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The starting point of this paper are the works of Hájek and Vychodil on the axiomatization of
truth-stressing and-depressing hedges as expansions of Hájek’s BL logic by new unary con-
nectives. They showed that their logics are chain-complete, but standard completeness was
only proved for the expansions over Gödel logic. We propose weaker axiomatizations over
an arbitrary core fuzzy logic which have two main advantages: (i) they preserve the
standard completeness properties of the original logic and (ii) any subdiagonal (resp. super-
diagonal) non-decreasing function on [0,1] preserving 0 and 1 is a sound interpretation of
the truth-stresser (resp. depresser) connectives. Hence, these logics accommodate most
of the truth hedge functions used in the literature about of fuzzy logic in a broader sense.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

In pragmatics, hedges are linguistic terms used to mitigate the impact of an utterance (see e.g. [19]). Their usage in fuzzy
logic goes back to Lakoff [28], where they can be not only mitigating but also strengthening modifiers. As pointed out in [29],
Lakoff was actually concerned with the logical properties of words and phrases like rather, largely, very, in their ability ‘‘to
make things fuzzier or less fuzzy’’. In accordance with Lakoff’s main concern, however, the term hedge has later been defined
[6] as ‘‘a particle, word or phrase that modifies the degree of membership of a predicate or a noun phrase in a set; it says of
that membership that it is partial or true only in certain respects, or that it is more true and complete than perhaps might be
expected’’. This definition encompasses hedges in the sense of both stressers or depressers depending on whether they
strengthen or soften the impact or the meaning of an utterance.1 Typical examples are adjectives as in:

They lost a terrible amount of money (stresser).
They lost an insignificant amount of money (depresser).

or adverbs in:

Messi is definitely a better player than Maradona ever was (stresser).
Messi is slightly a better player than Maradona ever was (depresser).

Clauses can act as hedges too, for example:
d in the

ressers.
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I think you should reinstall the operating system of your computer, I know what I’m talking about (stresser).
I’m not an expert, but I think you should reinstall the operating system of your computer (depresser).

Other clauses acting as hedges are those which directly refer to the truth of some sentence like it is very true that, it is quite
true that, it is more or less true that, it is slightly true that, etc. Any sentence with a hedge, of any grammatical category, can be
translated into one using clauses of the latter kind. In this formulation they have been represented in fuzzy logic systems (in
broad sense) as functions from the set of truth values (typically the real unit interval) into itself that modify the meaning of a
proposition by being applied to the membership function of the fuzzy set underlying the proposition (see [39]). More spe-
cifically, in the setting of mathematical fuzzy logic, Hájek proposes in a series of papers [23,22,21] to understand them as
truth functions of new unary connectives, a kind of modal modifiers or truth modifiers, called truth-stressing or truth-depress-
ing hedges depending on whether they reinforce or weaken the meaning of the proposition they are applied to. The intuitive
mathematical interpretation of a truth-stressing (resp. depressing) hedge on a chain of truth-values is a subdiagonal (resp.
superdiagonal) non-decreasing function preserving 0 and 1. The class of such functions will be called hedge functions from
now on.

This paper builds upon previous works, mainly those by Hájek [22,21] and Vychodil [38], on the axiomatization of truth-
stressing (resp. depressing) hedges as expansions of BL logic (and of some of their prominent extensions, like Łukasiewicz or
Gödel logics) by a new unary connective vt, for very true, and another one st, for slightly true, respectively. The logics they
define are shown to be algebraizable and to enjoy completeness with respect to the classes of chains of their corresponding
varieties, however not any BL-chain expanded with hedge functions are models of them, or in other words, belong to the
corresponding varieties. Moreover, the defined logics are not proved to enjoy standard completeness in general, except
for the case of logics over Gödel logic. One of the main reasons for both problems is the presence in the axiomatizations
of the well-known modal axiom K for the vt connective,

vt(u ? w) ? (vt u ? vt w),

which puts quite a lot of constraints on the hedges to be models of these logics with no natural algebraic interpretation.
Particular classes of truth-stressers have been also addressed in the literature. For instance, the well-known projection

operator M (introduced independently by Monteiro in the context of intuitionistic logic [31] and by Baaz in the context
of Gödel-Dummett logics [1]) is a limit case of a truth-stresser since, over a chain, it maps 1 to 1 and all the other elements
to 0, and the intuitive interpretation would be it is definitely true that.

In this paper we propose weaker axiomatizations over any core fuzzy logic for both the truth-stressing and-depressing
connectives not imposing any constraint on hedges other than the ones we have mentioned above, and for which we can
prove standard completeness.

The paper is structured as follows. After this introduction, Section 2 introduces the previous axiomatic approaches to
hedges in fuzzy logic and provides the necessary logical and algebraic preliminaries that are used in the rest of the paper.
In Section 3 we propose a general axiomatization for truth-stressers and present its main properties, including standard
completeness results. Section 4 proves several versions of the deduction theorem for some logics with truth-stressers
and, as a consequence, we obtain that their corresponding algebraic semantics is a variety. Sections 5 and 6 perform an anal-
ogous investigation for logics with truth-depressing hedges. In Section 7 we consider some further topics, namely the com-
bination of stressers and depressers, the usage of hedges in the presence of truth-constants, and first-order logics with
hedges. Finally, in Section 8 we discuss alternative approaches in the literature.

2. Preliminaries

2.1. Hájek and Vychodil axiomatizations

As mentioned in the introduction, there are two main references when talking about the formalization of truth hedges
within the framework of mathematical fuzzy logic. The first one is Hájek’s paper [21] where he axiomatizes over BL a logic
for the hedge very true. The second one is the paper by Vychodil [38] where he extends Hájek’s analysis to truth-depressing
hedges. In the rest of this section we overview these and some related logics and compare them with our proposal.

Hájek defines the logic BLvt as the expansion of BL with a new connective vt and the following axioms.

(VT1) vt u ? u,
(VT2) vt(u ? w) ? (vt u ? vt w),
(VT3) vt(u _w) ? (vt u _ vt w).

and the following necessitation inference rule:

(NEC) necessitation for vt: from u infer vtu.
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Hájek proves that BLvt enjoys a local deduction theorem (see Section 4.3). Moreover, he defines in the usual way a notion
of BLvt-algebras, as expansions of BL-algebras with a unary operator satisfying the new axioms and rule, and proves that the
logic BLvt is complete with respect to the class of linearly ordered BLvt-algebras. Completeness also extends to any axiomatic
extension of BL, but the issue of standard completeness is left as an open problem, except for the case of Gödel logic for
which it is proved.

In [38] Vychodil first introduces a logic combining both a truth-stresser and a truth-depresser. Indeed the logic BLvt,st is
defined as an expansion of Hájek’s BLvt logic with a new unary connective ‘‘slightly true’’ denoted by st and with the follow-
ing additional axioms.

(ST1) u ? st u,
(ST2) st u ? :vt:u,
(ST3) vt(u ? w) ? (st u ? st w),

Note that axioms (ST2) and (ST3) put into relation both connectives vt and st. Vychodil proves the completeness of the
system with respect to the class of all linearly-ordered BLvt,st-algebras (defined in the obvious way); however, he does not
discuss neither its standard completeness nor the existence of some local deduction theorem. He also proposes two slightly
different axiomatizations (systems I and II) for the truth-depressing hedge slightly true alone. They are defined again as
expansions of BL with the unary connective st. Namely, system I has the following set of additional axioms:

(ST1) u ? stu,
(ST4) :stð�0Þ,
(ST5) st(u ? w) ? (stu ? stw),

while system II consists of the axioms (ST1), (ST4) and

(ST6) (u ? w) ? (stu ? stw),

Again chain-completeness for both systems is proved, but the issues of standard completeness and (local) deduction the-
orem are left open.

All of these axiomatizations proposed by Hájek and Vychodil have an important common drawback: given a standard BL-
chain and a hedge function (either stresser or depresser respectively) the corresponding expanded chain is not necessarily an
algebraic model of the proposed logic (as it is in the fuzzy logic in broader sense). This is due to the requirement of the axiom
(VT2) (in Hajék’s system) or either (ST5) or (ST6) (in Vychodil systems)2 as the following examples show:

Example 1
1. Suppose h is a truth-stressing hedge function on the standard Łukasiewicz chain [0,1]Ł such that there are 0 < b < a < 1
such that h(a) = a and h(b) < b. If h(1 � a + b) = 1 � a + b � � and h(b) < b � �, then h(a ? b) = h(1 � a + b) = 1 � a + b � � >
1 � a + h(b) = h(a) ? h(b), in contradiction with (VT2).
For instance, take a ¼ 1

2 and b ¼ 1
4 and the hedge function determined by the straight segments joining the following points
2 The
studied

3 The
h0;0i; 1
4
;

1
10

� �
;

1
2
;

1
2

� �
;

3
4
;

7
10

� �
; h1;1i:
Then we have hða! bÞ ¼ h 3
4

� �
¼ 7

10 >
1
2þ 1

10 ¼ hðaÞ ! hðbÞ.
Similar examples can be built for product t-norm with the necessary changes. But there are also many examples satisfying
the required properties like the ones given in Section 4.3.

2. Take any truth-depressing hedge function over the standard Łukasiewicz chain [0,1]Ł different from the identity, and take
any point a 2 (0,1) such that h(a) > a. Then h(a ? 0) = h(:a) P :a > :h(a) = h(a) ? 0 = h(a) ? h(0), in contradiction with
both (ST5) and (ST6).3

3. Take the truth-depressing hedge function over the standard product chain [0,1]P defined by straight lines with end points
h0;0i; h12 ; 3

4i and h1,1i. Then we have
h
3
4
! 1

4

� �
¼ h

1
3

� �
¼ 1

2
;

while
se axioms are analogous to the K axiom in modal logics (with the modal operator appearing in the place of the symbol for the truth hedge) and will be
in Section 4.3.
same result is valid for any IMTL-chain since the proof only uses the fact that the negation is involutive.
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h
3
4

� �
! h

1
4

� �
¼ 7

8
! 3

8
¼ 3

7
<

1
2
;

contradicting (ST5).
The examples above prove that, in general, both Hájek and Vychodil axiomatics do not cover all hedge functions. In par-
ticular, in the case of Łukasiewicz logic, while Hájek’s approach still covers a quite reasonable class of truth-stressing hedge
functions, the only truth-depressing hedge function admitted by Vychodil’s axiomatization is the identity function. The rea-
son seems to be that truth-stressers are similar to necessity operators in modal logic while truth-depressers are similar to
possibility operators, and only necessity operators satisfy the axiom K in modal logic. Therefore, (VT2), despite its shortcom-
ings, still seems more reasonable than (ST5) or (ST6).

