
Set-Valued Var. Anal
DOI 10.1007/s11228-016-0377-4

On Cournot-Nash-Walras Equilibria
and Their Computation
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Abstract This paper concerns a model of Cournot-Nash-Walras (CNW) equilibrium where
the Cournot-Nash concept is used to capture equilibrium of an oligopolistic market with
non-cooperative players/firms who share a certain amount of a so-called rare resource
needed for their production, and the Walras equilibrium determines the price of that rare
resource. We prove the existence of CNW equilibria under reasonable conditions and exam-
ine their local stability with respect to small perturbations of problem data. In this way we
show the uniqueness of CNW equilibria under mild additional requirements. Finally, we
suggest some efficient numerical approaches and compute several instances of an illustrative
test example.
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1 Introduction and Preliminaries

Recently, S.D. Flåm investigated markets where the players/firms behave non-cooperatively
and some of their inputs are limited but transferable. These so-called rare resources are
controlled by some national or international authority that typically provides each agent with
some initial endowment of these resources. Examples of such rare resources include fish
quotas or rights to water usage. In the same way one can also handle production allowances
or pollution permits. Since these rare resources are transferable, after the initial allocation
they may be bought or sold in a market. This eventually leads to a Walras equilibrium
specifying the equilibrium price of a unit of the rare resources. This price is either nil, in the
case when the available amount of rare resources exceeds the interests of the market, or it
is nonnegative provided that the demand amounts exactly to the available quantity. In either
case, the initial endowments can be reallocated, which leads to a joint improvement. In [10]
the author speaks about Nash-Walras equilibria and divides the process of their finding into
two phases. In the first one, the agents compute a Nash equilibrium corresponding to their
initial endowments. In the second phase, the agents approach a Nash-Walras equilibrium
step by step by bilateral exchanges of their shares of rare resources so that the overall amount
of them remains unchanged. In this way the author attempts to model real processes leading
to an equilibrium price of the rare resources.

In contrast to this approach, in this paper we look at this problem from a slightly different
perspective. The authority controlling the rare resources might, in reality, be interested in
computing a Nash-Walras equilibrium in one step in order to get a feedback about the influ-
ence of the initial allocation on the overall production and the price of the rare resources.
Likewise a firm might wish to learn how a change in technology (leading to a different rate
of consumption of the rare resource) or a change of other production costs would influence
his profit. So, in this paper, we suggest a procedure for computing a Nash-Walras equi-
librium in one step, without any phases and evolutionary processes. Since our agents are
firms and behave according to the Cournot-Nash concept, we prefer to use the terminology
Cournot-Nash-Walras (CNW) equilibrium in the sequel.

The plan of the paper is as follows: In Section 2 we formulate the problem, collect the
standing assumptions and analyze some elementary properties. Section 3 proves the exis-
tence of a CNW equilibrium. Our proof differs from the existence proof in [10] because it
does not use the notion of a normalized equilibrium and the associated existence results from
[11, 20]. Moreover, this approach enables us to weaken the convexity assumptions from
[10]. Instead of the existence of a CNW equilibrium one has then, however, only the exis-
tence of a CNW stationary point. Section 4 is devoted to local stability of CNW equilibria.
It turns out that under relatively mild assumptions CNW equilibria are unique and depend
on the problem data in a Lipschizian way. The computation of CNW equilibria amounts to
solving a specially structured variational inequality with a polyhedral constraint set. Apart
from many universal numerical methods, one can thus make use of nonsmooth Newton
methods such as PATH [4, 9], based on successively solving affine variational inequalities
using techniques outlined in [3]. This is explained in Section 5, where one finds also an
illustrative example, based on an adaptation of the five-firm oligopolistic market from [14].

Our notation is basically standard. For a closed cone K with vertex at 0, K0 denote its
negative polar and for a set A, distA(x) stands for the distance of x to A. Given a multifunc-
tion F [Rn ⇒ R

m],GrF := {(x, y) ∈ R
n × R

m|y ∈ F(x)} is the graph of F and B denotes
the unit ball.

We conclude the introductory section with the definitions of some basic notions from
modern variational analysis which will be extensively used in this paper.
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Consider a closed set A ⊂ R
n and x̄ ∈ A. We define the contingent (Bouligand) cone to

A at x̄ as the cone

TA(x̄) := Lim sup
τ↓0

A − x̄

τ

= {h ∈ R
n|∃hk → h, λk ↘ 0 such that x̄ + λkhk ∈ A for all k}

and the regular (Fréchet) normal cone to A at x̄ as ̂NA(x̄) := (TA(x̄))0. Moreover, the
limiting (Mordukhovich) normal cone to A at x̄ is defined by

NA(x̄) := Lim sup
A

x→x̄

̂N(x)

= {x∗ ∈ R
n|∃ A

xk → x̄, x∗
k → x∗ such that x∗

k ∈ ̂NA(xk) for all k}.
We say that A is (normally) regular at x̄ provided NA(x̄) = ̂NA(x̄). Convex sets are

regular at all points. Now consider a closed-graph multifunction �[Rn ⇒ R
m] and a point

(x̄, ȳ) ∈ Gr�.
The multifunction D∗�(x̄, ȳ)[Rm ⇒ R

n] defined by
D∗�(x̄, ȳ)(y∗) := {x∗ ∈ R

n|(x∗, −y∗) ∈ NGr�(x̄, ȳ)}
is the limiting (Mordukhovich) coderivative of � at (x̄, ȳ). If � is single-valued and
continuously differentiable then ȳ = �(x̄) and D∗�(x̄, ȳ) amounts to (∇�(x̄))
.

