.
Computer experiments were run to visualize Si j . The

involved random variables were limited to take at most 11
values. Various maximization procedures were run numerically
over the distributions of four tuples of random variables.
The corresponding entropy functions f were transformed to
g = Cij Ai, j Bi j,k f ti and then to h = g/g(N), which is the
convex combination

h = ᾱhα + β̄hβ + γ̄hγ + δ̄hδ ∈ Si j .

The procedures maximized ᾱh in various directions, over the
distributions. Different methods and strategies were employed,
including also randomized search. In this way, over 5 million
points from Si j have been generated.

In Figure 1, the convex hull of these points is depicted as
a dark gray region from three different perspectives. In the
images, the vertex α is missing and the straight lines are the
incomplete edges of the tetrahedron incident to α. The dark
gray region is spanned by about 2200 extreme points. The
projections of the extreme points from α to βγ δ do not exhaust
the triangle uniformly, see Figure 2. This explains the lack of
smoothness of the dark gray region. The two extreme points
of the dark gray region depicted in Figure 1 are discussed in
Section VIII.
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Fig. 3. Projections of the approximations of Si j to triangles.

The light gray region in Figure 1 visualizes an outer
approximation of Si j which was constructed from hundreds
of known non-Shannon information inequalities, mostly from
those of [13] and [16]. Details are omitted. The gap between
the approximations is large.

Figure 3 shows the dark and light gray regions when
projected from the vertex β/γ /δ to the opposite triangle of the
tetrahedron. By the non-Shannon inequalities (13) discussed in
the next section, the only almost entropic points on the edges
αβ and αγ are β and γ . The analogous statement for the edge
αδ is open.

VIII. INGLETON SCORE

As before, the ground set N has four elements and i j is
a two-element subset of N . The Ingleton score of a polyma-
troidal rank function h 
= 0 is defined as Ii j (h) � �i j h/h(N)
[16, Definition 3]. The number

I
∗ � inf

{
Ii j (h) : 0 
= h ∈ Hent}

is referred to as the infimal Ingleton score. This is likely the
most interesting number related to the entropy region of four
variables. By symmetry, I

∗ does not depend on i j . This section
presents an alternative way of minimization and a new upper
bound on this number in Example 2.

First, the minimization is reduced to a three dimensional
body.

Theorem 5: I
∗ = minSi j Ii j .

Proof: Since the score is constant along rays and I
∗ is

negative

I
∗ = min

{
Ii j (h) : h(N) = 1,�i j h � 0 and h ∈ cl(Hent)

}
,

minimizing over a compact set. If h ∈ H�
(i j ) then Ii j (h) �

Ii j (hti) for hti 
= 0, and Ii j (h) = 0 for hti = 0 
= h. Hence,

I
∗ = min

{
Ii j (h) : h(N) = 1 and h ∈ Li j

}
. (12)

Recall that Li j = cl(Hent)ti ∩H�
(i j ) is the cone of tight almost

entropic rank functions h with �i j h � 0. (By Corollary 6,
the above minimization can be expressed by special entropy
functions.)

If g ∈ Li j then (11) and tightness of g provide

Ai, j Bi j,k g(N) = g(N) − Δkl|i j g = g(i j).

By Lemma 7, Ii j (g) � Ii j (Ai, j Bi j,k g) when g(i j) > 0.
If g(i j) = 0 then �i j g = g(k) + g(l) − g(kl) which is
possible only if Ii j (g) vanishes. Hence, Theorem 4 implies

that the minimization restricts to Fi j . The assertion follows
by symmetrization.

The three dimensional body Si j is enclosed in the tetrahe-
dron αβγ δ and −4Ii j (h) is the weight ᾱh of h ∈ Si j at the
vertex α when h is written as the unique convex combination
of the vertices. Thus, points of Si j with the heaviest weight
at α are the minimizers in Theorem 5. It should be also
mentioned that is not clear which part of Si j is exhausted
by the very entropic points.

Lower bounds on I
∗ can be obtained by relaxing Li j in (12).

The simplest relaxation is to H ti ∩H�
(i j ) because this cone has

only one extreme ray allowing for negative scores, namely the
one generated by r̄i j . Therefore, the infimal score I

∗ is lower
bounded by Ii j (r̄i j ) = − 1

4 . With a little more work, the bound
− 1

6 can be obtained by Zhang-Yeung inequality. Better lower
bounds are reported in [16], based on further non-Shannon-
type inequalities.