2.2. Some preliminaries on fuzzy logics

In this section we gather from [4,10,11] some necessary results we use in the rest of the paper. All unexplained definitions
can be found in these sources.

Let L be a logic in a language L. We say that L is a Rasiowa-implicative logic (c.f. [35]) if there is a binary (either primitive or
definable by a formula) connective ? of its language such that:

(R) ‘Lu ? u,
(MP) u, u ? w ‘L w,

(T) u ? w, w ? v ‘L u ? v,
(Cong) u ? w, w ? u ‘L c(v1, . . . ,vi,u, . . . ,vn) ? c(v1, . . . ,vi,w, . . . ,vn) for each n-ary c 2 L and each i < n,

(W) u ‘L w ? u.

Every finitary Rasiowa-implicative logic is algebraizable in the sense of Blok and Pigozzi [5] and its equivalent algebraic
semantics, the class of L-algebras, is a quasivariety; call it L. Every L-algebra satisfies x ? x = y ? y for any x, y, and hence the
language can be expanded by a definable constant �1 ¼ p! p. Then, the algebraizability gives the following strong complete-
ness theorem:

For every set C [ {u} of formulae, C ‘L u iff for every A 2 L and every A-evaluation e, eðuÞ ¼ �1A, whenever e½C�# f�1Ag.

Every L-algebra A is naturally endowed with a preorder relation by setting for every a, b 2 A: a 6 A b iff a!Ab ¼ �1A. A is
called an L-chain if6A is a total order.4 L is called a semilinear logic iff it is strongly complete with respect to the semantics given
by L-chains or, equivalently, if every L-algebra is representable as subdirect product of L-chains.

Many systems informally referred to as fuzzy logics in the literature are actually finitary Rasiowa-implicative semilinear
logics. Well known examples are the three main fuzzy logics (see e.g. [20]) G (Gödel logic), P (Product logic) and Ł (Łukas-
iewicz logic), BL and SBL (the logic of all (strict) continuous t-norms, see [20,8]), WNM and NM ((Weak) Nilpotent Minimum
logic, see [14]) and MTL, IMTL and SMTL (the logic of all (involutive, strict) left-continuous t-norms, see [14,27,13]).5 A big
class of fuzzy logics which are finitary, Rasiowa-implicative and semilinear, and contain the mentioned prominent examples,
are the so-called core fuzzy logics: axiomatic expansions of MTL satisfying (Cong) for any possible new connective.

All core fuzzy logics enjoy a form of local deduction-detachment theorem, while some of them enjoy a globla form. We
define these notions in general, because we will consider later other forms of them.

Definition 1. Let L be a Rasiowa-implicative logic. We say that L enjoys the local deduction-detachment theorem with respect to a set
of unary terms DT if, for every set of formulaeC [ {u,w}, it holds thatC,u ‘L w iff there is a term t 2 DT such thatC ‘L t(u) ?w. We
say that L enjoys the global deduction-detachment theorem if the equivalence holds in general for a fixed formula t.

As usual, un will be used as a shorthand for u & . . .n & u, where u0 ¼ �1. Using this notation one can write the following
local deduction theorem for core fuzzy logics:

Proposition 2 (Local deduction-detachment theorem for core fuzzy logics). Let L be a core fuzzy logic. For each set of formulae
R [ {u,w} it holds:
R;u ‘Lw iff there is n 2 N such that R ‘Lun ! w:
Nevertheless, some prominent fuzzy logics in enriched languages may fail to be core fuzzy logics because they may need

some additional inference rules to describe the behavior of their additional connectives. Important examples are expansions
with Baaz’s Delta connective (see [1]). For instance, in the case of MTL, the expansion MTLM is obtained by enriching the
language with the unary connective M and adding to the Hilbert-style system of MTL the deduction rule of necessitation
(from u inferMu) and the following axiom schemata:
the sake of a lighter notation, from now on we will drop the super-indexes in the algebra operations whenever no confusion is possible.
an introduction to t-norm based fuzzy logics see e.g. [4].
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(M1) Mu _ :Mu
(M2) M(u _ w) ? (Mu _Mw)
(M3) Mu ? u
(M4) Mu ?MMu
(M5) M(u ? w) ? (Mu ?Mw)

The importance of these expansions has justified the introduction and usage of the class ofM-core fuzzy logics: axiomatic
expansions of MTLM satisfying (Cong) for any possible new connective. Again, this is a subclass of semilinear Rasiowa-impli-
cative logics. They satisfy the global deduction-detachment theorem in the following way:

Proposition 3 (Global deduction-detachment theorem for core fuzzy logics for M-core fuzzy logics). For each set of formulae
R [ {u,w} it holds:
R;u ‘MTL
M

w iff R ‘MTL
M
Mu! w:
Now we recall a couple of definitions and results about disjunction connectives, for they provide a useful characterization
of semilinearity.

A (primitive or definable) binary connective _ is called a disjunction in L whenever it satisfies:

(PD) u ‘L u _ w and w ‘L u _ w,
(PCP) If C, u ‘L v and C, w ‘L v, then C, u _ w ‘L v.

Given a disjunction _ and a finitary inference rule (R): C ‘ u (axioms are taken as rules with C = ;), we define the _-form
of (R), denoted as (R_), as the rule C _ p ‘ u _ p, where p is an arbitrary propositional variable not appearing in C [ {u}.

Proposition 4. [11] Let L1 be a logic with a disjunction _ and let L2 be an expansion of L1 by a set of finitary rules C. Then, _ is a
disjunction in L2 iff (R_) holds in L2 for each ðRÞ 2 C. In particular, _ is a disjunction in any axiomatic expansion of L1.
Proposition 5. [11] Let L be a finitary Rasiowa-implicative logic with a binary connective _ satisfying (PD). Consider the following
two properties:

(P_) ‘L(u ? w) _ (w ? u),
(MP_) u ? w, u _w ‘L w and u ? w, w _ u ‘L w.

Then the following are equivalent:

(i) _ is a disjunction and satisfies (P_),
(ii) L is semilinear and satisfies (MP_)

As mentioned before, core fuzzy logics are semilinear, hence they are strongly complete with respect the class of their
chains. However, this completeness may be sometimes refined to special subclasses of chains. We will use the following no-
tions of completeness with respect to a given class of chains.

Definition 6 (KC; FSKC; SKC). Let L be a core fuzzy logic and let K be a class of L-chains. We say that L has the (finitely)
strong K-completeness property, ðFÞSKC for short, when for every (finite) set of formulae T and every formula u it holds that
T ‘L u iff eðuÞ ¼ �1A for each A-evaluation such that e½T�# f�1Ag for every L-algebra A 2 K. We say that L has the K-
completeness property, KC for short, when the equivalence is true for T = ;.

Of course, the SKC implies the FSKC, and the FSKC implies the KC. When K is the class of all chains whose sup-
port is the real unit interval [0, 1] we will denote it as R, call its elements as real chains, and we will speak about real
completeness properties. The SKC and FSKC have traditionally been proved by showing an embeddability property,
namely by showing in the first case that every countable L-chain is embeddable into K, and in the second
case by showing that every countable L-chain is partially embeddable into K (i.e. for every finite partial of a countable
L-chain there is a one-to-one mapping into some member of K preserving the defined operations). In [9] it was shown
that these sufficient conditions are also necessary and so they provide characterizations for these completeness
properties.

Theorem 1 (Characterization of completeness properties). Let L be a core fuzzy logic and K a class of L-chains. Then:

� L has the SKC iff every countable L-chain is embeddable into some member of K.
� If the language of L is finite, then L has the FSKC iff every countable L-chain is partially embeddable into K.
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3. Truth-stressers: a general axiomatization

In order to solve the problems with the axiomatization of truth-stressers and depressers proposed by Hájek and Vychodil
mentioned in Section 2.1, in what follows we will make use of available results decribed in Section 2.2 to obtain a simple and
general axiomatizations with intuitive properties and nice completeness results. To begin with let us consider the case of
truth-stressers.

Let L be a core fuzzy logic, and consider Ls the expansion of L with a new unary connective s (for stresser) defined by the
following additional axioms:6

(VTL1) su ? u,
(VTL2) s�1,

and the following additional inference rule:

(MONs) from (u ? w) _ v infer (su ? sw) _ v.

If we denote by ‘Ls the notion of deduction defined as usual from the above axioms and rules, one can easily show the
following syntactical properties.

Lemma 7. In Ls the following deductions are valid:

(i) ‘Ls:s�0,
(ii) u! w ‘Ls su! sw,

(iii) w ‘Ls sw,
(iv) su;u! w ‘Ls sw,
(v) su; sðu! wÞ ‘Ls sw,

(vi) u _ :u ‘Ls u$ su
Proof.

(i) It follows directly from (VTL1) taking u ¼ �0.
(ii) It follows directly from (MONs) taking v ¼ �0.

(iii) It follows directly from (ii) taking u ¼ �1 and using (VTL2).
(iv) Very easy using (ii) and modus ponens.
(v) It follows from (iv), (VTL1) and modus ponens.

(vi) One direction is indeed axiom (VTL1). For the other direction, an easy proof by cases suffices: clearly u ‘Ls su and
hence u ‘Ls u! su as well; on the other hand, trivially :u ‘Ls u! su. h

Notice that (iv) is a kind of stronger version of the modus ponens rule: if u implies w, and u is very true, then one can derive
that w is very true as well. It must also be noted that our logics retain in the form of (v) a deductive version of the K-like
axiom used in precedent axiomatizations of logics with hedges.

On the other hand, (ii) shows that (Cong) is satisfied for the new unary connective too. Therefore, Ls is a finitary Rasiowa-
implicative logic and its equivalent algebraic semantics is the class of Ls-algebras.

Definition 8. An algebra A ¼ hA;&;!;^;_; �0; �1; si of type h2,2,2,2,0,0,1i is an Ls-algebra if it is an L-algebra expanded by a
unary operator s : A ? A (truth-stressing hedge) that satisfies, for all x, y, z 2 A,

(1) sð�1Þ ¼ �1,
(2) s(x) 6 x,
(3) if ðx! yÞ _ z ¼ �1 then ðsðxÞ ! sðyÞÞ _ z ¼ �1.