An interested reader may find a full account of properties of the above notions for
example in the monographs [19] and [13].

2 Problem Formulation

Consider an oligopolistic market with m firms, each of which produces a homogeneous
commodity. As mentioned in the introduction, they each need a certain amount of a rare
resource for this production, that is dependent on the technology that is used. It follows that
each firm optimizes his profit by using two strategies: his production and the amount of the
rare resource that he intends to purchase or to sell. Consequently, the ith firm solves the
profit maximization problem

maximize p(T )yi − ci(yi) − πxi

subject to
(yi, xi) ∈ (Ai × R) ∩ Bi ,

(1)

where yi is the production, xi is the amount of the rare resource that is purchased (or sold),
ci[R+ → R+] specifies the production costs, π is the price of the rare resource, T =
∑m

i=1 yi signifies the overall amount of the produced commodity in the market and Ai =
[ai, bi] specifies the production bounds. The function p[intR+ → R+] assigns each amount
T the price at which (price-taking) consumers are willing to demand. It is usually called
the inverse demand curve. The relationship between yi and the required amount of the rare
resource is reflected via the set

Bi = {(yi, xi)|qi(yi) ≤ xi + ei},
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where ei is the initial endowment of the rare resource and qi[R+ → R+] is a (technological)
function assigning to each production value the corresponding amount required of the rare
resource. Denote by � the overall available amount of the rare resource so that

� ≥
m

∑

i=1

ei . (2)

Observe that in problem (1) the variables yj , j �= i, and π play the role of parameters.
Unless stated otherwise, throughout the whole paper we will impose the following

assumptions:

A1: All functions ci can be extended to open intervals containing the sets Ai . These
extensions are convex and twice continuously differentiable.

A2: p is strictly convex and twice continuously differentiable on intR+.
A3: αp(α) is a concave function of α.
A4: For all i one has 0 ≤ ai < bi and there is an index i0 such that ai0 > 0.
A5: All functions qi satisfy qi(0) = 0 and can be extended to open intervals contain-

ing the sets Ai . These extensions are convex, increasing and twice continuously
differentiable.

A6: One has
m

∑

i=1

qi(ai) < �.

A7: π ≥ 0.

The assumptions A1 - A3 are not too restrictive and arise in a similar form in various treat-
ments of oligopolistic markets, cf. [14, 16, 17]. They ensure in particular that the objective
in (1) is concave for all i. Assumption A4 ensures that p(T ) is well-defined. Assumptions
A5 and A6 are related to the rare resource and play an important role in the existence proof
in the next section. The economic interpretation of A6 says that the overall amount of the
rare resource is sufficient for all firms to run their productions at their lower bounds. Finally,
A7 is natural.

Since in the sequel we will extensively employ various tools of modern variational anal-
ysis, tailored to minimization problems, from now on we will replace profit maximization
problems (1) by the corresponding minimization problems with the objectives

Ji(π, y, xi) := ci(yi) + πxi − p(T )yi, i = 1, . . . , m.

Further, to simplify the notation, y = (y1, y2, . . . , ym) and x = (x1, x2, . . . , xm) stand
for the vectors of cumulative strategies yi, xi of all firms. To introduce the CNW equilib-
rium, we define first the Cournot-Nash equilibrium generated by problems (1).

Definition 1 The strategy pair (ȳ, x̄) is a Cournot-Nash equilibrium in the considered
market for a given π ≥ 0 provided for all i one has

Ji(π, ȳ, x̄i ) = min
(yi ,xi )∈(Ai×R)∩Bi

Ji(π, ȳi , ȳ2, . . . , ȳi−1, yi, ȳi+1, . . . , ȳm, xi). (3)

Remark 1 If the constraint (2) is neglected and all endowments ei vanish (so that we do
not consider a “rare” resource), then we may put xi = q(yi), the production costs become
ci(yi) + πqi(yi) and the constraint set in (1) can be simplified to yi ∈ Ai . Definition 1
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then amounts to the classical notion of Cournot (or Cournot-Nash) equilibrium from 1838,
cf. [14]. For this reason we use the terminology Cournot-Nash equilibrium also in our
slightly more complex case reflecting the above described mechanism of trading with the
rare resource.

Remark 2 In [10] the author assumes that the production cost functions ci also depend
on xi .

Definition 2 (Flåm) The triple (π̄, ȳ, x̄) is a Cournot-Nash-Walras (CNW) equilibrium in
the considered market provided that

(i) (ȳ, x̄) is a Cournot-Nash equilibrium for π = π̄ , and
(ii) one has

π̄ ≥ 0, � −
m
∑

i=1
(ei + x̄i ) ≥ 0, π̄ · (� −

m
∑

i=1
(ei + x̄i )) = 0.