Upper bounds on the infimal Ingleton score arise from
entropic polymatroids that violate the Ingleton inequality.
There are many examples at disposal [3], [18], [20], [21], [32],
[34], [35], [44], [47], [50]. The following one has attracted a
special attention.

Example 1: Let ξi and ξ j be exchangeable and 0-1 valued,
and ξi = 1 with the probability 1

2 . Let further ξk = min{ξi , ξ j }
and ξl = max{ξi , ξ j }, see [34, Example 1] or [11]. If 0 � p �
1
2 denotes the probability of ξiξ j = 00 and h p is the entropy
function of ξiξ jξkξl then

Ii j (h p) = Δi j |∅ h p − Δkl|∅ h p

h p(N)

using the identity �i j = Δkl|i + Δkl| j + Δi j |∅ − Δkl|∅. Let
κ(u) = −u ln u, u > 0, and κ(0) = 0. The numerator is

2 ln 2 − 2κ(p) − 2κ( 1
2 − p) −

[
2κ(1 − p) − κ(1 − 2 p)

]

= (2 p + 1) ln 2 − 2κ(p) − 2κ(1 − p)

and the denominator is 2κ(p)+2κ( 1
2 − p). The function p �→

Ii j (h p) is strictly convex and has a unique global minimizer
p∗ in the interval [0, 1

2 ]. Approximately, p∗ .= 0.350457 and
Ii j (h p∗)

.= −0.089373.
The guess that I

∗ be equal to Ii j (h p∗) goes back to [11] but
the formulation [11, Conjecture 4.1] had a wrong numerical
value. The same surmise appeared later in [16] as the four-
atom conjecture, referring to the four possible values of
ξiξ jξkξl . The minimization was considered also in [3] and [32]
that report no score below Ii j (h p∗). However, the computer
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Fig. 4. Intersections of the approximations of Si j with triangles.

experiments discussed in Section VII found an entropic point
that can be transformed to an almost entropic point witnessing
the failure of the four-atom conjecture.

Example 2: Let each of four variables in ξiξ jξkξl take
values in {0, 1, 2, 3} and p, q, r, s, t be nonnegative such that
p + q + r + s + t = 1

8 . The table below lists 40 different
configurations of the random vector. Each configuration in any
column is attained with the probability given by the label of
that column. The remaining configurations have zero proba-
bilities. The corresponding entropy function is denoted by f .

By inspection of the table, in each column any variable takes
each value twice. Hence, f (i), f ( j), f (k) and f (l) are equal
to 2 ln 2. In each column, ξiξl and ξ j ξk are in the configura-
tions 00, 33, 01, 10, 12, 21, 23, 32. Hence, f (il) and f ( jk) are
equal to 3 ln 2. In each column but the second/third one, ξiξ j

and ξkξl are in the configurations 00, 33, 01, 10, 12, 21, 23, 32,
otherwise in 11, 22, 02, 20, 13, 31, 03, 30. Hence,

f (i j) = 8κ(q) + 8κ(p + r + s + t)

f (kl) = 8κ(r) + 8κ(p + q + s + t).

In the first and fifth/forth column, ξiξk and ξ j ξl are in
the configurations 00, 11, 22, 33, each one attained twice,
otherwise in 01, 10, 02, 20, 13, 31, 23, 32. Hence,

f (ik) = 4κ(2 p + 2t) + 8κ(q + r + s)

f ( j l) = 4κ(2 p + 2s) + 8κ(q + r + t).

Analogous considerations provide

f (ikl) = 8κ(p + t) + 8κ(q + s) + 8κ(r)

f ( jkl) = 8κ(p + s) + 8κ(q + t) + 8κ(r)

f (i jk) = 8κ(p + t) + 8κ(r + s) + 8κ(q)

f (i j l) = 8κ(p + s) + 8κ(r + t) + 8κ(q).

Since the 40 configurations of the table are all different

f (i jkl) = 8κ(p) + 8κ(q) + 8κ(r) + 8κ(s) + 8κ(t).