Knowing this description of the algebraic semantics, we can prove that the logic Ls is a conservative expansion of L in the
following strong sense.

Proposition 9 (Conservative expansion). Let L be the language of L. For every set C [ {u} of L-formulae, C ‘Ls u iff C ‘L u.
6 Observe that (VTL1) coincides with Hájek’s (VT1).
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Proof. One implication is trivial. For the other one, assume that C =‘L u. Then there exists an L-chain A and an A-evaluation e
such that e½C�# f�1g and eðuÞ – �1. A can be expanded to an Ls-chain A0 e.g. by defining sð�1Þ ¼ �1 and sðaÞ ¼ �0 for every
a 2 A n f�1g. Then A0 and e provide a counterexample in the expanded language showing that C0Lsu. h

The class of Ls-algebras forms a quasivariety, call it Ls. Notice that if hA;&;!;^;_; �0; �1i is a totally ordered L-algebra and
s : A ? A is any non-decreasing mapping such that sð�1Þ ¼ �1 and s(a) 6 a for any a 2 A, then the expanded structure
hA;&;!;^;_; �0; �1; si is an Ls-chain.7 In other words, in Ls-chains the quasiEq. (3) turns out to be equivalently expressed by this
simplified form: if x! y ¼ �1 then sðxÞ ! sðyÞ ¼ �1, and this condition simply expresses that s is non-decreasing.

Moreover, since the rule (MONs) is closed under _-forms, we know by Proposition 4 that _ remains a disjunction in the
expanded logic. On the other hand, since (P_) was already valid in L, by Proposition 5 we obtain that Ls is also semilinear and
hence it is complete with respect to the semantics of all Ls-chains.

Theorem 2. Ls is complete with respect to the class of all Ls-chains.
Corollary 10. In Ls the following deductions are valid:

(vi) ‘Ls sðu _ wÞ $ su _ sw,
(vii) ‘Ls sðu ^ wÞ $ su ^ sw.
Proof. Both properties are easily checked on Ls-chains. h

One might wonder whether the corresponding equation (or equations) for monotonicity of s, i.e. s(x ^ y) = s(x) ^ s(y) and
s(x _ y) = s(x) _ s(y), may substitute the quasiEq. (3) in the definition of Ls-algebras. Notice first that over algebras satisfying
(1) and (2) the equations for monotonicity are not equivalent as the following example shows.8

Example 2. Consider the finite non-linear Gödel algebra defined over A = {0,a,b,c,1}, where 0 is the minimum, 1 is the
maximum, c is the only atom, a ^ b = c, and a _ b = 1. Consider the two following truth-stresser mappings s1, s2:A ? A (which
are clearly non-decreasing, subdiagonal and preserve 1):

� Let s1(a) = s1(b) = s1(c) = s1(0) = 0 and s1(1) = 1. So defined, s1 satisfies the identity s1(x ^ y) = s1(x) ^ s1(y), but it does not
satisfy the monotonicity for the supremum, indeed s1(a _ b) = s1(1) = 1 and s1(a) _ s1(b) = 0 _ 0 = 0.

� Let s2(x) = x for every x – c and s2(c) = 0. This mapping satisfies the monotonicity for the supremum, s2(x _ y) = s2(x) _ s2

(y), but not for the infimum since s2(a ^ b) = s2(c) = 0 and s2(a) ^ s2(b) = a ^ b = c.

Now the question is whether the quasivariety Ls coincides with the variety V of expansions of L-algebras satisfying the
Eqs. (1) and (2) and the two monotonicity equations of s (observe that both classes contain the same chains). In other words,
does the logic Ls coincide with the axiomatic expansion of L with the axioms s(u _w) M su _ sw and s(u ^w) M su ^ sw?
The answer is negative as shown by the following example.9

Example 3. Consider the following MTLs-algebra on the lattice over {0,a,b,c,d,e1} with the ordering 0 < a < b < c < {d,e} < 1}
specified by the following operations:
7 Observe that these three simple conditions required for s would be not enough to define an Ls-chain in case Ls would have been defined with the additional
axiom K as in [21].

8 We thank Franco Montagna for pointing us this observation.
9 We thank Félix Bou for pointing us this example. On the other hand, this example corrects a wrong one that appeared in [15, Example 3.1.5].
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This algebra satisfies the equations s(x _ y) = s(x) _ s(y) and s(x ^ y) = s(x) ^ s(y), but it does not satisfy the quasiequation
corresponding to the rule (MONs); indeed (b ? a) _ e = d _ e = 1 while (s(b) ? s(a)) _ e = (b ? 0) _ e = b _ e = e.

Another question is whether in the presentation of Ls the rule (MONs) could be substituted by the following simpler rule:
from u ? w infer su ? sw. This is refuted by the next example.

Example 4. If L is not classical propositional logic, then there must be an L-chain A with at least three elements on its
domain. Take any a 2 A n f�0A; �1Ag, consider the direct product algebra A � A, and expand it to an algebra B with a unary
operator s by putting s(x,y) = hx ^ y, x ^ yi. An easy computation shows that B is a model of the expansion of L with
(VTL1), (VTL2) and the simplified form of (MONs), but (MONs) itself is not sound. Indeed, we have
ðh�1; �1i ! h�1; aiÞ _ ha; �1i ¼ h�1; ai _ ha; �1i ¼ h�1; �1i, while ðsð�1; �1Þ ! sð�1; aÞÞ _ ha; �1i ¼ ðh�1; �1i ! ha; aiÞ _ ha; �1i ¼ ha; ai _ ha; �1i ¼
ha; �1i – h�1; �1i.

Similarly, inspired by the well-known presentation of logics with M, one might also ask whether (MONs) could be
substituted by the globalization rule for s: from u infer su. The answer is again negative as it is obvious using the last
example.

Therefore, we have obtained an axiomatization for fuzzy logics Ls with stressing hedges which, as shown by the previous
examples, cannot be readily simplified. The next natural issue to consider is whether the completeness of Ls can be restricted
to some distinguished semantics of Ls-chains. Capitalizing on the characterization of completeness properties (Theorem 1),
we will see that Ls has exactly the same good completeness properties as its underlying logic L.

Theorem 3 (Finite strong real completeness). Let L be a core fuzzy logic in a finite language. L has the FSRC if, and only if, Ls has
the FSRC.10
Proof. The implication from right to left follows directly from the fact that Ls is a conservative expansion of L (Proposition 9).
Assume now that L has the FSRC . Take any Ls-chain A ¼ hA;&;!;^;_; �0; �1; si and let B be a finite partial subalgebra of A. We
have to show that there exists a standard Ls-chain h[0,1],^,_,⁄,),0,1, S

0i and a mapping f : B ? [0,1] preserving the existing
operations. By Theorem 1, using the necessity of the embeddability property, we know that the s-free reduct of A is partially
embeddable into a standard L-chain h[0,1],^,_,⁄,),0,1i. Denote this embedding by f and consider any non-decreasing and
subdiagonal function s0 : [0,1] ? [0,1] satisfying s0(f(x)) = f(s(x)) for every x 2 B such that s(x) 2 B. There are obviously many
such functions s0 interpolating the set of points P = {hf(x), f(s(x))i j x,s(x) 2 B}, for instance a piecewise linear interpolant.
Another interpolant can be defined as follows: let 0 = z1 < . . . < zn < 1 be the set of elements of [0,1] such that hzi,xi 2 P
for some x and define s0(1) = 1 and, for all z 2 [0,1),
10 The
In fact,
s0ðzÞ ¼ f ðsðxiÞÞ; if zi 6 z < ziþ1
where xi 2 B is such that zi = f(xi). In any case s0 makes h[0,1]^,_,⁄,),s0,0,1i an Ls-chain and f a partial embedding of Ls-
chains. h

Actually, this theorem can be generalized to arbitrary classes of L-chains and their s-expansions, proved in a completely
analogous way, and yielding a more general result.

Corollary 11. Let L be a core fuzzy logic in a finite language, K a class of L-chains, and Ks the class of the Ls-chains whose s-free
reducts are in K. Then L has the FSKC if, and only if, Ls has the FSKsC.

Observe that the implication from right to left in the last theorem and corollary does not need the assumption of finite-
ness of the language. For the strong real completeness we obtain an analogous result (which again does not need that
assumption).

Theorem 4 (Strong real completeness). Let L be a core fuzzy logic. Then L has the SRC if, and only if, Ls has the SRC.
Proof. Again one implication just follows from the fact that Ls is a conservative expansion of L. For the converse one assume
that L has the SRC . We have to show that any countable Ls-chain can be embedded into a standard Ls-chain. Let A be a count-
able Ls-chain. By Theorem 1, we know that the s-free reduct of A is embeddable into a standard L-chain
B = h[0,1],⁄,),^,_,0,1i. Denote this embedding by f and define s0:B ? B in the following way: for each z 2 [0,1],
s0(z) = sup{f(s(x)) j x 2 A, f(x) 6 z}. So defined, s0 is a non-decreasing and subdiagonal function such that s0(f(x)) = f(s(x)) for
any x 2 A and hence B expanded with s0 is a standard Ls-chain where A is embedded. h

Observe that the proof of the previous theorem can be repeated whenever the linear order of the chains is complete.
Therefore we obtain the following corollary.
assumption of a finite language is necessary to assure that the FSRC property is equivalent to the partial embedding property result used in the proof.
we do not know whether the theorem would hold without this assumption.
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Corollary 12. Let L be a core fuzzy logic, K a class of completely ordered L-chains, and Ks the class of the Ls-chains whose s-reducts
are in K. Then L has the SKC if, and only if, Ls has the SKsC.
4. Deduction theorems and the variety problem

In Section 2.2 we have seen that if L is a core fuzzy logic, then Ls is a finitary Rasiowa-implicative logic whose equivalent
algebraic semantics is the quasivariety of Ls-algebras, Ls. Moreover, Ls is a semilinear logic (complete with respect to chains of
Ls). However, we do not know whether Ls always forms a variety. In this section we present some families of logics Ls enjoy-
ing a local (global) form of deduction-detachment theorem. As a consequence, by virtue of the next theorem, we obtain that
the quasivarieties associated to these families of logics are, in fact, varieties.