Clearly, the conditions in (ii) characterize a Walras equilibrium with respect to the rare
resource which determines a price π̄ under which the (secondary) market with the rare
resource is cleared. From the point of view of the firms, the computation of π̄ is a dynamical
process starting after the initial allocation has been conducted. From the point of view of
the authority controlling the rare resource, however, the whole problem can be solved in one
step. The results provide the authority with information about the influence of the initial
allocation on the CNW equilibrium.

This model covers also the possibility that some agents in the considered market do not
intend to produce anything. Consequently, for them both lower and upper production bounds
vanish and so assumption A4 is not fulfilled. Nevertheless, their presence does not cause any
problems: It suffices to put � to be the sum of endowments of the true oligopolists plus the
sum of endowments of the non-producing agents, while in all remaining parts of the model
only the true oligopolists are considered. This is due to the fact that the non-producing
agents do not perform any optimization.

The Cournot-Nash equilibrium fromDefinition 1 can easily be characterized via standard
stationarity/optimality conditions. For the readers’ convenience we state this result here with
a proof.

Proposition 1 Given a price π ≥ 0, under the posed assumptions, a pair (ȳ, x̄) is a
Cournot-Nash equilibrium in the sense of Definition 1 if and only if it fulfills the relations

0 ∈
⎡

⎢

⎣

∇c1(y1) − y1∇p(T ) − p(T )
...

∇cm(ym) − ym∇p(T ) − p(T )

⎤

⎥

⎦ + π

⎡

⎢

⎣

∇q1(y1)
...

∇qm(ym)

⎤

⎥

⎦ +
m

X
i=1

NAi
(yi) (4)

π · (qi(yi) − xi − ei) = 0, i = 1, 2, . . . , m.

qi(yi) ≤ ei + xi, i = 1, 2, . . . , m.
(5)

Proof The constraints in (3) satisfy the linear independence constraint qualification (LICQ)
due to A4. Moreover, the standing assumptions ensure that the functions Ji are jointly con-
vex in (yi, xi). The Cournot-Nash equilibria are henceforth characterized by the standard
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first-order optimality conditions for the single optimization problems (3). Putting them
together, we obtain the generalized equation (GE)

0 ∈

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∇c1(y1) − y1∇p(T ) − p(T )

π
...

∇cm(ym) − ym∇p(T ) − p(T )

π

⎤

⎥

⎥

⎥

⎥

⎥

⎦

+
m

X
i=1

NAi×R(yi, xi) +

⎡

⎢

⎢

⎢

⎢

⎢

⎣

λ1∇q1(y1)

−λ1
...

λm∇qm(ym)

−λm

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (6)

where λ1, . . . , λm are nonnegative Lagrange multipliers associated with the inequalities
defining the sets Bi . They must fulfill the complementarity conditions

λi(qi(yi) − xi − ei) = 0 for all i = 1, 2, . . . , m. (7)

Since NR(xi) = {0} for all i, we immediately conclude that

π = λ1 = λ2 = . . . = λm. (8)

In this way we arrive at the simplified (but equivalent) conditions (4), (5) in which only
the partial derivatives ∇yi

Ji arise.

In numerous applications the technological functions qi may not fulfill the convexity
requirement in A5 because, e.g., ∇qi(·) is a decreasing function. In this case, conditions (4)
and (5) are only necessary for a pair (ȳ, x̄) to be a Cournot-Nash equilibrium for a given π .

3 Existence of CNW Equilibria

To simplify the proof, let us associate with the ith firm, instead of (1), a different problem,
namely

minimize ci(yi) + π(qi(yi) − ei) − p(T )yi

subject to
yi ∈ Ai

(9)

solely in the variable yi . It corresponds to replacing the inequality

qi(yi) ≤ xi + ei

by an equality so that variable xi can be completely eliminated. If we replace the functions Ji

in Definition 1 by the objectives from (9), we obtain a different non-cooperative equilibrium
characterized by the GE

0 ∈
⎡

⎢

⎣

∇c1(y1) + π∇q1(y1) − y1∇p(T ) − p(T )
...

∇cm(ym) + π∇qm(ym) − ym∇p(T ) − p(T )

⎤

⎥

⎦ +
m

X
i=1

NAi
(yi). (10)

Lemma 1 Let ȳ satisfy condition (10). Then the pair (ȳ, x̄) with x̄i = qi(ȳi ) − ei for all
i is a Cournot-Nash equilibrium in the sense of Definition 1. Conversely, for each solution
(ȳ, x̄) of system (4), (5), the component ȳ fulfills GE (10) whenever π > 0.

The proof follows immediately from the comparison of GE (10) with the conditions
(4), (5).
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Denote by S[R+ ⇒ R
m] the mapping which assigns each π ≥ 0 the set of solutions to

GE (10). The statement of Lemma 1 can then be written down as follows:

(i) For any π ≥ 0 one has the implication

y ∈ S(π), xi = qi(yi) − ei for all i ⇒ (y, x) fulfills conditions (4), (5).

(ii) For π > 0 the above implication becomes equivalence.

Remark 3 It follows from Lemma 1 that for π ≥ 0 the initial endowment e1, . . . , em does
not influence the component y of the Cournot-Nash equilibrium pair (y, x).