The choice

p = 0.09524 q = 0.02494

r = 0.00160 s = t = 0.00161,

where r is close to s, gives Ii j ( f )
.= −0.078277. This is yet

bigger than the value −0.089373 from Example 1. However,
Ii j ( f ti)

.= −0.0912597, refuting the four-atom conjecture.
Even better, if g denotes Ai, j Bi j,k f ti then �i j g = �i j f by
Lemma 7, and

g(N) = f ti(N) − Δkl|i j f ti

= 2 f ti(N) + f ti(i j) − f ti(i jk) − f ti(i jl)

= f (i j) + f (ikl) + f ( jkl) − 2 f (N) < f ti(N)

by (11). Hence, the score Ii j (g) is approximately −0.09243,
currently the best upper bound on the infimal Ingleton score.1

Figure 1 features also two extreme points of the dark gray
region. The circle depicts the point Cij Ai, j h p∗ where h p∗ was
described in Example 1. The bullet depicts Cij Ai, j Bi j,k f ti

where f is the entropic point from Example 2.
Figure 4 shows the intersections of the dark and light gray

regions, approximating Si j , with the triangles αβγ , αγ δ and
αδβ, two more exceptional points of Si j , and the role of
Zhang-Yeung inequality.

The symmetrized Zhang-Yeung inequality

2�i j h + [
Δik|l h + Δil|k h + Δkl|i h

]

+ [
Δ j k|l h + Δ j l|k h + Δkl| j h

]
� 0,

valid for h ∈ Hent, rewrites to β̄h + δ̄h � 1
2 ᾱh . The plane

defined by the equality here is indicated in Figure 4 by the
three dashed segments.

By [16, Th. 10], if s � 0 is integer then for h ∈ Hent

(2s − 1)�i j h + Δkl|i h + s2s−1[Δik|l h + Δil|k h
]

+ (
(s − 2)2s−1 + 1

)[
Δ j k|l h + Δ j l|k h

]
� 0.

This inequality and its instance with i, j interchanged sum to

β̄h + [
(s − 1)2s + 1

]
δ̄h � 1

2 (2s − 1)ᾱh, h ∈ Hent. (13)

Hence, the triangle αβγ contains no almost entropic points
except those on the edge βγ .

The bullet inside the triangle αγ δ depicts the entropy
function f1/2 from Example 1, see also [34, Example 1].
The bullet inside the triangle αβδ shows the almost entropic
point Cij Ai, j gti where g is the entropy function discussed in
Remark 3, see also [34, Example 2].

1Still better bounds have been reported at the last revision of this work, by
experimenting with subgroups of groups [4].
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IX. CONCLUSION

The structure and shape of the entropy region is mostly
unknown. There are a couple of general results, including
statements such that cl(Hent

N ) is a convex cone, its interior
consists of entropic points only, or it is selfadhesive (a notion
which is behind all known techniques which generate non-
Shannon entropy inequalities). Using polymatroidal techniques
it was shown here that cl(Hent

N ) decomposes into the direct
sum of its modular and tight parts – both smaller dimensional
convex cones contained in the boundary of the closure of
the entropy region. This fact is closely related to balanced
information-theoretic inequalities [8].

While the modular part has a simple structure, the tight
part carries over the complexity of the whole entropy region.
Section IV proves that the relative interior of the tight
part is entropic, namely, this face of cl(Hent

N ) is regu-
lar. Whether a face of cl(Hent

N ) has no entropic points,
or is regular, can be expressed in terms of conditional
information inequalities, which has been studied extensively
in [25]–[27]. Selfadhesivity relativizes to the tight part as was
shown in Section V. Actually, the Ahlswede-Körner lemma
used by [30] to prove non-Shannon entropy inequalities can
be replaced by a consequence of results proved in this section.

Sections VI and VII presented an attempt to visualize the
entropy region of four random variables. Applying techniques
developed earlier, a 9-dimensional face of Hent

4 has been iden-
tified which carries over most of the structure complexity. Its
symmetrization, when normalized by the total entropy, is the
3-dimensional body Si j , described by 4 homogeneous coor-
dinates. Computer experiments were run to create inner and
outer bounds for Si j . The gap between the approximations is
quite large. The true shape is conjectured to be close to the
inner approximation.

The Ingleton score measures how much the Ingleton
inequality, valid for linear polymatroids, can be violated
by entropy functions. This amount turns out to be the height of
the body Si j above its base, see Theorem 5. According to the
computer simulations, the maximum is numerically attained
along a relatively long, almost horizontal ridge, and it is not
at the point provided by the four-atom distribution [16]. It is
interesting to note that while we know the existence of a
distribution with Ingleton score below Ii j (h p∗)

.= −0.089373,
no such an explicit distribution has been found so far.
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