Theorem 5. Let L be a core fuzzy logic. Assume that Ls enjoys the local deduction-detachment theorem with respect to a set DT.
Then the class of Ls-algebras is a variety.
Proof. First observe that the local deduction-detachment theorem entails that for every t 2 DT, ‘Ls tð�1Þ. Indeed, if p is a prop-
ositional variable and t 2 DT, we have ‘Ls tðpÞ ! tðpÞ, and by the local deduction-detachment theorem, p ‘Ls tðpÞ. By structu-
rality, we have �1 ‘Ls tð�1Þ and hence ‘Ls tð�1Þ.

Now let K be the variety axiomatized by the following equations:

(a) an equational base of L,
(b) sð�1Þ ¼ �1,
(c) s(x) ^ x = s(x),
(d) tððu! wÞ _ vÞ ! ððsðuÞ ! sðwÞÞ _ vÞ ¼ �1, for each u, w, v, where t 2 DT is their corresponding deduction term.

We check that the class of Ls-algebras coincides with K. If A 2 Ls, it is clear that it satisfies all the equations because they
correspond to theorems of Ls. Conversely, take an algebra A 2 K. By (a), we know that its s-free reduct is an L-algebra. Since it
also satisfies (b) and (c), we only have to check the validity of the quasiequation: if ðx! yÞ _ z ¼ �1 then ðsðxÞ ! sðyÞÞ _ z ¼ �1.
Assume that e is an A-evaluation and ðeðxÞ ! eðyÞÞ _ eðzÞ ¼ �1. We know that ðx! yÞ _ z ‘Ls ðsðxÞ ! sðyÞÞ _ z. By the local
deduction-detachment theorem, there is t 2 DT such that ‘Ls tððx! yÞ _ zÞ ! ðsðxÞ ! sðyÞÞ _ z, and hence A satisfies
tððx! yÞ _ zÞ ! ðsðxÞ ! sðyÞÞ _ z ¼ �1. From this, we obtain tð�1Þ ! ðsðeðxÞÞ ! sðeðyÞÞÞ _ eðzÞ ¼ �1, and hence ðsðeðxÞÞ !
sðeðyÞÞÞ _ eðzÞ ¼ �1. h

4.1. Logics of a finite BL-chain and related cases

The first family we consider is that of the logics Ls, where L is the logic of a finite BL-chain C having n elements, i.e. C is an
ordinal sum of copies of finite MV-chains (Łk) and finite Gödel-chains (Gr).

Lemma 13. Assume that a core fuzzy logic L is the logic of a finite BL-chain C, i.e. the class of L-algebras is the variety generated by
C. Then:

� L-chains are exactly the subalgebras of C.
� Given a BL-filter F of C its corresponding congruence defined �F can be described as: x � F y iff either x = y or x, y 2 F,

i.e. the congruence classes are F and the singletons {x} for any x R F.
� The set of Ls-filters of C coincides with the set of BL-filters that are closed under s.
Proof. The first claim is a consequence of [12, Theorem 1], taking into account that every finite BL-chain is subdirectly irre-
ducible and the fact that any chain belonging to the variety generated by a finite Gödel or MV-chain is a subalgebra of it.

The proof of the second statement is easy. Recall that if x P y, then x � F y iff x ? y 2 F. On the other hand, the filters of C
are the principal filters generated by an element a that either belongs to a Gödel component or is the bottom of an MV
component. Thus, an easy computation shows that x ? y 2 F iff either x = y or x, y 2 F.

In order to prove the third statement observe first that if F is an Ls-filter of C, then it is closed under s since if a 2 F, then
�1! a 2 F and thus �1! sðaÞ ¼ sðaÞ 2 F. For the converse, suppose that F is a BL-filter closed under s and assume that
a ? b 2 F. If a 6 b, by monotonicity we have s(a) 6 s(b) and hence sðaÞ ! sðbÞ ¼ �1 2 F. If a > b, we have a � F b and thus, by the
previous statement a, b 2 F. Since F is closed under s, s(a), s(b) 2 F and, again by the previous statement s(a) � F s(b), which
gives s(a) ? s(b) 2 F. h
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Lemma 14. Let L be the core fuzzy logic of a finite BL-chain C. Then, in any Ls-algebra A, for every principal Ls-filter Fið�aÞ generated
by an element �a 2 A there is an element tð�aÞ such that Fið�aÞ ¼ ½tð�aÞ; �1A�.
Proof. Assume that C has n elements, k components in its ordinal sum decomposition, and m is the maximum length of its
MV components. If A is an Ls-algebra, then A can be embedded into a direct product

Q
i2IC (remember that any Ls-chain is a

subalgebra of C). Given an element �a 2 A take the element tð�aÞ ¼ ðsnðk
...

snð�amÞÞm . . . Þm. An easy computation shows that tð�aÞ is
idempotent and fixed by s. Then we can prove that Fið�aÞ coincides with the principal lattice filter generated by tð�aÞ. The proof
follows from the following facts: (1) tð�aÞ 2 Fið�aÞ, (2) if tð�aÞi is the i-projection of tð�aÞ, then Fiðtð�aÞiÞ ¼ fx 2 Cjx P tð�aÞig is the
filter of C generated by tð�aÞi, and (3) by definition Fiðtð�aÞÞ ¼

Q
i2IFiðtð�aÞiÞ \ A. h
Theorem 6. Let L be the core fuzzy logic of a finite BL-chain C. Assume that C has n elements, k components in its ordinal sum
decompostion, and m is the maximum length of its MV components. Consider the term tðpÞ ¼ ðsnðk

...

snðpmÞÞm . . . Þm. Then the logic
Ls enjoys the glocal deduction-detachment theorem w.r.t. t(p), i.e. for every set C [ {u,w} of formulae

C; u ‘Ls w iff C ‘Ls tðuÞ ! w.
Proof. The right-to-left direction follows easily from the observation that u ‘Ls tðuÞ. Let us prove the converse direction by a
semantical reasoning using completeness, i.e. we assume C;u�Ls w and we have to show C�Ls tðuÞ ! w. Take any Ls-chain A
and any A-evaluation e such that e½C�# f�1Ag. Consider the matrix Ls-model hA,Fi(e[C],e(u))i. By soundness
e(w) 2 Fi(e[C],e(u)), i.e. eðwÞ 2 FiðeðuÞÞ ¼ ½tðeðuÞÞ; �1A�. Therefore, t(e(u)) 6 e(w) and so eðtðuÞ ! wÞ ¼ �1A. h

Now, using Theorem 5, we immediately obtain the next corollary.

Corollary 15. If L is the logic of a finite BL-chain, the quasivariety associated to the logic Ls is a variety.

Some remarks are in order here:

� Lemma 14 and Theorem 6 can be easily generalized to any logic L induced by a finite MTL-chain provided that the Ls-
filters on Ls-chains coincide with the MTL-filters closed under s.

� A sufficient condition for an MTL-filter on an Ls-chain closed under s to be an Ls-filter is the fact that a � F b iff either
a = b or a, b 2 F. For example, any finite WNM-chain C (with n elements) satisfies this condition, and hence the logic Ls

enjoys the global deduction-detachment theorem (w.r.t. the term t(u) = (sn(u))2) and thus the quasivariety corre-
sponding to the logic of a finite WNM-chain with a truth-stresser is a variety.

� The following example proves that there are finite MTL-chains with MTL-filters closed under s that are not Ls-filters.

Example 5. Take a finite chain A of 6 elements (1 > a > b > c > d > 0) and define the operation ⁄ by (assuming that ⁄ is deter-
mined when one value is 0 or 1) a⁄a = a, and x⁄y = d otherwise. Then the MTL-filters are {1}, {1,a}, {1,a,b,c,d} and A itself.
Define the operator s by (the values of 0 and 1 are determined) s(a) = a,s(b) = b,s(c) = s(d) = 0. It is obvious that the MTL-filters
closed under s are {1}, {1, a} and A. But {1, a} is not an Ls-filter since b ? c = a and s(b) ? s(c) = b ? 0 = 0 R {1,a}.

4.2. Logics withM

We consider now the case of logics Ls based on aM-core fuzzy logic L, i.e., where the projectionM operator is definable. In
this case the situation is much simpler because, in fact, the resulting logic is an axiomatic expansion of L:

Proposition 16. Let L be M-core fuzzy logic. Then Ls is the axiomatic expansion of L obtained by adding:

(VTL1) su ? u,
(VTL2) s�1,
(MONM)M(u ? w) ? (su ? sw).
Proof. Let L0 be the axiomatic expansion of L given by these three axioms. It is clear that, thanks to (MONM), the new con-
nective satisfies the congruence condition (Cong) and hence, since L0 is an axiomatic expansion of a semilinear logic, it
remains semilinear. Then, using that both L0 and Ls are complete with respect to their corresponding chains, it is easy to check
that each one validates the axioms and rules of the other and thus they are the same logic. h

Therefore, in this case Ls is aM-core fuzzy logic itself and hence it satisfies the global deduction-detachment theorem in
the form of Proposition 3 and, by Theorem 5 the class of Ls-algebras is a variety.
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M-core fuzzy logics include the n-valued Łukasiewicz logic Łn or the axiomatic extensions of MTL by the axiom :
(u)n _ u, called SnMTL (see [26]). In both casesMu is defined as un and they define a sequence of nested logics starting with
classical propositional calculus: CPC = Ł2 # Ł3 # . . . # Łn # . . . and CPC = S2MTL # S3MTL # . . . # SnMTL # . . . respec-
tively. On the other hand, given a core fuzzy logic L, one can also consider the family of axiomatic extensions of Ls with
the axiom :ðsnð. . .n ðsnðunÞÞn . . .ÞÞn _u, whereM is definable as ðsnð. . .n ðsnðunÞÞn . . .ÞÞn. With these logics, denoted SnLs, we ob-
tain again a sequence of nested logics S2Ls # S3Ls # . . . # SnLs � . . ..

4.3. Logics satisfying the modal axiom K for the truth-stresser

The third family we consider is the family of logics LsK defined as the axiomatic extensions of the logics Ls with the fol-
lowing axiom:

(VT2) s(u ? w) ? (su ? sw)

Axiom (VT2) is the well-known axiom K of modal logics for the truth-stresser connective s, and it is one of the axioms of
Hájek’s BLvt logic [21]. In our setting it means that the logic LsK requires that if both u and u ? w are ‘‘very true’’ then so is w.

It turns out that the presence of axiom (VT2) in LsK allows for an equivalent axiomatic presentation where the rule of
inference (MONs) can be replaced by the weaker rule of necessitation for s:

(NECs) from u infer su.