Lemma 2 There is a positive real L such that in all CNW equilibria one has π ≤ L.

Proof Assume that π̄ > 0 is so large that

min
i=1,...,m

{

∇ci(ai) − ai∇p

(

m
∑

i=1

ai

)

− p

(

m
∑

i=1

ai

)

+ π̄∇qi(ai)

}

> 0. (11)

By virtue of (11) it follows that the stationarity condition (4) can be fulfilled only in the
case when yi = ai for all i. Indeed, since the functions Ji are convex in variables (yi, xi),
their partial derivatives with respect to yi are nondecreasing, and so for yi ≥ ai the quantities
∇ci(yi)−yi∇p(T )−p(T )+ π̄∇qi(yi) are positive as well. It follows that yi = ai for all i
in order to bring the normal cones toAi into play. This means that the respective values of xi

are given by xi = qi(ai) − ei and thus, thanks to assumption A6, the corresponding excess
demand

∑m
i=1(ei + xi) − � is negative, which contradicts the complementarity condition

of the Walras equilibrium. As L we can thus choose any positive real satisfying inequality
(11) with π̄ replaced by L.

On the basis of Lemmas 1 and 2 we are now able to state our main existence result.

Theorem 1 Under the posed assumptions there is a CNW equilibrium.

Proof Define the mapping Q[Rm → R] by

Q(y) :=
m

∑

i=1

qi(yi).

By virtue of Lemma 1 it suffices to show the existence of a pair (π̄, ȳ) which solves the
(aggregated) GE

0 ∈ � − Q(y) + NR+(π)

0 ∈
⎡

⎢

⎣

∇c1(y1) + π∇q1(y1) − y1∇p(T ) − p(T )
...

∇cm(ym) + π∇qm(ym) − ym∇p(T ) − p(T )

⎤

⎥

⎦
+

m

X
i=1

NAi
(yi)

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

(12)

in variables (π, y). Thanks to Lemma 2, R+ in the first line of (12) can be replaced by a
bounded interval [0, L]. In this way, one obtains a variational inequality with a bounded
constraint set which possesses a solution (π̄, ȳ) as a consequence of the Brouwer Fixed
Point Theorem. It follows that (π̄, ȳ, x̄) with x̄i = qi(ȳi ) − ei is a CNW equilibrium.
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If the functions qi are not convex, then the whole above argumentation remains valid
provided that in Lemma 2 we replace the expression on the left-hand side of (11) by

min
i=1,...,m

min
yi∈Ai

{

∇ci(yi) − yi∇p

(

m
∑

i=1

yi

)

− p

(

m
∑

i=1

yi

)

+ π̄∇qi(yi)

}

> 0. (13)

Note that the second minimum on the left-hand side of (13) is attained by the bounded-
ness of intervals Ai and by assumptions A1 and A2. Moreover, by increasing π , the validity
of inequality (13) can be ensured due to positivity of ∇qi(yi) for all i.

As mentioned above, in case of nonconvex functions qi , GE (10) is not a characterization
but only a stationarity condition for the Cournot-Nash equilibria generated by problems (9).
In Theorem 1 we thus do not prove the existence of CNW equilibria, but only the existence
of points satisfying a stationarity condition for CNW equilibria.

Given such a point (π̄, ȳ) solving (12), one can check whether, e.g., the second-order
sufficient conditions for the (nonconvex) optimization problems (9) are fulfilled. In that
case, (π̄, ȳ, x̄) with x̄i = qi(ȳi ) − ei, i = 1, . . . , m, is a CNW equilibrium.

In the above existence proof we have not fully employed assumptions A1-A3. In fact,
they might be replaced by the (weaker) requirement that functions ϕi[Rm → R] defined by

ϕi(y) := ci(yi) − p(T )yi, i = 1, . . . , m,

can be extended to an open neighborhood of Xm
i=1 Ai and these extensions are convex and

continuously differentiable.
Thus, the optimization problems (3) could be, for instance, linear programs. On the other

hand, assumptions A1-A4 play an important role in the next section devoted to analysis of
the properties of CNW equilibria.

4 Properties of CNW Equilibria

Throughout this section a crucial role is played by the strong monotonicity of the operator

G(y) :=
⎡

⎢

⎣

∇c1(y1) − y1∇p(T ) − p(T )
...

∇cm(ym) − ym∇p(T ) − p(T )

⎤

⎥

⎦
,

which has been proved in [16, Lemma 12.2] under A1-A4. This operator arises in the GE
characterizing the standard Cournot-Nash equilibrium in markets without the rare resource.

Proposition 2 The set of solutions to (12) is closed and convex.

Proof By virtue of [19, Example 12.48] it suffices to prove that the single-valued part of
GE (12) is a monotone operator relative to R+ ×Xm

i=1 Ai . By invoking [15, Theorem 5.4.3
(a)] this is ensured provided the symmetric matrix 1

2 [D(π, y) + (D(π, y))T ] with

D(π, y) :=

⎡

⎢

⎢

⎢

⎣

0 −∇q1(y1) . . . −∇qm(ym)

∇q1(y1)
... ∇yH(π, y)

∇qm(ym)

⎤

⎥

⎥

⎥

⎦

(14)
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is positive semidefinite over R+ ×Xm
i=1 Ai . In (14), H stands for the mapping defined by

H(π, y) := G(y) + π

⎡

⎢

⎣

∇q1(y1)
...