Lemma 17. Let L0sK be the logic obtained from LsK by adding the axiom

(VT3) s(u _ w) ? (su _ sw).

and replacing the rule (MONs) by the rule (NECs). Then the rule (MONs) is derivable in L0sK .

Proof. From (u ? w) _ v, using necessitation and axiom (VT3) we infer s(u ? w) _ sv, by (VTL1) we then infer
s(u ? w) _ v, and by (VT2) we finally infer (su ? sw) _ v. h

Notice that, by a simple inspection, the logic L0sK indeed corresponds to Hájek’s BLvt logic when L = BL. Moreover, since
both the axiom (VT3) and the necessitation rule (NECs) are already derivable in LsK, it follows from the above lemma that
the logics L0sK and LsK are indeed equivalent.

Now, following Hájek in [21], we prove a local deduction-detachment theorem for LsK (similar to the one proved forM).
We will need an auxiliary notation: su stands for s(u & u) and snu stands for sð. . .n sðsuÞ . . .n Þ.

Lemma 18 (cf. [21])). In LsK the following formulae are provable:
(i) sn+1u ? snu,
(ii) su ? su, su ? u & u,

(iii) s(u _ w) M (su _ sw).
Theorem 7 (Local deduction-detachment theorem for LsK). Let T be a theory and let u, w be formulae. Then: T [ fug ‘LsK w iff
T ‘LsK snu! w for some n.
Proof. The proof is by induction as usual. Let us check the induction step for deduction rules. If T ‘LsK snu! a and
T ‘LsK snu! ða! bÞ, then T ‘LsK ðsnu & snuÞ ! b, thus T ‘LsK snþ1u! b. Similarly, if T ‘LsK snu! b, then
T ‘LsK sðsnuÞ ! sb, thus T ‘LsK snþ1u! sb. h

The corresponding algebraic structures are the LsK-algebras. An algebra A ¼ hA;&;!;^;_; �0; �1; si is an LsK-algebra if it is an
L-algebra expanded by a unary operator s (stressing hedge) that satisfies, for all x,y 2 A

(ve1) s(x) 6 x,
(ve2) s(x ? y) 6 (s(x) ? s(y)),
(ve3) s(x _ y) 6 (s(x) _ s(y)),
(ve4) sð�1Þ ¼ �1.

From the above remarks, an LsK-algebra is just an Ls-algebra further satisfying the property (ve2). Therefore, in this case it
is obvious that LsK-algebras form a variety (recall that, as inM-core fuzzy logics, the inference rules of the logic are modus



F. Esteva et al. / Information Sciences 232 (2013) 366–385 377
ponens and necessitation). On the other hand, as usual, for each left-continuous t-norm ⁄, the chain obtained by adding to
[0,1]⁄ a truth-stressing hedge s satisfying the above properties is a real LsK-chain.

Next we give some examples of truth-stressers on real chains [0,1]⁄ satisfying axiom (VT2), we will call them K-truth-
stressers.

Example 6

1. The function sðxÞ ¼ x 	 . . .n 	x (xn for short) is a K-truth-stressing function over [0,1]⁄ for any left-continuous t-norm ⁄.
Obviously this truth-stressing function is continuous if the t-norm is so and it is the identity if the t-norm is the
minimum.

2. The function s(x) = x 
 x (product of reals) is also a K-truth-stressing function for the three basic continuous t-norms.
Observe that this function coincides with the one of the previous example for ⁄ being the product t-norm and n = 2.

3. The function defined by Łukasiewicz t-norm as s(x) = x⁄Łx = max{0,2x � 1} is a K-truth-stressing function for Łukasiewicz
and minimum t-norms but not for product. This function coincides with the first example for Łukasiewicz t-norm and
n = 2.

4. For any k 2 [0,1], the function s(x) = k 
 x for x < 1 and s(1) = 1 is a K-truth-stressing function for the three basic continuous
t-norms. Observe that when k = 0, this is theM operator.

Since it is an axiomatic extension of Ls, the logic LsK is semilinear and so it is complete with respect to the variety of
LsK-algebras and with respect to the class of LsK-chains.

The problem of standard completeness for the logics LsK is far from being solved. In the case L is the logic of a Gödel chain
(for continuous t-norms) or, more in general, a WNM-chain (for the general MTL-chains) the problem is easy since we have
the following result.11

Proposition 19. Let L be the logic of a WNM-chain.12 Then the logic LsK coincides with the logic Ls.
Proof. It is only necessary to prove that axiom (VT2) is valid over each Ls-chain and this is easy because if a 6 b then
s(a ? b) = 1 = s(a) ? s(b), and if a > b then either s(a) = s(b), and then s(a ? b) = s(a) ? s(b) = 1, or s(a ? b) = s(:a _ b) =
s(:a) _ s(b) 6 :s(a) _ s(b) = s(a) ? s(b) (take into account that s(:a) 6 :a 6 :s(a)). h

Then, by Theorems 3 and 4, we obtain the following result:

Corollary 20. Let L be the logic of a WNM-chain. Then the LsK is (finite) strong real complete whenever L is (finite) strong real
complete.

If L is the logic of a continuous t-norm, the only one such that Ls satisfies (VT2) is Gödel logic, and thus it is strong real com-
plete. For the rest of logics of continuous t-norms, including ŁsK and PsK, the problem of their real completeness remains open.

5. The case of truth-depressers

Very similarly to the case of truth-stressers, we can proceed to define an axiomatization for the case of truth-depressers
just by replacing axioms (VTL1) and (VTL2) with dual versions (STL1) and (STL2) (ST for slightly true). Namely, given a core
fuzzy logic L, we define Ld as the expansion of L with a new unary connective d, the following additional axioms13

(STL1) u ? du,
(STL2) :d�0,

and the following additional inference rule.

(MONd) from (u ? w) _ v infer (du ? dw) _ v.

Being a kind of dual version of Ls, many properties are proved in a completely analogous way:

Lemma 21. In Ld the following deductions are valid:

(i) ‘Ld
d�1,
11 Already given by Hájek [21] for the case of L being Gödel logic.
12 Recall that a Gödel chain is a particular case of WNM-chain. Recall as well that in a WNM-chain, the operations are defined as follows: a & b = min{a,b} if

a > :b and a⁄b = 0 otherwise; a ? b = 1 if a 6 b and a ? b = :a _ b otherwise.
13 Observe that (STL1) and (ST2) coincide with Vychodil’s (ST1) and (ST4) respectively.



378 F. Esteva et al. / Information Sciences 232 (2013) 366–385
(ii) u! w ‘Ld
du! dw,

(iii) :u ‘Ld
:du,

(iv) ‘Ld
:du! :u,

(v) du;u! w ‘Ld
dw.

(vi) u _ :u ‘Ls u$ du,
Proof.

(i) It follows directly from (STL1) taking u ¼ �0.
(ii) It follows directly from (MONd) taking v ¼ �0.

(iii) It follows from (ii) for w ¼ �0 and (STL2).
(iv) It follows directly from (STL1) using the fact that (u ? w) ? (:w ? :u) is derivable in MTL.
(v) Very easy using (ii) and modus ponens.

(vi) Analogous to (vi) of Lemma 7 with the obvious modifications. h

It is interesting to remark that (v) provides a kind of weaker or modified version of modus ponens with the truth-depresser:
if u implies w, and u is slightly true, then one can derive that w is slightly true as well.

Again, (ii) shows that the (Cong) condition is satisfied by the new unary connective too. Therefore, the logic Ld is Rasiowa-
implicative and its equivalent algebraic semantics is the class of Ld-algebras. An algebra A ¼ hA;&;!;^;_; �0; �1; si of type
h2,2,2,2,1,0,0i is an Ld-algebra if it is an L-algebra expanded by a unary operator d: A ? A (truth-depressing hedge) that sat-
isfies, for all x, y, z 2 A

(10) dð�0Þ ¼ �0,
(20) x 6 d(x),
(30) if ðx! yÞ _ z ¼ �1 then ðdðxÞ ! dðyÞÞ _ z ¼ �1.

Analogously to the case of truth-stressers, every L-chain A can be expanded to an Ld-chain by adding an arbitrary non-
decreasing mapping d: A ? A such that dð�0Þ ¼ �0 and x 6 d(x) for every x 2 A.

Also, since the lattice disjunction keeps satisfying the (PCP) in the expanded logic, Ld is semilinear and hence it is com-
plete with respect to the semantics of all Ld-chains. As a straightforward consequence, we have for d an analogous result to
Corollary 10 for s:

Lemma 22. In Ld the following deductions are valid:

(vi) ‘Ld
dðu _ wÞ $ du _ dw,

(vii) ‘Ld
dðu ^ wÞ $ du ^ dw.

The next theorem is easily proved in an analogous way as for truth-stressers.

Theorem 23. Let L be the language of a core fuzzy logic L. For every set C [ {u} of L-formulae, C ‘Ld
u iff C ‘L u.

Also, as in the case of truth-stressers, the following remarks are provable:

1. Monotonicity with respect to ^ and _ are not equivalent.
2. (MONd) cannot be equivalently substituted by the monotonicity axioms with respect to both lattice connectives:

d(u ^w) M du ^ dw and d(u _w) M du _ dw.
3. The inference rule (MONd) cannot be equivalently simplified to: from u ? w infer d(u) ? d(w).
4. The inference rule (MONd) cannot be equivalently substituted by this rule: from :u infer :d(u).

The proofs of these statements are analogous to the ones of the corresponding results for truth-stressers. For 1 take the
dual of the Gödel algebra of Example 2, i.e. the finite non-linear Gödel algebra defined over {0,a,b,c,1}, where 0 is the
minimum, 1 is the maximum, a is the only co-atom, c ^ b = 0, and c _ b = a and the dual truth-depresser. For 2 take the
same Gödel algebra of the previous case, the filter F = {c,a,1} and d defined by d(1) = d(a) = d(b) = 1 and d(c) = d(0) = 0 and
proceed as in Example 3. Modifying Example 4 by taking d(a,b) = ha _ b,a _ bi, we can prove that, in the context of truth-
depressers, the rule (MONd) cannot be substituted by simple monotonicity, i.e. we have proved 3. The same example also
proves 4.

Completeness results analogous to Theorems 3 and 4, and Corollaries 11 and 12 can be easily proved and they are sum-
marized next.

Theorem 8. Let L be a core fuzzy logic, let K be a class of L-chains, and let Kd be the class of the Ld-chains whose d-free reducts are
in K.
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If the language of L is finite we have:

� L has the FSKC if, and only if, Ld has the FSKdC.
� In particular, L has the FSRC if, and only if, Ld has the FSRC .

If the chains in K are completely ordered we have:

� L has the SKC if, and only if, Ld has the SKdC.
� In particular, Ld has the SRC if, and only if, L has the SRC.

6. Deduction theorems and the variety problem for logics Ld

Similar results to the ones for truth-stressers given in Section 4 also hold for truth-depressers, although with some vari-
ations. The class of algebras associated to a logic Ld is a quasivariety and, like in the case of the logics of truth-stressers Ls, we
do not know whether these classes are always varieties or not. When L is aM-fuzzy core logic, this question is clear, as in the
case of truth-stressers (see Section 4.2), since then the (MONd) inference rule can be replaced by the axiom M(u ? w) ?
(du ? dw) and hence Ld is actually aM-core fuzzy logic as well. In other cases, according to Theorem 5, one way to prove
that the quasivariety of Ld-algebras is a variety is to prove that the logic Ld has either a global or local, deduction theorem. In
this section we prove that this is in fact the case for two classes of logics L.
6.1. The case of n-contractive axiomatic expansions of BL

Observe first that, in the case of truth-depressers, the property that an L-filter is closed under d has no sense since, being
d(x) P x, any L-filter is closed under d. However, this does not mean that the Ld filters coincide with L filters. Take for example
the same algebra as in Example 5 and d defined by d(x) = x for all x – b and d(b) = a. Then the L-filter F = {1,a} is not an
Ld-filter since b ? c = a 2 F and d(b) ? d(c) = a ? c = b R F.

In this case we will use a different and more general way to prove that any logic Ld where L is an n-contractive axiomatic
expansion of BL enjoys a global deduction theorem. Recall that, given n P 2, a logic L is n-contractive if it proves the
n-contraction law un�1 ? un. For the proof of the result, we will use the following theorem of BL (it is folkore, but we include
its proof for the reader’s convenience):

Lemma 24. The following formula is provable in BL:
(iv)
ðu! u & uÞ ! ððu ^ wÞ ! u & wÞÞ:
Proof. We prove it by cases, by showing the following provabilities in BL:

(i) ‘(u ? w) ? (u & u ? u & w)
(ii) u ? w ‘ (u ? u & u) ? (u ? u & w), and hence u ? w ‘ (u ? u & u) ? (u ^w ? u & w)

(iii) w ? u ‘ w ? (u ^ w), and hence w ? u ‘ w ? (u & (u ? w))
w! ðu & ðu! wÞÞ ‘ ðu! u & uÞ ! ðw! ðu & u&ðu! wÞÞÞ
w! ðu&ðu! wÞÞ ‘ ðu! u & uÞ ! ðw! ðu & ðu ^ wÞÞÞ
w! u; w! ðu & ðu! wÞÞ ‘ ðu! u & uÞ ! ðw! ðw & uÞÞ
w! u;w! ðu & ðu! wÞÞ ‘ ðu! u & uÞ ! ððu ^ wÞ ! ðw & uÞÞ
(v) from (iii) and (iv), w ? u ‘ (u ? u & u) ? ((u ^ w) ? (w & u))

From (ii) and (v) we finally get ‘(u ? u & u) ? ((u ^ w) ? u & w). h

Notice that if L is n-contractive then un�1 is idempotent, i.e. L proves the formula un�1 ? un�1 & un�1, and hence L proves
(un�1 ^ w) ? (un�1 & w) as well.

Theorem 9. Let L be an n-contractive axiomatic expansion of BL for some n P 2. Then the logic Ld enjoys the following global
deduction-detachment theorem: for every set C [ {u,w} of formulae, it holds that C;u ‘Ld

w iff C ‘Ld
un�1 ! w.
Proof. Again, we only show the induction step for the inference rule: if C ‘Ld
dn�1 ! ððu! wÞ _ vÞ then C ‘Ld

dn�1 !
ððdu! dwÞ _ vÞ. Notice that since L is n-contractive, then Ld proves dn�1 ? dn�1 & dn�1, and by Lemma 24, Ld also proves
(dn�1 ^ u) ? dn�1 & u. Now assume C ‘Ld

dn�1 ! ððu! wÞ _ vÞ. By cases again, we have:
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(i) C; ðu! wÞ ! v ‘Ld
dn�1 ! v, and hence C; ðu! wÞ ! v ‘Ld

dn�1 ! ðdu! dwÞ _ v as well.
(ii) C;v! ðu! wÞ ‘Ld

dn�1 ! ðu! wÞ, and hence C; v! ðu! wÞ ‘Ld
dðdn�1&uÞ ! dw as well. But, ‘Ld

ðdn�1 ^uÞ !
dn�1&u, and thus ‘Ld

dðdn�1 ^uÞ ! dðdn�1&uÞ, and taking into account that ‘Ld
dðdn�1 ^uÞ $ dðdn�1Þ ^ du, hence we

finally have C;v! ðu! wÞ ‘Ld
dn�1 ! ðdu! dwÞ.

Finally, from (i) and (ii) we have C ‘Ld
dn�1 ! ððdu! dwÞ _ vÞ. h

Observe that every finite BL-chain with n elements satisfy the n-contraction identity (xn�1 = xn) and thus, in particular, if L
is the logic of a finite BL-chain, the logic Ld enjoys the global deduction-detachment theorem.

The last theorem, together with Theorem 5, immediately yields the following corollary.

Corollary 25. Let L be an n-contractive axiomatic expansion of BL. The quasivariety associated to the logic Ld is a variety.

In particular, if L is the logic of a finite BL-chain, the quasivariety associated to Ld is a variety.

6.2. Logics satisfying the modal axioms K for the truth-depressers

In this section we consider axiomatic extensions of a logic Ld with the following two modal-like axioms used by Vychodil
[38] to define two systems for truth-depressers as expansions of BL:

(ST5) d(u ? w) ? (du ? dw),
(ST6) (u ? w) ? (du ? dw).

Let us define the logics Ld-I and Ld-II as the axiomatic extensions of Ld with the axioms (ST5) and (ST6) respectively.
A first obvious observation is that the system Ld-I is stronger than Ld-II since the axiom (ST6) is derivable in the system Ld-II.
A second observation is that the rule (MONd) is superfluous in both systems Ld-I and Ld-II. Indeed, it is very easy to check

that in both systems one can prove the following formula
14 Rec
ððu! wÞ _ vÞ ! ððdu! dwÞ _ vÞ
without using the rule (MONd), just using the axioms (ST1) and (ST5) in the case of Ld-I, and using axiom (ST6) in the case of
Ld-II. Therefore, both logics Ld-I and Ld-II are indeed axiomatic expansions of L, and hence we have the following results for
free.

Lemma 26. Let L be any core fuzzy logic. Then both Ld-I and Ld-II are core fuzzy logics too, and thus:

� they are complete with respect to their corresponding classes of chains,
� they satisfy the same local/global deduction-detachment theorem as L, and
� the quasivarieties associated to Ld-I and Ld-II are in fact varieties.

The following lemma shows that if L is a core fuzzy logic expanding IMTL, the involutive extension of MTL, in particular
Łukasiewicz logic or Nilpotent Minimum logic, then Ld-II, and hence Ld-I as well, collapses with L itself.

Lemma 27. Let L be any core fuzzy logic expanding IMTL. Then both Ld-I and Ld-II prove the formula u$ du.
Proof. It is enough to show that Ld-II proves the formula du ? u. But this is easy since taking w as �0 in axiom (ST6), one gets
:u! ðdu! d�0Þ. Now, using (ST2), that is simply d�0! �0, we can prove :u! ðdu! �0Þ, i.e. :u ? :du. Finally, recalling
that in IMTL the contraposition law (u ? w) ? (:w ? :u) holds, one can prove du ? u. h

In particular, this result shows that, for WNM logics, expansions with truth-depressers behave much differently than
those with truth-stressers. Indeed, for truth-stressers we have proved that if L is the logic of a WNM-chain, the logics Ls

and LsK are the same. However, according to the above result, NMdI = NMdII = NM, while this is clearly not true for NMd. In-
deed axioms (ST5) and (ST6) are not sound over the standard NM-chain. For instance, take the truth-depresser defined by
d(x) = 0.5 if x 2 (0,0.2), d(x) = 0.6 if x 2 [0.2,0.6] and d(x) = x otherwise. Then14 0.2 ? 0.1 = 0.8 = d(0.2 ? 0.1) and
d(0.2) ? d(0.1) = 0.6 ? 0.5 = 0.5, therefore (0.2 ? 0.1) ? (d(0.2) ? d(0.1)) = 0.5 < 1. This shows that (ST6) is not sound. The
same holds true for (ST5) just by replacing (0.2 ? 0.1) by d(0.2 ? 0.1) in the expression above, because the two expressions
have the same value.
all that the implication operation in the standard NM-chain is defined as x ? y = 1 if x 6 y, and x ? y = max{1 � x,y} otherwise.
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7. Some further topics

7.1. Logics with both a truth-stresser and a truth-depresser

Given a core fuzzy logic L, let us define the logic Ls,d as the expansion of Ls with a new unary connective d together with
the axioms (STL1) and (STL2), and the inference rule (MONd).

The algebraic semantics of Ls,d is given by Ls,d-algebras, which are defined in the natural way as expansions of Ls-algebras
with a new unary operation d satisfying the equations corresponding to axioms (STL1) and (STL2) and the quasiequation cor-
responding to (MONd).

Actually, since in Ls,d the stressers s and d are independent from each other, most properties we have discussed in the
previous sections easily extend to Ls,d; in particular, chain-completeness and real completeness results directly extend from
Ls and Ld to Ls,d.

Corollary 28. Let L be a core fuzzy logic. Then the following properties hold for Ls,d:
� Ls,d is complete with respect to the class of Ls,d-chains.
� Ls,d is a conservative expansion of Ls, Ld and L.
Corollary 29. Let L be a core fuzzy logic, let K be a class of L-chains, and let Ks;d be the class of the Ls,d-chains whose {s,d}-free
reducts are in K. If the language of L is finite we have:

� L has the FSKC if, and only if, Ls,d has the FSKs;dC.
� In particular, L has the FSRC if, and only if, Ls,d has the FSRC.

If the chains in K are completely ordered we have:
� L has the SKC if, and only if, Ls,d has the SKs;dC.
� In particular, Ls,d has the SRC if, and only if, L has the SRC.