∇qm(ym)

⎤

⎥

⎦
. (15)

Clearly,

1

2
[D(π, y) + (D(π, y))T ] =

⎡

⎢

⎢

⎢

⎣

0 0 . . . 0
0
... 1

2 [∇yH(π, y) + (∇yH(π, y))T ]
0

⎤

⎥

⎥

⎥

⎦

.

The matrix 1
2 [∇G(y) + (∇G(y))T ] is positive definite due to [16, Lemma 12.2]. Under

A5 the second matrix in (15) is symmetric positive definite as well and so the proof is
complete.

Note that in the above statement the convexity of functions qi, i = 1, . . . , m, is not
needed.

The previous statement can very well be combined with the local stability results derived
next. Assume that we are given a pair (π̄, ȳ) solving GE (12) and consider the local behavior
of the multifunction 	[R × R

m ⇒ R
m+1], defined by

	(π, y) :=

⎡

⎢

⎢

⎢

⎣

� − Q(y)

∇c1(y1) + π∇q1(y1) − y1∇p(T ) − p(T )
...

∇cm(ym) + π∇qm(ym) − ym∇p(T ) − p(T )

⎤

⎥

⎥

⎥

⎦

+ N
R+×

m

X
i=1

Ai

(π, y), (16)

around (π̄, ȳ, 0) ∈ Gr 	. Denoting by 
 the inverse of 	 and picking a point (u, v) ∈
R × R

m, 
(u, v) amounts to the set of solutions to GE (12), where (0, 0) ∈ R × R
m

on the left-hand side is replaced by (u, v). One speaks about canonical perturbations
of (12).

A multifunction �[Rn ⇒ R
l] is called strongly metrically regular at (b̄, ā) ∈ Gr�,

provided �−1 has a Lipschitz single-valued localization s around (ā, b̄), i.e., there are
neighborhoods U of ā,V of b̄ and a Lipschitz single valued mapping s[U → R

m] such
that

b̄ = s(ā) and �−1(a) ∩ V = {s(a)} for all a ∈ U .

It turns out that under relatively mild assumptions 	 is strongly metrically regular at
(π̄, ȳ, 0) whenever π̄ > 0.

Theorem 2 Let (π̄, ȳ) be a solution of GE (12) and assume that π̄ > 0 and ȳi ∈ int Ai for
at least one i ∈ {1, 2, . . . , m}. Then 	 is strongly metrically regular at (π̄, ȳ, 0

Rm+1), i.e.,

 has a Lipschitz single-valued localization around (0

Rm+1 , π̄ , ȳ).
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Proof By combining the results in [6, Theorem 3G4] and [5, Theorem 1], and applying
the Mordukhovich criterion to ensure the metric regularity of 	 at (π̄, ȳ, 0) [13, Corollary
4.61], it suffices to prove that the GE

0 ∈ (D(π̄, ȳ))T

⎡

⎢

⎢

⎢

⎣

z0
z1
...

zm

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

D∗NR+(π̄, P0(π̄, ȳ))(z0)

D∗NA1(ȳ1, P1(π̄, ȳ))(z1)
...

D∗NAm(ȳm, Pm(π̄, ȳ))(zm)

⎤

⎥

⎥

⎥

⎦

(17)

has only the trivial solution (z0, z1, . . . , zm) = 0. In (17), P(π, y) := (P0(π, y),

P1(π, y), . . . , Pm(π, y)) denotes the single-valued mapping on the right-hand side of (16).
It follows from π̄ > 0 that the first component of the multi-valued part of (17) vanishes so
that, with z̃ := (z1, . . . , zm), GE (17) amounts to the system

0 = 〈∇Q(ȳ), z̃〉 (18)

0 ∈ ∇Q(ȳ)z0 + (∇yH(π̄, ȳ))T z̃ + D∗N m
X

i=1
Ai

(ȳ,−P̃ (π̄ , ȳ))(z̃), (19)

where P̃ (π, y) = (P1(π, y), . . . , Pm(π, y)).
Premultiplying GE (19) by z̃T , we obtain that

0 = 〈z̃,∇Q(ȳ)z0〉 + 〈∇yH(π̄, ȳ)z̃, z̃〉 + 〈z̃, d〉 (20)

d ∈ D∗N m

X
i=1

Ai

(ȳ,−P̃ (π̄ , ȳ))(z̃).

The first term on the right-hand side of (20) amounts to zero due to (18). Further we note
that 〈z̃, d〉 ≥ 0 which follows from the well-known result in [18, Theorem 2.1] because of
the maximal monotonicity of the normal-cone mapping to a convex set. Since ∇yH(π̄, ȳ)

is positive definite by virtue of [16, Lemma 12.2] and by assumption A5, we conclude that
z̃ = 0 and (19) reduces thus to

0 = ∇Q(ȳ)z0 +
m

X
i=1

D∗NAi
(ȳi , −P̃i (π̄ , ȳ))(0).

By the assumption there is an index i0 ∈ {1, 2, . . . , m} such that ȳi0 ∈ intAi0 and,
consequently, P̃i0(π̄, ȳ) = 0. It follows that D∗NAi0

(ȳi0 ,−P̃i (π̄ , ȳ))(0) = {0} as well and,
since ∇q0(ȳi0) > 0 , one has that z0 = 0. The statement has been established.

If π̄ = 0, then 	 enjoys a somewhat weaker stability property. A multifunction �[Rn ⇒
R

l] is called strongly metrically subregular at (b̄, ā) ∈ Gr �, provided �−1 has the isolated
calmness property at (ā, b̄), i.e., there are neighborhoods U of ā, V of b̄ and a modulus
� ≥ 0 such that

�−1(a) ∩ V ⊂ {b̄} + �||a − ā||BRn for all a ∈ U .

Theorem 3 Let (π̄, ȳ) be a solution of GE (12) and assume that π̄ = 0 and either � −
Q(ȳ) > 0 or ȳi ∈ int Ai for at least one i ∈ {1, 2, . . . , m}. Then 	 is strongly metrically
subregular at (π̄, ȳ, 0

Rm+1), i.e., 
 has the isolated calmness property at (0
Rm+1 , π̄ , ȳ).
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Proof By applying the criterion from [5, Theorem 4E.1] it suffices to prove that the GE

0 ∈ D(π̄, ȳ)

⎡

⎢

⎢

⎢

⎣

z0
z1
...

zm

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

NK0(z0)

NK1(z1)
...

NKm(zm)

⎤

⎥

⎥

⎥

⎦

(21)

has only the trivial solution (z0, z̃) := (z0, z1, . . . , zm) = 0. In (21), the critical cones
K0, Ki, i = 1, . . . , m, are given by

K0 = TR+(0) ∩ {P0(π̄, ȳ)}⊥,Ki = TAi
(ȳi ) ∩ {Pi(π̄, ȳ)}⊥, i = 1, . . . , m.

If � − Q(ȳ) > 0, then K0 = {0} and so (21) amounts to the GE

0 ∈ ∇yH(π̄, ȳ)z̃ +
m

X
i=1

NKi
(zi). (22)

Premultiplying GE (22) by z̃
, we obtain that
〈

z̃,∇yH(π̄, ȳ)z̃)
〉 = 0,

because for all zi and di ∈ NKi
(zi), i = 1, . . . , m, one has 〈zi, di〉 = 0. Since∇yH(π̄, ȳ) =

∇G(ȳ) is positive definite ([16, Lemma 12.2]), we conclude that z̃ = 0 and the statement
holds true.

If � − Q(ȳ) = 0, then K0 = R+. If z0 = 0, we can proceed exactly as in the preceding
case. So, let us assume that z0 > 0. GE (21) amounts then to the system

〈∇Q(ȳ), z̃〉 = 0

0 ∈ ∇Q(ȳ)z0 + ∇yH(π̄, ȳ)z̃ +
m

X
i=1

NKi
(zi).

(23)

By the same argumentation as in the proof of the preceding case we detect that z̃ must
vanish so that the 2nd line in (23) reduces to

0 ∈ ∇Q(ȳ)z0 +
m

X
i=1

NKi
(0).

Now it follows from the posed assumption that Ki = R for some i and, consequently,

∇qi(ȳ)z0 = 0.

By virtue of A5 this contradicts the positivity of z0 and so the statement has been
established.

Note again that, as in Proposition 2, the convexity of functions qi, i = 1, . . . , m, is not
needed in the proofs of Theorems 2 and 3.

A combination of Theorem 2 and Proposition 2 yields the following:

Corollary 1 Let (π̄, ȳ) be a solution of GE (12) with π̄ > 0 and ȳi ∈ intAi for some
i ∈ {1, . . . , m}. Then 
 is single-valued and Lipschitz around (0, 0Rm).

Proof Indeed, under the posed assumptions, by Theorem 2 there exist neighborhoods U of
(0, 0Rm), Z of (π̄, ȳ) and a single-valued and Lipschitz map σ [U → R × R

m] such that
σ(0, 0) = (π̄, ȳ) and


(u, v) ∩ Z = {σ(u, v)} for (u, v) ∈ U . (24)
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Since the monotonicity argument from the proof of Proposition 2 remains valid also under
canonical perturbations, the sets 
(u, v) are convex. By virtue of (24), however, this is
possible only when 
(u, v) = σ(u, v) over U and we are done.

From [6, Theorem 3G.4] we infer that the above property of 
 is inherited by all map-
pings which assign (π, y) to any scalar- or vector-valued parameter on which P depends in
a continuously differentiable way (at the respective points). Likewise, under assumptions of
Theorem 3, these mappings possess the isolated calmness property thanks to [6, Theorem
3I.12]. This could be, e.g., � or any parameter arising in the functions p, ci or qi .

We conclude this section with the following uniqueness result.

Theorem 4 (i) Consider the triple (π̄, ȳ, x̄), where (π̄, ȳ) is a solution of GE (12) with
π̄ > 0, ȳi ∈ int Ai for some i ∈ {1, . . . , m} and x̄i = qi(ȳi ) − ei for all i =
1, . . . , m. Then (π̄, ȳ) is a unique solution of GE (12) and (π̄, ȳ, x̄) is a unique CNW
equilibrium.