One can also consider the additional axiom (in fact two axioms):

(Cont) dsu M sdu M u

Let us denote the expansion of the logic Ls,d with these axioms as Lcont
s;d . It is easy to check that the result of Corollary 29

regarding FSRC remains true, i.e. L has the FSRC if, and only if, Lcont
s;d has the FSRC. Moreover it is obvious that the correspond-

ing equations over a real chain imply that the functions interpreting hedges have to be continuous (take into account that
d(s(x)) = s(d(x)) = ximplies that s and d are bijective and d = s�1). As a consequence, one can indeed consider Lcont

s;d as the logic
(expansion of L) of continuous stressing and depressing hedges.

In Vychodil’s logic BLvt,st, the author also considered the following axioms (relating stressers and depressers)

(ST2) du ? :s:u,
(ST3) s(u ? w) ? (du ? dw)

but we will not further explore these kind of expansions (actually axiomatic extensions of our Ls,d logics) here since it is
not clear how to justify these type of axioms relating truth stressers and depressers. Semantically (ST2) gives an upper bound
of the depresser obtained by dualitization of the stresser, while (ST3) is a modification of the axiom K. However, in a similar
way, we could define other axioms with different meanings and we have no argumentation to give priority to one of them.
Moreover, for these expansions, it is not clear how to obtain real completeness.

7.2. Expansions with truth-constants

The logics Ls and Ld axiomatize respectively the whole classes of stressing and depressing hedges on [0,1]. However,
sometimes we are interested on reasoning with a particular hedge or a particular family of hedges, for example, when
one wants to build a fuzzy description language able to manage linguistic modifiers as proposed in [37,36]. If L is the logic
of a suitable t-norm ⁄, one can resort to expanding the logic with truth-constants and (partially) specify the hedge by means
of book-keeping axioms for the hedge.

Let L be the logic of a left-continuous t-norm ⁄, i.e. such that L is complete with respect to the standard algebra
[0,1]⁄ = h[0,1],⁄,) ⁄,min,max,0,1i, where )⁄ is the residuum of ⁄ and expand it with truth-constants from a countable
subalgebra C # [0,1]⁄. We also expand it with the projection operator M, obtaining the logic L⁄D(C). We will assume that
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such logic retains the finite strong completeness with respect to its standard algebra h[0,1],⁄,)⁄,min,max,0,1, M, {r j r 2 C}i.
This is always the case when ⁄ is a continuous t-norm decomposable as an ordinal sum of finitely-many basic components
such that C has elements in the interior of each component (see [15, Theorem 2.8.3.]) or when ⁄ is a WNM t-norm satisfying
analogous properties (see [16, Theorem 32]).

As an example, consider the logic LM,s(Q), i.e. the expansion of the logic Ls with rational truth-constants and with theM
operator. Let us fix a truth-stressing hedge f: [0,1] ? [0,1] that is closed over the rationals. Axioms and rules of Lf

M;sðQÞ are
those of LM,s plus the following book-keeping axioms:

(Book-⁄) �r & �q$ r 	 q for every r,q 2 [0,1] \ Q,
(Book-) ⁄) ð�r ! �qÞ $ r)	q for every r, q 2 [0,1] \ Q,

(Book-M) Mð�rÞ $ MðrÞ, for each r 2 [0,1] \ Q,
(Book-f) sð�rÞ $ f ðrÞ, for each r 2 [0,1] \ Q.

The algebraic semantics is given by the class of Lf
M;sðQÞ-algebras which are structures A ¼ hA;&;!;^;_;M; s; f�rAgr2½0;1�\Qi,

where hA;&;!;^;_;M; s; �0; �1i is an LM,s-algebra and for each rational r 2 [0,1], �rA is a 0-ary operation (i.e. a value in A), sat-
isfying the following conditions:

�rA 	 �qA ¼ r 	 qA for every r, q 2 [0,1] \ Q,
�rA)	�qA ¼ r)	qA for every r, q 2 [0,1] \ Q,
M

Að�rAÞ ¼ MðrÞA, for each r 2 [0,1] \ Q,
sð�rAÞ ¼ f ðrÞA, for each r 2 [0,1] \ Q.

Since Lf
M;sðQÞ is an axiomatic expansion of LM,s, it is also aM-core fuzzy logic, the class of Lf

M;sðQÞ-algebras is a variety, and
Lf
M;sðQÞ is (strongly) complete with respect to the class of Lf

M;sðQÞ-chains. Moreover, we can prove the following real complete-
ness with respect to the intended semantics.

Theorem 10. Lf
M;sðQÞ is finite strong complete with respect to the standard Lf

M;sðQÞ-algebra ½0;1�f
M;s ¼ h½0;1�; 	;)	;min;

max;M; f ; frgr2½0;1�\Qi.
Proof. Assume that C0Lf
M;sðQÞ

u, for some finite set of formulae C [ {u}. Then there is an Lf
M;sðQÞ-chain A and an A-evaluation e

such that e½C�# f�1Ag while eðuÞ < �1A. Let X # A be the finite set of images by e of all subformulae of C [ {u}. Let A� be the
LM(Q)-reduct of A. Since LM(Q) is finite strong complete with respect to the standard LM(Q)-algebra, there is a partial embed-
ding h from A� into [0,1] respecting all operations in X and such that hð�rAÞ ¼ r for all �r appearing in C [ {u}. In particular,

since sð�rAÞ ¼ f ðrÞA, if both �rA and sð�rAÞ are in X then hðsð�rAÞÞ ¼ hðf ðrÞAÞ ¼ f ðrÞ. Therefore, h is actually a partial embedding from

A into ½0;1�f
M;s, and hence e0 = h�e is an evaluation on ½0;1�f

M;s such that e0[C] # {1} and e0(u) < 1. h
7.3. First-order logics with hedges

In this final subsection we will consider first-order fuzzy logics expanded with hedges. First we need to recall the usual
presentation of first-order formalisms for core fuzzy logics.

Given a propositional core fuzzy logic L, the language PL of L" is built in the standard classical way from the propositional
language L of L by enlarging it with a set of predicate symbols Pred and a set of function symbols Funct and a set of object vari-
ables Var, together with the two classical quantifiers " and $. The set of terms Term is the minimum set containing the elements
of Var and closed under the functions. The atomic formulae are expressions of the form P(t1, . . . , tn), where P 2 Pred and t1, . . . ,
tn 2 Term. The set of all formulae is obtained by closing the set of atomic formulae under combination by propositional connec-
tives and quantification, i.e. if u is a formula and x is an object variable, then ("x)u and ($x)u are formulae as well.

In first-order core fuzzy logics it is usual to restrict the semantics to chains only. Given an L-chain A, an A-structure is
M = hM, hPMiP2Pred, hfMif2Functi, where M – ;, fM:Mar(f) ? M, and PM:Mar(P) ? A for each f 2 Funct and P 2 Pred (where ar is
the function that gives the arity of function and predicate symbols). For each evaluation of variables v: Var ? M, the inter-
pretation of a t 2 Term, denoted tM,v, is defined as in classical first-order logic. The truth-value kukA

M;v of a formula is defined
inductively from
kPðt1; . . . ; tnÞkA
M;v ¼ PM t1

M;v ; . . . ; tn
M;v

� 	
;

taking into account that the value commutes with connectives, and defining
kð8xÞukA
M;v ¼ inf kukA

M;v 0 j vðyÞ ¼ v 0ðyÞ for all variables y; except x
n o

kð9xÞukA
M;v ¼ sup kukA

M;v 0 j vðyÞ ¼ v 0ðyÞ for all variables y; except x
n o
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if the infimum and supremum exist in A, otherwise the truth-value(s) remain undefined. An A-structure M is called safe if all
infs and sups needed for the definition of the truth-value of any formula exist in A. Then the truth-value of a formula u in a
safe A-structure M is just
kukA
M ¼ inf kukA

M;v jv : Var ! M
n o

:

When kukA
M ¼ 1 for a safe A-structure M, the pair hM,Ai is said to be a model for u, written hM,Ai�u.

The axioms for L" are obtained from those of L by substitution of propositional variables with formulae of PL plus the
following axioms for quantifiers:

("1) ("x)u(x) ? u(t) (t substitutable for x in u(x)),
($1) u(t) ? ($x)u(x) (t substitutable for x in u(x)),
("2) ("x)(m ? u) ? (m ? ("x)u) (x not free in m),
($2) ("x)(u ? m) ? (($x)u ? m) (x not free in m),
("3) ("x)(u _ m) ? (("x)u _ m) (x not free in m),

The rules of inference of L" are modus ponens and generalization: from u infer ("x)u.

Theorem 11. For any first-order core fuzzy logic L", any set of sentences T and any formula u, it holds that T ‘L "u iff hM,Ai � u
for each model hM,Ai of T with A being a countable L-chain.

The properties SKC , FSKC and KC are defined analogously as in the propositional case. Observe that the previous theo-
rem says that every first-order core fuzzy logic enjoys the SKC when K is the class of all countable chains. A usual way to
prove SKC consists on showing that every non-trivial countable L-chain can be r-embedded (i.e. with an embedding which
preserves existing suprema and infima) into some chain from K. In this case we say that L has the K� r-embedding prop-
erty. As proved in [9] this is a sufficient, but in general not necessary, condition for the SKC. This method has been used to
prove strong real completeness for first-order versions of a number of important fuzzy logics such as MTL, SMTL, IMTL, G,
NM, and WNM. Others have been shown to lack all real completeness properties as a consequence of the studies on the arith-
metical complexity of the set of standard tautologies as in the case of Ł, P, BL, and SBL (see e.g. [24]). Moreover, it is also
proved in [9] that any completeness property of a first-order logic implies the validity of the same completeness property
in the underlying propositional logic.

Given a first-order core fuzzy logic L", let Ls" be the expansion of L" with a unary symbol s, the axioms (VTL1), (VTL2),
and the rule (MONs). The same logic could be obtained by considering Ls and extending it to the first-order level in the anal-
ogous way as in core fuzzy logics.

Proposition 30. Ls" is a conservative expansion of L".
Proof. Let T [ {u} be a set of first-order formulae in the language without s and assume that T =‘L"u. Then there exists L-chain
A a model hM,Ai of T such that hM,Ai =�u. We expand A to an Ls-chain A0 where the stresser symbol is interpreted as theM
function. hM,A0i is still safe, is a model of T and hM,Ai =�u, hence T0Ls8u. h

We can now consider the issue of standard completeness for these logics.