(ii) Assume that (0, ȳ) is a solution of GE (12), where ȳi ∈ int Ai for some i ∈ {1, . . . , m}.
Then (0, ȳ) is a unique solution of GE (12).

Proof The statement (i) follows easily from Corollary 1 and Lemma 1. To prove (ii), assume
that (π̃, ỹ) is a solution of GE (12) different from (0, ȳ). Assumptions A1-A4 imply, by
virtue of [16, Lemma 12.2] that π̃ > 0. Further, it follows that ỹi ∈ bd Ai for all i, because
otherwise we had a contradiction with Corollary 1. Nevertheless, by Proposition 2, the pair
( π̃
2 ,

ȳ
2 + ỹ

2 ) is then also a solution of GE (12) and by the imposed assumptions
(

ȳi

2
+ ỹi

2

)

∈ int Ai

for some i ∈ {1, . . . , m}. This contradicts the statement (i) of this theorem and so the proof
is complete.

5 Computation of CNW Equilibria

This section is devoted to the numerical solution of GE (12), which provides us either
directly with CNW equilibria (under A1-A7) or with stationary points in the sense explained
in Section 3. Since the structure of the constraint set in GE (12) is relatively simple, there
are a considerable number of efficient numerical methods that can be used for this purpose.
Many of them can be found, e.g., in the monograph [7]. On the other hand, GE (12) amounts
to a family of optimization problems (9) coupled with the complementarity constraint

0 ≤ � − Q(y) ⊥ π ≥ 0,

and so it is an example of a MOPEC (multiple optimization problems coupled with
equilibrium constraints), cf. [1].

One approach for solving this problem is to convert the MOPEC into a complementarity
model, by replacing each optimization problem (9) by its first-order optimality conditions
(10) and solving the resulting standard mixed complementarity using the PATH solver [4, 9]
for example. The PATH solver employs a non-smooth Newton method for the complemen-
tarity problem, solving a succession of piecewise linear approximations of the piecewise
smooth complementarity system. In addition, a number of computational enhancements (to
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preprocess the model, to identify an active set and to perform the linear algebra in an effi-
cient manner for large scale systems) are employed. In fact, the model (4) and (5) is also
a MOPEC and can be directly processed by PATH. The results in both cases are identical,
and are generated within the GAMS modeling system [2] using the extended mathematical
programming tools [8].

Alternatively, instead of GE (12), one could consider the optimization problem

minimize π · (� − Q(y))

subject to

0 ∈
⎡

⎢

⎣

∇c1(y1) + π∇q1(y1) − y1∇p(T ) − p(T )
...

∇cm(ym) + π∇qm(ym) − ym∇p(T ) − p(T )

⎤

⎥

⎦
+

m

X
i=1

NAi
(yi),

π ≥ 0,
� − Q(y) ≥ 0.

(25)

It is easy to see that any solution of (π̄, ȳ) of (25) such that the corresponding (optimal)
objective value vanishes is a solution of GE (12). Problem (25) is a mathematical program
with equilibrium constraints (MPEC), where π is the control and y is the state variable.

Note that the objective in (25) amounts to the so-called primal gap function which is
frequently used in connection with complementarity problems, cf. [7]. For the numerical
solution of (25) there is again a number of efficient universal techniques, see, e.g., [8, 12].
Apart from them, one can exploit the specific properties of the GE in (25) and apply the so-
called implicit programming approach (ImP), cf. [16, 17], which amounts in this case to a
decomposition of GE (12) with respect to variables π and y.

For numerical tests we have adopted an example of an oligopolistic market with 5 firms
from [14], cf. also [16, 17]. Several instances of this example have been successfully solved
in the MOPEC framework by using the PATH solver and via the MPEC reformulation by
using a relaxation method [12, 21] and a variant of the ImP approach from [17]. Thanks to
the low dimensionality of this example (m = 5) all methods used worked well and reached
the same solutions (with a sufficient accuracy) within seconds.

Example 1 Consider the oligopolistic market with five producers/firms supplying a quantity
yi ∈ R+, i = 1, . . . , 5, of some homogeneous product on the market with the inverse
demand function

p(T ) = 5000
1
γ T

− 1
γ ,

where γ is a positive parameter termed demand elasticity.
Let the production cost functions be of the form

ci(yi) = ciyi + βi

1 + βi

K
− 1

βi

i (yi)
1+βi
βi ,

where ci,Ki and βi, i = 1, . . . , 5, are positive parameters. Suppose that q1(y1) =
q1y1 + √

y1 + 1 − 1 and the technological functions qi, i = 2, . . . , 5, are linear and in the
form qi(yi) = qiyi . Table 1 specifies values of parameters qi, ci , Ki and βi, i = 1, . . . , 5.
Further, let the demand elasticity γ = 1.3, assume initial endowments of the rare resource
ei = 25 for each firm i, i = 1, . . . , 5, put � = ∑5

i=1 ei and consider production bounds
Ai = [0, 30], i = 1, . . . , 4, and A5 = [1, 30].