Theorem 12. Let L be a core fuzzy logic, K a class of L-chains, and Ks the class of Ls-chains whose s-free reducts are in K.
1. If L has the K-r-embedding property and all the members of K are completely ordered, then Ls" has the SKsC.
2. If L does not have the K-embedding property, then Ls" does not have the SKsC.
Proof. The first item relies on the proof of Theorem 4. Indeed assume that L has the K-r-embedding property and all the
members of K are completely ordered and take any countable Ls-chain A. We know that its s-free reduct is r-embeddable
into a chain B 2 K. Then the construction used in the proof of Theorem 4 allows to define a hedge function in such a way that
we obtain that B is r-embeddable into a expansion of B in Ks. As for the second item, if L does not have the K-embedding
property, then L" does not enjoy the SKC and hence, since Ls" is a conservative expansion of L", Ls" does not have the SKsC
either. h

Observe that if we only know that L has the K-embedding property, we cannot conclude anything, at least in general,
regarding SKsC of Ls".

Finally, notice that the case of first-order logics expanded with a connective for depressing hedges is completely analo-
gous: the logic can be defined by means of (STL1), (STL2) and (MONd), and we obtain analogous results.
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8. Related work

As we have mentioned before, there are two main references when talking about the formalization of truth-stressing
hedges within the framework of mathematical fuzzy logic. The first one is Hájek’s paper [21], where he axiomatizes over
BL a logic for the hedge very true, and the second one is the paper by Vychodil [38] where he extends Hájek’s analysis to
truth-depressing hedges. A further relevant further study of logics with truth-stressers can be found in the paper by Ciabat-
toni et al. [7], that makes significant contributions in various aspects. The authors basically consider expansions of MTL with
a unary modality (i.e. a unary operator that satisfies axiom K and the necessitation rule), they consider three possible addi-
tional axioms to be added to Hájek’s axiomatics, and they develop proof systems for the new logics and study their algebraic
and completeness properties. Given a logic L that is an extension of MTL, they consider the following logics:
15 Not
L� KTr ¼ Lþ ðVT1Þ þ ðVT2Þ þ ðVT3Þ þ ðNECÞ
L� S4r ¼ L� KTr þ ðVT4Þ su! sðsuÞ
Axiom (VT4), together with axiom (VT1), forces the truth-stressing hedges to be closed over their image, i.e. su has to be
equivalent to s(su) (hence s becomes a closure operator like in some previous works; see [23], for instance).

Notice that Hájek’s logic BLvt (which we have called BLsK in this paper) is nothing but the logic BL-KTr. Moreover, Ciabat-
toni et al. prove in [7] standard completeness of the L-S4r logics for different choices for L, namely MTL, SMTL, CnMTL, IMTL,
and CnIMTL. Finally, observe that after adding the axiom su _ :su to L-KTr, s turns to be equivalent to the projection con-
nectiveM.

Other papers dealing with particular types of truth-stressers are:

� The paper [23], a pioneering work in the setting of truth-stressing hedges, which proves that the Yashin strong future
tense operator can be interpreted, in our framework, as a hedge over G that is a closure operator and satisfies axiom K.

� The paper [22], which defines the logical system BL!
LU obtained by adding two unary connectives, L and U, (for truth

stresser and depresser) to BLM that are required to be idempotent with respect to the monoidal operation, among
other technical properties. The paper contains an interesting result about the undecidability of ⁄-tautologies.

� In the paper [25] the authors introduce in BL " a new unary connective At, interpreted as almost true, in order to ana-
lyze the sorites paradox in the setting of mathematical fuzzy logic. It turns out that the axioms proposed for this new
connective are (STL1) together with
ðu! wÞ ! ðAtu! AtwÞ;
which is actually axiom (ST6), stronger than (MON). However, the axiom (STL2) is not required.
� The paper [30] studies the system obtained by adding to a fuzzy logic L a unary connective called storage operator

which has some analogies with Girard’s exponentials and behaves as an idempotent truth-stresser closed over its
image (it is in fact an interior operator).

� Finally, we mention the papers [2,18,3], where the authors study expansions of Gödel logic with a monotone unary
operator � interpreted by monotone functions f : [0,1] ? [0,1] satisfying, among other conditions, f(1) = 1. So, although
they are very close to truth-hedges, in general they are not necessarily requested to satisfy the other boundary con-
dition f(0) = 0. However, in [18], Fasching implicitly considers particular logics that indeed can be regarded as a proper
logic of truth stressers: indeed, he considers the expansion of Gödel logic with � together with the axioms
�(u ? w) M (�u ? �w)15 and the rule of necessitation for �. Let us call this logic G�. Then, from [18, Corollaries 4.1(a)
and 4.2(b)] it can readily be seen that: (i) G� together with the axiom �u ? u is complete with respect to the class of
standard Gödel chains expanded with strictly increasing truth-stressing hedges, and (ii) G� together with the axioms
u ? �u and ��0! �0 is complete with respect to the class of standard Gödel chains expanded with strictly increasing
truth-depressing hedges.

Despite the undoubtable theoretical interest of these papers, hedge functions that are either closure operators, satisfy ax-
iom K, or are idempotent, have a quite limited behavior and can account only for some very special cases of truth-stressing
hedges.

Finally, it must be mentioned that, besides the axiomatic approach followed in this paper and in all the related articles we
have just discussed, logics with hedges have also received an extensive treatment in the interesting formalization of evalu-
ative linguistic expressions developed in the framework of fuzzy type theory by Vilém Novák, see e.g. [33] and Chapter 6 of
[34]. Indeed, the intuition of Novák’s modeling of hedges that goes back to [32] was, as pointed out by Lakoff in [28], that the
effect of hedges like very in an expression like very small carries out a shifting of the whole membership function of the fuzzy
set small, in the sense of a shortening of the kernel of the fuzzy set. This may be accomplished by truth-hedges
h:[0,1] ? [0,1] such that h(x) = 1 if x is greater than a given threshold a, and h(x) = 0 for x smaller than another given thresh-
old b, with 0 < b < a < 1. These classes of hedges are neither subdiagonal nor superdiagonal, and hence they fall out of the
scope of the goals of the current paper. The question of whether these classes of truth-hedges admit a similar logical
ice that this axiom is stronger than axiom K.
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treatment than those considered in this paper (subdiagonal and superdiagonal) remains as an interesting matter of future
research.
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[4] L. Běhounek, P. Cintula, P. Hájek, Introduction to mathematical fuzzy logic, in: P. Cintula, P. Hájek, C. Noguera (Eds.), Handbook of Mathematical Fuzzy

Logic-vol. 1, vol. 37 of Studies in Logic, Mathematical Logic and Foundations, London, 2011, pp. 1–101.
[5] W.J. Blok, D.L. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, vol. 396, American Mathematical Society, Providence, RI,

1989.
[6] P. Brown, S.C. Levinson, Politeness: Some Universals in Language Usage, Cambridge University Press, 1987.
[7] A. Ciabattoni, G. Metcalfe, F. Montagna, Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions, Fuzzy Sets and

Systems 161 (3) (2010) 369–389.
[8] R. Cignoli, F. Esteva, L. Godo, A. Torrens, Basic fuzzy logic is the logic of continuous t-norms and their residua, Soft Computing 4 (2) (2000) 106–112.
[9] P. Cintula, F. Esteva, J. Gispert, L. Godo, F. Montagna, C. Noguera, Distinguished algebraic semantics for t-norm based fuzzy logics: methods and

algebraic equivalencies, Annals of Pure and Applied Logic 160 (1) (2009) 53–81.
[10] P. Cintula, C. Noguera, Implicational (semilinear) logics I: basic notions and hierarchy, Archive for Mathematical Logic 49 (4) (2010) 417–446.
[11] P. Cintula, C. Noguera, A general framework for mathematical fuzzy logic, in: P. Cintula, P. Hájek, C. Noguera (Eds.), Handbook of Mathematical Fuzzy

Logic-Volume 1, vol. 37 Studies in Logic, Mathematical Logic and Foundations, London, 2011, pp. 103–207.
[12] A. Di Nola, F. Esteva, L. Godo, F. Montagna, Varieties of BL-algebras, Soft Computing 9 (12) (2005) 875–888.
[13] F. Esteva, J. Gispert, L. Godo, F. Montagna, On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic,

Studia Logica 71 (2) (2002) 199–226.
[14] F. Esteva, L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems 124 (3) (2001) 271–288.
[15] F. Esteva, L. Godo, E. Marchioni, Fuzzy logics with enriched language. in: P. Cintula, P. Hájek, C. Noguera (Eds.), Handbook of Mathematical Fuzzy Logic-

Volume 2, vol. 38 of Studies in Logic, Mathematical Logic and Foundations, London, 2011, pp. 627–711.
[16] F. Esteva, L. Godo, C. Noguera, On expansions of WNM t-norm based logics with truth-constants, Fuzzy Sets and Systems 161 (3) (2010) 347–368.
[17] F. Esteva, L. Godo, C. Noguera, Fuzzy logics with truth hedges revisited, in: G.M. Sylvie Galichet, Javier Montero (Eds.), Proc. of the 7th Conference of the

European Society of Fuzzy Logic and Technology, EUSFLAT -LFA 2011, Atlantis Press, Aix-Les-Bains, France, 2011, pp. 146–152.
[18] O. Fasching, Gödel homomorphisms as Gödel modal operators, Fundamenta Informaticae (in press).
[19] P. Grundy, Doing Pragmatics, Hodder Education, London, 2008.
[20] P. Hájek, Metamathematics of Fuzzy Logic, Trends in Logic, vol. 4, Kluwer, Dordrecht, 1998.
[21] P. Hájek, On very true, Fuzzy Sets and Systems 124 (3) (2001) 329–333.
[22] P. Hájek, Some hedges for continuous t-norms logics, Neural Network World 12 (2) (2002) 159–164.
[23] P. Hájek, D. Harmancová, A hedge for Gödel fuzzy logic, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8 (4) (2000)

495–498.
[24] P. Hájek, F. Montagna, C. Noguera, Arithmetical complexity of first-order fuzzy logics, in: P. Cintula, P. Hájek, C. Noguera (Eds.), Handbook of

Mathematical Fuzzy Logic, Studies in Logic, Mathematical Logic and Foundations, vol. 2, College Publications, London, 2011, pp. 853–908 (No. 38,
Chapter XI).

[25] P. Hájek, V. Novák, The sorites paradox and fuzzy logic, International Journal of General Systems 32 (2003) 373–383.
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