Each production cost function is convex and twice continuously differentiable on some
open set containing the feasible set of strategies of a corresponding player. The inverse
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Table 1 Parameter specification

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

qi 1.36 1.5 1.48 1.5 1.4

ci 10 8 6 4 2

Ki 5 5 5 5 5

βi 1.2 1.1 1.0 0.9 0.8

demand curve is twice continuously differentiable on int R+, strictly decreasing, and
convex. Observe that the so-called industry revenue curve

Tp(T ) = 5000
1
γ T

γ−1
γ

is concave on int R+ for γ ≥ 1. Thus, all assumptions A1 - A7 are satisfied, except that
q1(y1) is not convex in A5.

This basic setting of problem data corresponds to the case A in Table 2, where the
achieved numerical results are displayed. In the subsequent cases some of the above

Table 2 Production, profits and purchased rare resources

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

case A π = 6.484

production 8.016 13.597 18.218 21.009 23.732

profit 176.647 216.959 264.905 309.177 372.600

purchased rare resource -12.096 -4.604 1.962 6.513 8.224

case B π = 5.529

production 9.225 14.955 19.723 22.516 24.899

profit 156.614 198.451 248.355 294.131 354.654

purchased rare resource -10.256 -2.568 4.191 8.774 9.859

case C π = 7.381

production 19.579 10.094 15.024 18.173 21.572

profit 282.729 215.059 254.569 294.105 356.919

purchased rare resource 5.163 -9.858 -2.765 2.259 5.201

case D π = 0

production 21.218 28.081 32.345 33.790 32.664

profit 67.210 125.581 186.056 237.492 272.578

purchased rare resource -12.430 3.145 2.870 5.685 0.729

case E π = 5.764

production 0 16.215 20.608 23.132 25.342

profit 144.097 220.921 274.314 321.432 383.849

purchased rare resource -25.000 -0.677 5.500 9.699 10.479

case F π = 6.446

production 8.236 13.770 18.372 21.143 23.000

profit 176.652 217.429 265.769 310.248 369.377

purchased rare resource -11.760 -4.345 2.190 6.715 7.200
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specified problem data have been changed in order to illustrate the behavior of CNW
equilibria.

Let us comment briefly on the influence of the performed data changes on the corre-
sponding CNW equilibria. In case A, π̄ is positive, all production lies within the production
intervals and the first two firms sell certain amounts of the rare resource to the remaining
ones. In case B, there is a sixth player in the market who does not produce anything but
is endowed with 10 units of the rare resource. Hence, � = ∑5

i=1 ei + 10. As a result, π

decreases and the additional non-producing agent earns 55.29 units by selling his endow-
ment to the firms 3-5. In case C, Firm 1 decreases his production costs (c1 = 5). As a
result, his production increases and, instead of selling some rare resource, this firms buys it.
Consequently, π increases. In case D, upper bounds on production are increased to 35 and
initial endowments of the rare resource are increased to 45. Consequently, the secondary
market in the rare resource is not necessarily cleared (even though the solution found by
PATH does clear) and π̄ = 0. In case E, the consumption of the rare resource of Firm 1
has increased (q1 = 4). As a consequence, Firm 1 has to completely stop production and
his profit amounts just to the income from the rare resource. This situation again leads to a
decrease of π . Finally, in case F the upper bounds on production are lowered to 23. Firm
5 has to decrease production and π slightly decreases from case A as well. Note that in all
considered instances, apart from D, one has unique CNW equilibria, while in case D the
uniqueness concerns only the price of the rare resource and the production. Since q1(y1)

is not convex, we check the optimality conditions of each firm to guarantee that we have
found a minimizer and not just a stationary point in all cases above.

6 Concluding Remarks

The stability results of Section 4 enable the authority, controlling the rare resource, for
instance, to optimize the choice of � via the MPEC

minimize J (�, π, y)

subject to GE(12),
(26)

where J is a suitable objective which correlates the amount of � with the corresponding
price π and production y. Likewise a firm, knowing the data of his competitors and the
policy of the authority, controlling the rare resource, may optimize his investments into the
manufacturing process taking into account the cost of the technological improvements. In
this way we again obtain an MPEC with GE (12) among the constraints. The controls are
then the parameters of the respective functions ci and qi .

A similar model can be constructed also in the case of multiple outputs and/or multiple
rare resources. With the ith firm we associate then the technological functions

q
j
i (y1

i , . . . , yn
i ), j = 1, . . . , k,

which specify the amount of the j th rare resource needed to produce the output vector
(y1

i , . . . , yn
i ) ∈ R

n. The monotonicity and convexity requirements in A5 can be replaced by
suitable conditions in terms of Jacobians

∇qi(yi) =
⎡

⎢

⎣

∇q1
i (yi)
...

∇qk
i (yi)

⎤

⎥

⎦ , yi = (y1
i , . . . , yn

i ), i = 1, . . . , m,

over the production intervals.
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Both above mentioned goals go beyond the scope of the current paper and may be
addressed in a future work.
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10. Flåm, S.D.: Noncooperative games, coupling constraints and partial efficiency. Econ. Theory Bull. 1–17

published electronically (2016)
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